A NEW HEDONIC REGRESSION FOR REAL ESTATE PRICES
APPLIED TO THE SINGAPORE RESIDENTIAL MARKET

By

Liang Jiang, Peter C. B. Phillips, and Jun Yu

December 2014

COWLES FOUNDATION DISCUSSION PAPER NO. 1969
A New Hedonic Regression for Real Estate Prices Applied to the Singapore Residential Market

Liang Jiang
Singapore Management University

Peter C.B. Phillips
Yale University, University of Auckland, University of Southampton, Singapore Management University

Jun Yu
Singapore Management University

October 5, 2014

Abstract

This paper develops a new hedonic method for constructing a real estate price index that utilizes all transaction price information that encompasses both single-sale and repeat-sale properties. The new method is less prone to specification errors than standard hedonic methods and uses all available data. Like the Case-Shiller repeat-sales method, the new method has the advantage of being computationally efficient. In an empirical analysis of the methodology, we fit the model to all transaction prices for private residential property holdings in Singapore between Q1 1995 and Q2 2014, covering several periods of major price fluctuation and changes in government macroprudential policy. Two new indices are created, one from all transaction prices and one from single-sales prices. The indices are compared with the S&P/Case-Shiller index. The result shows that the new indices slightly outperform the S&P/Case-Shiller index in predicting the price of single-sales homes out-of-sample. However, they underperform the S&P/Case-Shiller index in predicting the price of repeat-sales homes out-of-sample. The
empirical findings indicate that specification bias can be more substantial than the sample selection bias when constructing a real estate price index. In a further empirical application, the recursive method of Phillips, Shi and Yu (2014) is used to detect explosive periods in real estate prices of Singapore. The results confirm the existence of an explosive period from Q4 2006 to Q1 2008. No explosive period is found after 2009, suggesting that the ten successive rounds of cooling measures implemented by the Singapore government have been effective in changing price dynamics and preventing a subsequent outbreak of explosive behavior in the Singapore real estate market.

JEL classification: C58, R31
Keywords: Repeat sales, Hedonic models, Prediction, Index, Explosive, Cooling measures

1 **Introduction**

Real estate prices are one of the key indicators of economic activity. Indices measuring changes in real estate prices help to inform households about their asset wealth and to make a wide variety of economic decisions that depend on wealth resources. Policy makers rely on the information imported by these indices in designing and formulating monetary and fiscal policies at the aggregate level as well as macro-prudential policies directed at the financial and banking sectors. Though real estate prices are widely accepted as highly important economic statistics, the construction of a suitable index that will reflect movements in the price of a typical house in the economy presents many conceptual, practical, and theoretical challenges.

First, houses are distinctive, making it particularly difficult to characterize a ‘typical’ house for the development of an index. Different houses have varying characteristics such as location, size, ownership, utilities and indoor/outdoor facilities. These differences imply that averaging all market transaction prices without controlling for house heterogeneity inevitably produces bias. Second, house transactions are infrequent and sales data are unbalanced for several reasons. Most houses on the market are single-sale houses. Houses that have been sold more than once account for a small portion of the whole market in a typical dataset. Also, houses sold in one period can be quite different from those sold in other periods. These factors unbalance the pricing data and complicate econometric construction of a price index due to problems of heterogeneous, missing, and unequally spaced observations. Third, a typical presumption underlying construction of real estate price indices is that the average quality of properties in the market remains constant over time, whereas quality improvements in housing occurs
continuously from advances in materials, design, utilities, and construction technologies. Meanwhile and in spite of ongoing maintenance, older dwellings age with the holding period, leading to some depreciation in house value. These countervailing effects can produce ambiguities regarding what movements in a real estate price index reflect: the underlying market situation or quality changes in the properties that happen to be sold. This problem is exacerbated in a fast growing real estate market where a substantial proportion of sales are new sales released directly from developers.

Two main approaches dominate the literature of real estate price indices: the hedonic regression method and repeat sales method. The hedonic method assumes that house values can be decomposed into bundles of utility-bearing attributes that contribute to the observed heterogeneity in prices. Observed house prices may then be regarded as the composite sum of elements that reflect implicit structural and locational prices (Rosen, 1974). Hedonic methods of estimating a real estate price index employ regression techniques to control for various sources of heterogeneity in prices using observations on covariates and dummy variables that capture relevant characteristics. However, the choice of the covariates in such hedonic regressions is limited by data availability and involves subjective judgements by the researcher, which may lead to model misspecification bias. Moreover, Shiller (2008) argued that the hedonic approach can lead to spurious regression effects in which the irrelevant hedonic variables are significant. A further complication is that the precise relationship between hedonic information and sales prices is unknown, likely to be complex, and may well be house dependent.

