COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 527

Note: Cowles Foundation Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment. Requests for single copies of a Paper will be filled by the Cowles Foundation within the limits of the supply. References in publications to Discussion Papers (other than mere acknowledgment by a writer that he has access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

THE ALEF DEFINITION OF COMPLEMENTARITY
AND LEAST CONCAVE UTILITY FUNCTIONS

Yakar Kannai

June 5, 1979
THE ALEP DEFINITION OF COMPLEMENTARITY AND LEAST CONCAVE UTILITY FUNCTIONS

by

Yakar Kannai

Abstract: The use of least concave utility functions describing a given concavifiable preference relation is suggested for determining the complementary vis-a-vis substitute nature of a pair of commodities.

Let \succsim be a preference relation defined on an open convex subset K of \mathbb{R}^n such that \succsim is representable by a twice differentiable concave utility function u. The commodities i and j, $i \neq j$, are said to be ALEP complementary at x if $\frac{\partial^2 u(x)}{\partial x_i \partial x_j} > 0$. (This definition is due to Auspitz and Lieben [2, p. 482], and was adopted by Edgeworth [6, p. 171n] and Pareto [11, Chap. IV and Appendix, Sections 12-13, pp. 505-507]—hence the term ALEP definition.) It is well known that this definition was criticized by Allen [1, p. 171n], Hicks and Allen [9, p. 60n] and Hicks [8, pp. 42-45] on the grounds that the condition $\frac{\partial^2 u(x)}{\partial x_i \partial x_j}$ is not invariant under monotone (increasing) transformations of the utility function u and so is not an intrinsic (ordinal) property of the preference ordering \succsim. In fact, this condition is not invariant even under the more restricted class of strictly monotone transformations preserving the concavity (or even the strict
concavity) of the utility function. Quite the other way around: the
more concave the utility function representing the given preference re-
lation \succ, the less apt are i and j to be ALEP complementary at
x -- at least if \succ is monotone (compare also [12]). For, let F be
a twice differentiable function of a single variable with $F'(t) > 0$
for all t, and set $v(x) = F(u(x))$. Denoting partial derivatives
by sub-indices, we find that

$$v_{ij}(x) = F'(u)[u_{ij}(x) + \frac{F''(u)}{F'(u)} u_i(x) u_j(x)] .$$

If u is assumed to be sufficiently monotone, so as to satisfy $u_i(x) > 0$
for all $1 \leq i \leq n$, then, choosing $F''(u(x))$ sufficiently negative,
we can make $v_{ij}(x)$ negative even if $u_{ij}(x) > 0$.

We have seen thus that in the interesting cases every pair of
commodities can be made to be ALEP substitutes at any given point x,
by a suitable choice of a concave utility function. On the other hand,
it was proved recently by Chipman [3] that ALEP complementarity does
affect, in an invariant way, the behavior of the demand function (it
was observed earlier by Georgescu-Roegen [7] that complementarity in-
fluences the shape of the indifference curves of \succ). In view of all
this, we are led to consider the class of least concave utility functions
for the given preference ordering \succ. Least concave (alias minimally
concave) utility functions were introduced by de Finetti [5]; their
existence was proved by Debreu [4], and several ways of computing them
were given by the author in [10]. The concave utility function $u(x)$
representing the preference relation \succ is said to be least concave
if every concave utility function $v(x)$ representing \succ is given by
\(v(x) = F(u(x)) \) where \(F \) is a strictly monotone and concave function of a single variable. (Note that least concave utility functions are unique up to translations and multiplications by positive constants.) We read off (1) that if a least concave utility function \(u \) is twice differentiable, if \(i \) and \(j \) are (ALEP) complementary at a certain \(x \) when a certain twice differentiable utility \(v \) is considered, and if the preference relation \(\succsim_c \) is monotone, then \(u_{ij}(x) \) must also be positive. If, however, \(u_{ij}(x) < 0 \), then for no concave utility function (representing \(\succsim_c \)) it is going to happen that \(v_{ij}(x) > 0 \). (Note that the sign of \(u_{ij}(x) \) is the same for all least concave utility functions representing \(\succsim_c \).)

These facts suggest that we consider the sign of the mixed derivatives of least concave utility functions (if the latter are sufficiently smooth) in defining complementarity, and adopt the following

Definition: The commodities \(i \) and \(j \), \(i \neq j \), are said to be complementary at \(x \) if \(u_{ij}(x) > 0 \) for a least concave utility function \(u \) representing the preference relation \(\succsim_c \) of the consumer, and are said to be substitutes if \(u_{ij}(x) < 0 \).

Remarks: (i) If the least concave utility function is not twice differentiable at \(x \), one could still define \(i \) and \(j \) to be complementary if

\[
(2) \quad \lim \inf_{h_i, k \to 0} \frac{u(x + h_i e_i + k e_j) + u(x) - u(x + h e_i) - u(x + k e_j)}{(hk)} > 0,
\]

where \(e_i \) and \(e_j \) are the unit vectors in the \(i^{th} \) and \(j^{th} \) directions, respectively. Similarly, \(i \) and \(j \) are substitutes if
\begin{equation}
(3) \quad \lim_{h,k \to 0} \sup \{u(x + h e_i + k e_j) + u(x) - u(x + h e_i) - u(x + k e_j)\} / (hk) < 0.
\end{equation}

If \(u_{ij}(x) = 0 \) then \(i \) and \(j \) are said to be (ALEP) independent. Note that if \(u \) is not twice differentiable, then it might happen that the \(\liminf \) in (2) is negative while the \(\limsup \) in (3) is positive. Such a case may be termed indeterminate. It is doubtful, however, whether this case is of importance in the economic applications.

(ii) The following example might illustrate the ideas presented here. Let \(K = \{(x_1, x_2) : x_1 > 0, x_2 > 0\} \) and let \((x_1, x_2) \succ (y_1, y_2)\) if and only if \(x_1 x_2 > y_1 y_2 \). The commodities 1 and 2 appear to be independent (everywhere) if one chooses the separable (concave) utility function \(\ln x_1 + \ln x_2 \), and appear to be substitutes everywhere if the concave utility function \(-1 / (x_1 x_2)\) is chosen instead. Considering the least concave utility function \((x_1 x_2)^{1/2}\), we see that 1 and 2 are indeed complementary everywhere, according to the definition suggested here.

(iii) The argument of this note lends further credibility to the selection of least concave utility functions as cardinal utilities (compare \([4, 10]\)).

Acknowledgments: I am very much indebted to Professors J. Chipman and L. Hurwicz for suggesting this problem to me and for a critical reading of the manuscript.
REFERENCES