Unlike the hedonic approach, which uses all transaction prices to create an index, the repeat sales method uses only properties that are sold multiple times in the sample to track market trends. The technique was first introduced for building the real estate price index by Bailey, Muth, and Nourse (1963) and then extended to include time-dependent error variances in seminal work by Case and Shiller (1987, 1989). The repeat-sales method seeks to avoid the problem of heterogeneity by looking at the difference in sale prices of the same house. No hedonic variables are needed, so the approach avoids the difficulties of choosing hedonic information and specifying functional forms. However, since the repeat-sales method confines the analysis only to houses that have been sold multiple times, it is natural to question whether repeat-sales are representative of the entire market and whether there exists significant sample selection bias. Clapp et al. (1991) and Gatzlaff and Haurin (1998) argued that the properties that are sold more than once could not represent the whole real estate market and the index estimated by the repeat sales method is most likely subject to some sample selection bias. Moreover,
large numbers of observations must be discarded because repeat sales typically comprise only a small subset of all sales. Not surprisingly, the repeat-sales method has been criticized by researchers (e.g., Mark and Goldberg, 1984) for discarding too much data. However, as argued in Shiller (2008), “there are too many possible hedonic variables that might be included, and if there are \(n \) possible hedonic variables, then there are \(n! \) possible lists of independent variables in a hedonic regression, often a very large number. One could strategically vary the list of included variables until one found the results one wanted.”

A combined approach, called the hybrid model, has been introduced as an alternative method of constructing house price indices. In particular, Case and Quigley (1991) proposed a hybrid model and applied a generalized least squares method to jointly estimate the hedonic and repeat sales equations. In subsequent work, Quigley (1995) and Englund et al. (1998) proposed to model explicitly the structure of the error terms in their hybrid model to improve the estimated price index. Hill et al. (1997) instead employed an AR(1) process to model the error dynamics of the hybrid model. Nagaraja, Brown and Zhao (2011) also relied on an underlying AR(1) model to build the hybrid model. To answer the question why hybrid models are better, Ghysels et al. (2012) explained that improved estimation in the hybrid model is analogous to the better forecasts gained by forecast combinations. The hedonic model has less sample selection bias but potentially greater specification bias, whereas the repeat sales model has less specification bias but more sample selection bias. Ideally, some combination of the two might lead to an improved procedure of delivering an index that reduces both sample selection and specification bias.

Such is the goal of the present work, which seeks to examine the price index implications of specification bias and sample selection bias and proposes a new hedonic model and real estate price index that is less prone to specification error than standard hedonic models. We compare the new method’s out-of-sample predictive performance with the S&P/Case-Shiller index when the model is fitted to all repeat-sales prices. It is found that, while our method performs better at forecasting the price of single-sales homes than the S&P/Case-Shiller index, it performs worse in predicting the price of repeat-sales homes. Consider both single-sales and repeat-sales homes in forecasting, we find that the S&P/Case-Shiller index gives better performance overall, since it leads to a significantly better predictive power for the prices of repeat-sales homes and only slightly worse predictive power for the price of single-sales homes. These findings indicate that specification bias has more serious implications in terms of pricing errors in indices and in forecasting than the sample selection bias, thereby reinforcing the claim.
made by Shiller (1988) that “the repeat sales method is the only way to go”.

The remainder of the paper is organized as follows. Section 2 develops the model and the estimation method. In Section 3, the method is applied to build a real estate price index for Singapore and out-of-sample performance of the alternative indices is compared. In Section 4 we test for explosive behavior in the index using the recursive method of bubble detection developed recently in Phillips, Shi and Yu (2014). The results are discussed in the context of policy measures conducted by the Singapore government to cool the local real estate market. The Appendix provides details of these policy cooling measures. Section 5 concludes.

2 Model and Estimation

Let the log price per square foot for the jth sale of the ith house in area z be $y_{i,j,z}$ and denote by $t(i,j,z)$ the time when the ith house in area z is sold for the jth time. We assume that the log price can be modeled as the sum of a log price index component, a location effect, an individual house effect, other hedonic covariates, and a time-dependent error term. The log price index component is described by the parameter $\beta_{t(i,j,z)}$, which captures the time specific effect of house prices. The location effect is captured by the location variable z, which is assumed to be a fixed effect with respect to location z and may be correlated with covariates. The individual house effect is captured by h_i, which is assumed to be independent over i with mean 0 and variance σ^2_h.

Suppose the total number of time periods (say quarters) is T. Then, $t(i,j,z)$ belongs to the set $\{1, \ldots, T\}$. When there is no confusion, we simply write $t(i,j,z)$ as t. Let L be the total number of location areas, I_z the number of houses in area z, and $J_{i,z}$ the number of sales for the house i in area z. Then the model is formulated as follows

$$y_{i,j,z} = c + \beta_{t(i,j,z)} + \gamma'X_{i,z} + \mu_z + h_{i,z} + \epsilon_{i,j,z}, \quad (1)$$

where c is a constant intercept, $X_{i,z}$ the covariates of the ith house in area z, and $\epsilon_{i,j,z}$ represents idiosyncratic shocks that are assumed to be iid $(0, \sigma^2_{\epsilon})$. The covariates capture the available hedonic information in the data.

The standard hedonic model (Ghysels et al., 2012) is:

$$y_{i,j,z} = c + \beta_{t(i,j,z)} + \gamma'X_{i,z} + \epsilon_{i,j,z}. \quad (2)$$

Compared with Model (1), neither the location nor individual fixed effects are included in the standard hedonic model.
The model of Case-Shiller (1987) may be motivated from the following specification

\[y_{i,j,z} = \beta_{t(i,j,z)} + f(X_{i,z}, \gamma) + \mu_z + \sum_{k=0}^{a_{t(i,j,z)}} u_{i,z}(k) + \epsilon_{i,j,z}. \quad (3) \]

where \(a_{t(i,j,z)} \) is the house age at time \(t(i, j, z) \) for the \(i \)th house in area \(z \). In this model, the functional form that captures the impact of hedonic information (whether available or not) is \(f \) where \(f \) is left unspecified. In addition, the random walk (partial sum) process \(\sum_{k=0}^{a_{t(i,j,z)}} u_{i,z}(k) \) is used to model the concatenation of shocks associated with house up-keep and maintenance. For houses that have been sold multiple times in the sample, taking the difference of Model (3) at two time stamps gives

\[y_{i,j,z} - y_{i,j-1,z} = \beta_{t(i,j,z)} - \beta_{t(i,j-1,z)} + \sum_{k=t(i,j-1,z)-1}^{t(i,j,z)} u_{i,z}(k) + \epsilon_{i,j,z} - \epsilon_{i,j-1,z}, \quad (4) \]

as both the hedonic covariates (both observed and unobserved) and the location effect are eliminated by differencing. Only houses that have been sold multiple times in the sample are retained in model (4). The model was estimated by Case and Shiller (1987) using a multi-stage method and led to the construction of the S&P/Case-Shiller real estate price index.

Compared with the standard hedonic model (2), the new model (1) is more robust to model misspecification. To see this, note that, to capture the heterogeneity across different houses, it is necessary to include all the relevant hedonic information parametrically in (2). Inevitably some covariates in equation (2) are missing due to data unavailability. These covariates are generally correlated with the observed covariates and are absorbed into the error term, \(\epsilon_{i,j,z} \), in equation (2). Consequently, \(\epsilon_{i,j,z} \) is correlated with \(X_{i,z} \) in (2). Whereas, in the proposed new model, as long as these omitted covariates do not change over time,\(^1\) equation (1) holds true without involving these covariates, since they are explicitly captured by the location and individual house fixed effects.

Comparison between the repeat-sales model of Case-Shiller (1987) and the model (1) involves a trade-off in potential bias effects. On the one hand, the proposed model is more prone to model misspecification than the repeat-sales model. This is because in the repeat-sales model, the functional form that relates \(y_{i,j,z} \) to \(X_{i,z} \) is left unspecified.

\(^1\)Some covariates, such as construction technology, building materials and architectural design, are likely to be slowly time varying. If so, model (1) is subject to specification errors that result from evolution in these processes.
whereas in our model the functional form is specified parametrically. Moreover, in the proposed model it is assumed that the individual house specific effects $h_i \sim (\mu_h, \sigma_h^2)$, which may be restrictive. On the other hand, by confining analysis to repeat sales, an underlying assumption is that the repeat-sales properties can reasonably represent the whole real estate market. If this assumption does not hold, there exists sample selection bias in Model (4). The proposed model is not subject to such a sample selection bias as all transaction prices across the full market are used in constructing the index. The pricing implications arising from the misspecification bias can be larger or smaller than those arising from the sample selection bias. It is therefore important to have an empirical assessment of the relative pricing implications of these two sources of bias.

To estimate the proposed model, we can take price averages in each area at each time period from equation (1) giving

$$
\bar{y}_{t,z} = c + \beta_t + \gamma' \bar{X}_{t,z} + \mu_z + \bar{h}_{t,z} + \bar{e}_{t,z},
$$

for houses that have been sold in location z and at time t. First differencing produces

$$
\bar{y}_{t,z} - \bar{y}_{t-1,z} = \beta_t - \beta_{t-1} + \gamma' (\bar{X}_{t,z} - \bar{X}_{t-1,z}) + \bar{h}_{t,z} - \bar{h}_{t-1,z} + \bar{e}_{t,z} - \bar{e}_{t-1,z},
$$

from which the location fixed-effect μ_z is eliminated. Under the assumption that the number of houses sold in each location at each time tends to infinity, by the law of large numbers, equation 6 can be written as

$$
\bar{y}_{t,z} - \bar{y}_{t-1,z} = \beta_t - \beta_{t-1} + \gamma' (\bar{X}_{t,z} - \bar{X}_{t-1,z}) + e_{t,z},
$$

where $e_{t,z} = \bar{h}_{t,z} - \bar{h}_{t-1,z} + \bar{e}_{t,z} - \bar{e}_{t-1,z}$, which is $o_p(1)$ if $h_i \sim (\mu_h, \sigma_h^2)$ and $e_{i,j,z} \sim o(0, \sigma_e^2)$. Correspondingly, if the number of houses sold in each location at two time periods (say t and t' with $t' > t$) tends to infinity, then long differencing (5) we have

$$
\bar{y}_{t',z} - \bar{y}_{t,z} = \beta_{t'} - \beta_t + \gamma' (\bar{X}_{t',z} - \bar{X}_{t,z}) + e_{t',t,z},
$$

where $e_{t',t,z} = \bar{h}_{t',z} - \bar{h}_{t,z} + \bar{e}_{t',z} - \bar{e}_{t,z}$ which is again of small order.

Equations (7) can be stacked into matrix form as the system

$$
Y = Z\theta + e,
$$

with parameter vector $\theta = [\beta' \quad \gamma']'$ and where Y is an N-dimensional ($N = (T - 1)L$) vector stacked with elements of the form $\bar{y}_{t,z} - \bar{y}_{t-1,z}$ for all locations and time periods, and the regressor matrix is partitioned as $Z = \begin{bmatrix} D & X \end{bmatrix}$. Here D is a dummy matrix of designs in which the nth row and tth column element is -1 corresponding to the
previous month house price average (viz., β_{t-1}) used at time t in the parameterization of the index, and 1 for the present month house price average (viz., β_t) used at time t in the index, and 0 otherwise. In the partition of Z, X is a matrix with each row corresponding to elements of the form $X_{t,z} - X_{t-1,z}$. Ordinary least squares applied to (9) gives the estimate $\hat{\theta} = (\hat{\beta}', \hat{\gamma}')' = (Z'Z)^{-1}(Z'Y)$.

3 Empirical Analysis

In this section, we apply the proposed model and the repeat-sales method to real estate price data involving quarterly transactions of private residential property sales in Singapore from Q1 1995 to Q2 2014. The period is of substantial interest given the fluctuations and growth in property prices in Singapore over this period and because of the policy measures introduced by the government to cool the real estate market whose effectiveness can be gauged by empirical analysis of the real estate price indices.

There are mainly two residential property markets in Singapore: a private residential market and the public residential market that is managed by the Housing and Development Board (HDB). HDB is the statutory board of the Ministry of National Development and HDB flats are heavily subsidized by the Singapore government. Not surprisingly, the HDB market is largely segmented from the private residential market. Given its special nature and strong differentiation from the private market, we have excluded HDB transactions in the construction of the property market price index. The sample used for analysis therefore refers only to the private property market.

The data source for private house information is the Urban Redevelopment Authority (URA), which is Singapore’s urban planning and management authority. The URA property market dataset provides extensive records of information for all transactions in the property market. The sale price (both the total price and the price per square foot) and the transaction period are reported. The district, sector and postal code of every transacted property are also recorded. Other characteristics include floor and unit number, project number, size, sell type, property type, completion year, tenure length, and location type.

During the sample period our data include some 315,000 transactions and the number of the dwellings involved is around 216,000. Among these, about 146,000 houses are single-sales and the remainder, about 70,000 houses, are ones that sold more than

2 http://www.ura.gov.sg/

3 We delete the houses with incomplete information on characteristics and exclude sales that occur in two consecutive quarters.
Table 1: Summary Statistics of Single-Sale Houses in Singapore

<table>
<thead>
<tr>
<th>Property Type</th>
<th>No. Houses</th>
<th>Mean</th>
<th>Sd</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments</td>
<td>40,097</td>
<td>1177</td>
<td>620</td>
<td>154</td>
<td>5146</td>
</tr>
<tr>
<td>Condominiums</td>
<td>106,073</td>
<td>947</td>
<td>459</td>
<td>156</td>
<td>6393</td>
</tr>
<tr>
<td>99 years tenure</td>
<td>81,086</td>
<td>939</td>
<td>446</td>
<td>154</td>
<td>5000</td>
</tr>
<tr>
<td>999 years tenure</td>
<td>6864</td>
<td>884</td>
<td>375</td>
<td>233</td>
<td>2695</td>
</tr>
<tr>
<td>Freehold</td>
<td>58,220</td>
<td>1125</td>
<td>600</td>
<td>202</td>
<td>6393</td>
</tr>
<tr>
<td>All</td>
<td>146,170</td>
<td>1010</td>
<td>519</td>
<td>154</td>
<td>6393</td>
</tr>
</tbody>
</table>

Table 2: Summary Statistics of Repeat-Sales Houses in Singapore

<table>
<thead>
<tr>
<th>Property Type</th>
<th>No. Houses</th>
<th>Mean</th>
<th>Sd</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments</td>
<td>20,618</td>
<td>901</td>
<td>455</td>
<td>137</td>
<td>4700</td>
</tr>
<tr>
<td>Condominiums</td>
<td>49,715</td>
<td>850</td>
<td>404</td>
<td>94</td>
<td>4820</td>
</tr>
<tr>
<td>99 years tenure</td>
<td>33,554</td>
<td>864</td>
<td>366</td>
<td>94</td>
<td>4700</td>
</tr>
<tr>
<td>999 years tenure</td>
<td>4674</td>
<td>864</td>
<td>317</td>
<td>197</td>
<td>2491</td>
</tr>
<tr>
<td>Freehold</td>
<td>32,105</td>
<td>985</td>
<td>454</td>
<td>183</td>
<td>4820</td>
</tr>
<tr>
<td>All</td>
<td>70,333</td>
<td>865</td>
<td>420</td>
<td>94</td>
<td>4820</td>
</tr>
</tbody>
</table>

once. The number of pairs for repeat-sales is around 97,000. So single-sales dominate repeat-sales in the sample in terms of the number of houses. There are two types of private residential properties in the Singapore real estate market: apartments and condominiums. The main difference between them is that condominiums are equipped with full facility but apartments may not be (Sing, 2001). The total number of condominium houses in our sample is around 155,000 and apartments account for some 60,000. In addition, in terms of ownership type, there are freehold, 999-year leasehold and 99-year leasehold. Most private residential properties transacted in the sample are either freehold or 99-year leasehold. Freehold houses are more expensive than 99-year leasehold houses. We have postal district information in our database which is used to identify house location.\footnote{There are 27 postal districts and 69 postal sectors in the sample. This location information is directly retrievable from the database.} Table 1 and Table 2 provide summary statistic information on the sample.

The dataset is well-suited to compare the S&P/Case-Shiller repeat-sales method with the proposed new method of index construction. First, we have the complete record of all transactions and the sample size of total sales is large, enabling us to estimate the proposed model accurately. With estimation error being small, attention can focus on potential issues of specification bias in the proposed method. Second, the hedonic information in the data is extensive so that many variables and alternative
specifications can be included on the right hand side of the model (1). Third, there are a very large number of repeat sales in the data, so that model (4) can also be estimated accurately. Consequently, we can again ignore estimation error and focus on potential sample selection bias in the repeat-sales method.

It is worth noting that single-sale properties display different summary statistics from repeat-sales properties. The mean price and the standard deviation for repeat-sales houses is lower than single-sales houses across all categories. This observation supports the argument that repeat-sales houses are not a representative random sample of the entire market and carry a potential sample selection bias. Furthermore, in spite of the long sample period, about 68% of houses in the sample that have changed hands are single-sales houses. So the repeat-sale method is based on only about 32% of the houses in the sample.

The scatter plot of all house prices per square foot over time is given in Figure 1. It is difficult to discern the price trend from this scatter plot, especially for houses at the low-end of the market. For the high-end houses, prices seem to be stable between 2000 and 2006.

To fit the model in equation (8), we take account of the following three property characteristics: location, property type, and ownership type. We use postal district information in our database to identify a house location. The real estate price index is \(\beta_t \), the quarterly index from Q1 1995 to Q2 2014 (78 quarters in total). In addition, there are two types of properties (apartments and condominiums) and three types of ownership (99 years, 999 years, and freehold). Taking these features of the data into account, equation (1) may be rewritten as
\[y_{i,j,z} = \beta_{t(i,j,z)} + \gamma_1 X_{i,z}^{(1)} + \gamma_2 X_{i,z}^{(2)} + \gamma_3 X_{i,z}^{(3)} + \mu_z + h_{i,z} + \epsilon_{i,j,z}, \]

where \(X_{i,z}^{(1)} \) is equal to 1 when the property type is condominium and 0 when it is an apartment. Similarly, we construct two other dummy variables as

\[
X_{i,z}^{(2)} = \begin{cases}
1 & \text{if 999 lease} \\
0 & \text{otherwise}
\end{cases},
\]

\[
X_{i,z}^{(3)} = \begin{cases}
1 & \text{if freehold} \\
0 & \text{otherwise}
\end{cases}.
\]

Although we only use the three dummy variables in our empirical analysis, the model can be easily expanded to include additional hedonic information as covariates. We have experimented with other covariates and the main empirical findings reported here are qualitatively unchanged. For simplicity, therefore, we report results with the above specification.

We first fit the model to all data (named the Group Averaging for all sales) and obtain \(\hat{\beta}_t \). We also fit the model to the data that contain single sales only (named the Group Averaging for single sales) and obtain \(\hat{\beta}_t \). Since our purpose is to construct the house price index instead of its logarithm, following Nagaraja, Brown and Zhao (2011), we calculate \(\hat{I}_t = \exp(\hat{\beta}_t) \).\(^5\) Finally, we take the first quarter in our sample as the reference point where the price index is set to unity.

For comparison, we also apply the S&P/Case-Shiller method to repeat-sales prices to build the index. We plot the two indices from the proposed group averaging method, the S&P/Case-Shiller index, and the price index published by Urban Redevelopment Authority (URA) in Figure 2.\(^6\) It is obvious that all three indices are similar over the period 1995-2007 at which point they start to differ noticeably. The differences becomes more pronounced after 2010.

To compare the quality of the two indices from the proposed group averaging method and the S&P/Case-Shiller index, we examine their out-of-sample predictive power. To do so, we divide the observations into training and testing datasets. The testing set contains all the final sales of the houses sold three or more times in our sample period. Among the houses sold twice, their second transactions are randomly put into the testing set with probability 0.05. We also randomly add single-sale houses into our

\(^5\)Although \(\hat{I}_t \) is biased downward for \(I_t \), the biased corrected estimator leads to virtually no change to our results since the estimation error (and hence the variance estimate that appears in the bias calculation) is small.

\(^6\)Since the exact methodology of URA is not entirely clear to us, we cannot use it for out-of-sample predictions.
testing set with probability 0.16 so that the testing set contains the same number of single-sale houses and repeat-sales ones. All the remaining houses are included in the training set. The resulting testing set contains around 15% of sales in our sample, of which 50% are single-sale houses and the rest are repeat-sales.

We first estimate the indices on the training set by the different modeling methods and then examine their out-of-sample forecasts on the testing set. To calculate the estimated price for the repeat-sales homes in the testing set, we use

$$\hat{Y}_{t',i} = \frac{I_{t'}}{I_t} Y_{t,i},$$

where $Y_{t,i}$ is the price per square foot for house i at time t, $t' > t$ and I_t is the estimated index at time t. To calculate the estimated price for the single-sale homes, we use

$$\hat{Y}_{i,z} = \frac{I_{t(i,z)}}{I_{t(i,z)-1}} \bar{Y}_{t(i,z)-1},$$

where $t(i, z)$ is the transaction period for house i at area z, $\bar{Y}_{t(i,z)-1}$ is the average price per square foot for area z at time $t(i, z) - 1$ and $I_{t(i,z)}$ is the estimated index at time $t(i, z)$.

For single-sale houses, we simply write $t(i, 1, z)$ as $t(i, z)$.
Figure 3: Three real estate price indices and the dates of ten rounds of successive macroprudential cooling measures.

The RMSE results are shown in Table 3.8 The S&P/Case-Shiller index clearly has the best predictive power for repeat-sales homes, whereas our Group Averaging indices perform (marginally) better for single-sale houses. However, after we use all sales in the testing set for forecasting, we find that the S&P/Case-Shiller index performs best since the S&P/Case-Shiller index performs so much better in predicting the price of repeat-sales houses but only slightly worse than the Group Averaging indices when forecasting the price of single-sale homes.

As discussed, it is known that the repeat-sales method is subject to sample selection bias. Our data indicate that repeat-sales houses are different from single-sale houses. Although this difference is a principal argument advanced for using hedonic models, the empirical results found here suggest a preference for using the repeat sales method. The results in Table 3 indicate that the specification error in hedonic models outweighs their advantage in removing the sample selection bias of the repeat-sales method.

8We have also tried using tenure length and house type (apartment versus condominium) in predicting prices. But the RMSEs of forecast only change by a small amount.
Table 3: Testing set RMSE for the Indices (SG dollars)

<table>
<thead>
<tr>
<th>Test Set</th>
<th>S&P/C-S</th>
<th>G.A. (all sales)</th>
<th>G.A. (single sale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single sales</td>
<td>285.8</td>
<td>279.5</td>
<td>280.0</td>
</tr>
<tr>
<td>Repeat sales</td>
<td>196.9</td>
<td>278.8</td>
<td>303.9</td>
</tr>
<tr>
<td>All sales</td>
<td>245.4</td>
<td>279.1</td>
<td>292.2</td>
</tr>
</tbody>
</table>

Figure 4: The S&P/Case-Shiller index, the BSADF statistic of PSY and the critical values.

4 Cooling Measures and Explosive Behavior

Housing is a highly important sector of the economy and provides the largest form of savings of household wealth in Singapore. Property prices play an important role in consumer price inflation and can therefore have a serious impact on public policy. The private housing sector, property prices and rents also impact measures of Singapore’s competitiveness in the world economy. For these and other reasons, the Singapore government has closely watched movements in housing prices over the last decade and particularly since the house price bubble in the USA. Recently, Singapore implemented ten successive rounds of macro-prudential measures intended to cool down the housing market. These measures were undertaken between September 2009 and December 2013, the first eight of which were targeted directly at the private residential market.

The Appendix summarizes the dates and the nature of these macro-prudential mea-
sures. As is evident, a variety of macro-prudential policies have been used by the Singapore government. These include introducing a Seller’s Stamp Duty (SSD), lowering the Loan-to-Value (LTV) limit, introducing an Additional Buyer’s Stamp Duty (ABSD), and reducing the Total Debt Servicing Ratio (TDSR) and the Mortgage Servicing Ratio (MSR). To visualize the impact of these cooling measures on the dynamics of real estate price movements, Figure 3 plots the three price indices for the period between Q1 2008 and Q2 2014, superimposed by vertical lines indicating the introduction of these ten cooling measures.

The primary goal of the macro-prudential policies is to reduce or eliminate emergent price bubbles in the real estate market and bring prices closer in line with fundamental values. Using the present value model, Diba and Grossman (1988) showed the presence of a rational bubble solution that implies that an explosive behavior in the observed price. If fundamental values are not explosive, then the explosive behavior in prices is a sufficient condition for the presence of bubble. Phillips, Wu and Yu (2011) and Phillips, Shi and Yu (2014a, 2014b, PSY hereafter) introduced recursive and rolling window econometric methods to test for the presence of mildly explosive behavior or market exuberance in financial asset prices. These methods also facilitated estimation of the origination and termination dates of explosive bubble behavior. The method of Phillips, Wu and Yu (2011) is particularly effective when there is a single explosive episode in the data while the method of PSY can identify multiple explosive episodes. In the absence of prior knowledge concerning the number of explosive episodes, in what follows we use the PSY method to assess evidence of bubbles in real estate prices.

Bubble behavior and market exuberance and collapse are subsample phenomena. So, PSY proposed the use of rolling window recursive application of right sided unit root tests (against explosive alternatives) using a fitted model for data \(\{X_t\}_{t=1}^n \) of the following form

\[
\Delta X_t = \alpha + \beta X_{t-1} + \sum_{i=1}^{K} \beta_i \Delta X_{t-i} + \epsilon_t.
\]

Details of the procedure and its asymptotic properties are given in PSY. We provide a synopsis here and refer readers to PSY for further information about the specifics of implementation and the procedure properties. Briefly, the unit root test recursion involves a sequence of moving windows of data in the overall sample that expands backward from each observation \(t = [nr] \) of interest, where \(n \) is the sample size and \([nr] \) denotes the integer part of \(nr \) for \(r \in [0, 1] \). Let \(r_1 \) and \(r_2 \) denote the start and end point fractions of the subsample regression. The resulting sequence of calculated unit root test statistics are denoted as \(\{ADF_{r_1}^{r_2}\}_{r_1 \in [0,r_2-r_0]} \) where \(r_0 \) is the minimum window
Figure 5: Testing for Bubbles in Singapore Real Estate Prices: using the Group average index (all sales), the BSADF statistic of PSY and critical values of the test recursion.

size used in the recursion. and \(t = [Tr] \) is the point in time for which we intend to test for normal market behavior against exuberance. PSY define the recursive statistic

\[BSADF_r = \sup_{r_1 \in [0, r_2 - r_0], r_2 = r} \{ ADF_{r_1}^{r_2} \}. \]

The origination and termination dates of an explosive period are then determined from the crossing times

\[\hat{r}^e = \inf_{r \in [r_0, 1]} \{ r : BSADF_r > cv \} \quad \text{and} \quad \hat{r}^f = \inf_{r \in [\hat{r}^e, 1]} \{ r : BSADF_r < cv \}, \]

where the recursive statistic \(BSADF \) crosses its critical value \(cv \). The quantity \(\hat{r}^e \) estimates the origination date of an explosive period and \(\hat{r}^f \) estimates the termination date of an explosive period. After the first explosive period is identified, the same method may be used to identify origination and termination dates of subsequent explosive episodes in the data.

To assess evidence for potential bubbles in the private real estate market in Singapore, we applied the PSY method first to the S&P/Case-Shiller index with minimum rolling window size \(r_0 = 8 \), corresponding to two years. Figure 4 reports the index, the \(BSADF \) statistics and the 5% critical values. The shaded area corresponds to the explosive period where the \(BSADF \) statistic exceeds the critical value. The PSY method identifies an explosive period, namely Q4 2006 to Q1 2008, in the data. During this period, no cooling measures were introduced by the government. If the government
had been alerted to the existence of exuberant market conditions in real time during this period, the opportunity would have been available for the implementation of cooling measures to affect the market. Moreover, although all three indices suggest that there were upward movements in price following 2008, between 2009 and 2013, these movements are not determined to be explosive and the PSY detector indicates little or no evidence of explosive behavior after 2009. This tapering in real estate market exuberance coincides with period September 2009 and December 2013 in which the macro-prudential cooling measures were undertaken by the government.

We also applied the PSY method to the Group Average all-sales index with minimum rolling window size $r_0 = 8$. Figure 5 reports the index, the test recursion, and the test 5% critical values. The empirical results for this series mirror those for the S&P/Case-Shiller index, confirming the findings of a bubble in the private real estate market over Q1 2007 to Q1 2008.

5 Conclusion

In order to exploit all available information in real estate markets, this paper provides a new hedonic model for the estimation of real estate price indices. The new model has the advantage of using both single-sales and repeat-sales data and is less prone to misspecification bias than standard hedonic models and less prone to selection bias than repeat-sales methods that use only partial data sets. The model is also easy to estimate. Unlike the maximum likelihood methods of Hill, Knight and Sirmans (1997) and Nagaraja, Brown and Zhao (2011), this approach uses ordinary least square estimation and is computationally efficient with large datasets.

We apply our estimation procedure to the real estate market for private residential dwellings in Singapore and examine the model’s out-of-sample predictive performance in comparison with indices produced using the repeat-sales methodology of Case and Shiller (1987, 1988). The findings reveal that, compared with the repeat-sales methodology, our method performs better at forecasting prices of single-sale homes, but worse at forecasting prices of repeat-sales houses. When taking into account all sales in the forecast comparison, we find that Case-Shiller has superior predictive performance, echoing Shiller’s (2008) maxim that “the repeat-sales method is the only way to go” by Shiller (2008).

The recursive detection method of Phillips, Shi and Yu (2014a) is applied to each of the indices to locate episodes of real estate price exuberance in Singapore. Only one explosive period in the indices, from Q1 2007 to Q1 2008, is detected. Although all
the indices grew during 2009 - 2013, the expansion is not explosive, indicating that ten recent rounds of cooling measure intervention in the real estate market by the Singapore government have been successful in controlling prices.

Appendix

Dates and the content of recent real estate market cooling measures introduced in Singapore.

1. 2009/9/14
 - Reinstatement of the confirmed list for the 1st half 2010 government land sales programme
 - Removal of the interest absorption scheme and interest-only housing loans
 - Non-extension of the January 2009 budget assistance measures for the property market

2. 2010/2/20
 - Introduction of a Seller’s Stamp Duty (SSD) on all residential properties and lands sold within one year of purchase
 - Loan-to-Value (LTV) limit lowered from 90% to 80% for all housing loans

3. 2010/8/30
 - Holding period for imposition of SSD increased from one year to three years
 - Minimum cash payment increased from 5% to 10% and the LTV limit decreased to 70% for buyers with one or more outstanding housing loans
 - The extended SSD does not affect HDB lessees as the required Minimum Occupation Period for HDB flats is at least 3 years

4. 2011/1/14
 - Increase the holding period for imposition of SSD from three years to four years
 - Raise SSD rates to 16%, 12%, 8% and 4% for residential properties sold in the first, second, third and fourth year of purchase respectively
• Lower the LTV limit to 50% on housing loans for property purchasers who are not individuals
• Lower the LTV limit on housing loans from 70% to 60% for second property

5. 2011/12/8
• Introduction of an Additional Buyer’s Stamp Duty (ABSD)
• Developers purchasing more than four residential units and following through on intention to develop residential properties for sale would be waived ABSD

6. 2012/10/6
• Mortgage tenures capped at a maximum of 35 years
• For loans longer than 30 years or for loans that extend beyond retirement age of 65 years: LTV lowered to 60% for first mortgage and to 40% for second and subsequent mortgages
• LTV for non-individuals lowered to 40%

7. 2013/1/12
• Higher ABSD rates
• Decrease the LTV limit for second/third loan to 50/40% from 60%; non-individuals’ LTV to 20% from 40%
• Mortgage Servicing Ratio (MSR) for HDB loans now capped at 35% of gross monthly income (from 40%); MSR for loans from financial institutions capped at 30%

8. 2013/6/28: Introduction of Total Debt Servicing Ratio (TDSR). The total monthly repayments of debt obligations should not exceed 60% of gross monthly income.

9. 2013/8/27
• Singapore Permanent Resident (SPR) Households need to wait three years, before they can buy a resale HDB flat
• Maximum tenure for HDB housing loans is reduced to 25 years. The MSR limit is reduced to 30% of the borrower’s gross monthly income
• Maximum tenure of new housing loans and re-financing facilities for the purchase of HDB flats is reduced to 30 years. New loans with tenure exceeding 25 years and up to 30 years will be subject to tighter LTV limits.

10. 2013/12/9

• Reduction of cancellation fees From 20% to 5% for executive condominiums
• Resale levy for second-timer applicants
• Revision of mortgage loan terms. Decrease MSR from 60% to 30% of a borrower’s gross monthly income

References

