INTERTEMPORAL DISTRIBUTION AND "OPTIMAL"
AGGREGATE ECONOMIC GROWTH

Tjalling C. Koopmans

June 30, 1967
INTERTEMPORAL DISTRIBUTION AND "OPTIMAL"
AGGREGATE ECONOMIC GROWTH*

by

Tjalling C. Koopmans

"... it is assumed that we do not discount later enjoyments in comparison with earlier ones, a practice which is ethically indefensible and arises merely from the weakness of the imagination,..."

F. P. Ramsey [1928]

"... we feel less concerned about future sensations of joy and sorrow simply because they do lie in the future. Consequently we accord to goods which are intended to serve future ends a value which falls short of the true intensity of their future marginal utility."

E. von Böhm-Bawerk [1921, II, p. 263]

"On the assumption ... that a government is capable of planning what is best for its subjects, it will pay no attention to pure time preference, a polite expression for rapacity and the conquest of reason by passion."

R. F. Harrod [1948, p. 40]

"In such an ideal loan market, therefore, where every individual could freely borrow or lend, the rates of preference or impatience for present over future income for all the different individuals would become, at the margin, exactly equal to each other and to the rate of interest."

Irving Fisher [1930, p. 106]

"Most people are of the humour of an old fellow of a college, who, when he was pressed by the Society to come into something that might redound to the good of their successors, grew very peevish; 'We are always doing,' says he, 'something for posterity, but I would fain see posterity do something for us.'"

* This paper has resulted from research under a grant from the National Science Foundation. An earlier version was presented at a joint meeting of the Econometric Society and the American Economic Association held at Boston, December, 1963. In its present form the paper is submitted for inclusion in a volume of essays, to be published by Yale University Press to commemorate the 100th anniversary of the birth of Irving Fisher. I am indebted to Koen Suryatmodjo for very fine draftsmanship.
Scratch an economist and you find a moralist underneath. The clearest exception to this rule for once truly proves the rule: Some of our most illustrious British colleagues have cast all dissimulation aside. No scratching is needed in their case!

It is true that, in the quotations given, Ramsey and Harrod were commenting on possible time preference underlying governmental planning. In contrast, Böhm-Bawerk and Irving Fisher were concerned, in a more detached manner, with the observable time preferences of individuals, and with analyzing the market effects of these preferences. However, the context makes clear that Harrod has little use for a positive "pure time preference" under any circumstances,

"Time preference in this sense is a human infirmity, probably stronger in primitive than in civilized man."*

* Harrod [1948], p. 37.

Moreover, in all societies where, in one way or another, individual wants and desires do have an effect on government action, individual and social time preferences are inevitably connected. So we do have an ethical problem here, either at the individual level, or in explicit regard to planning.
What is at issue is clearly an intertemporal distribution problem: that of balancing the consumption levels of successive generations, and of successive stages in the life-cycle of a given group of contemporaries. The most pertinent decisions — individual, corporate, or governmental — are those that determine investment in physical capital, in human capital, and in research and development. Investments in physical capital, if well made, augment future consumption via an increase in future capital-labor ratios. Investment in human capital raises the quality of labor and, one hopes, of life. Successful research and development augment future output from given future capital and labor inputs via the development of better techniques of production.

Recent research on models of optimal growth has clarified the boundaries within which there is scope for ethical judgment regarding time preference.*

The purpose of this essay is to make the preoccupations and some of the findings of these researches plausible to a larger readership, through a diagrammatic analysis of one particular model of "optimal" growth that is highly stylized and simplified, yet representative of more realistic models in regard to the particular question at issue. The essay concentrates on exposition rather than evaluation
of the findings. For some evaluative remarks, and a survey of a wider range of findings, see Koopmans [1967].

We shall make no assumptions about the particular institutional form of the economy discussed. The simplest interpretation is in terms of an economy in which growth rates are centrally planned in a manner capable of implementation. It is hoped that the analysis can also serve as background for the discussion of growth policies in an individual or corporate enterprise society, or under conditions of less perfect and dependable planning. In either case, the main aim is to obtain insight into the effect of, and the scope for, time preference.

1. Assumptions regarding production and population growth.

Our model has a single good, capable of serving as consumption good or as capital good, as desired. The net excess of its output flow over its consumption flow automatically becomes a net addition to the capital stock, which in turn affects output from a given labor input. Technology and the quality of labor are constant over time. Hence only the first of the three types of investment decisions mentioned above arises in the model.

Technology is represented by a production function \(P(L, K) \) giving the rate of output as a function of the labor force \(L \) and the capital stock \(K \). This function, defined and assumed twice differentiable for all nonnegative \(L, K \), has the following further properties:
(a) \(F(L, 0) = 0 \), i.e., no capital no output,

(b) \(F'_K(L, K) > 0 \) for all \(L > 0 \), \(K \geq 0 \), i.e., the marginal productivity of capital is positive for all factor combinations with some labor ...

(c) \(F''_K(L, K) < 0 \) for all \(L > 0 \), \(K \geq 0 \), ... but decreases as capital is increased while labor is held constant,

(d) \(F(0, K) = 0 \), i.e., no labor no output,

(e) \(F(L, K) = LF(1, K/L) = Lf(K/L) \), say, i.e., constant returns to scale.

The popularity of assumption (e) is due more to the analytical simplifications it permits than to its claim to realism. In the present case, (e) opens our problem up for the use of diagrams on the printed page. It allows the production function of two variables, \(L \), \(K \), to be derived from the per-worker production function \(f(k) \) that depends only on the single variable \(k = K/L \), capital per worker. To prepare for these diagrams, we translate the assumptions (a) through (d) in terms of that function \(f(k) \).

Using (e) we derive* from (a), (b), (c),

\[
(a') \quad f(0) = 0, \quad (b') \quad f'(k) > 0, \quad (c') \quad f''(k) < 0.
\]

* Since \(F'_K = f'(K/L) \), \(F''_K = \frac{1}{L} f''(K/L) \).
The per-worker production function $f(k)$ therefore has a form as indicated in Figure 1 below. Beginning at $f(0) = 0$, it rises for all $k \geq 0$, but at a decreasing rate as k increases.

We did not specify counterparts to (b) and (c) that refer to increases in labor instead of in capital, because these counterparts are implied in (b), (c) and (e) — which shows the force of (e). However, (d) gives us new information about $f(k)$,

$$(d') \lim_{k \to \infty} \frac{f(k)}{k} = 0, \text{ i.e., the average product of capital tends to zero as the capital per worker is increased indefinitely.}^*$$

* Proof: $0 = F(0, 1) = \lim_{L \to 0} F(L, 1) = \lim_{L \to 0} L \cdot f(1/L) = \lim_{k \to \infty} \frac{f(k)}{k}$,

taking $L = 1/k$.

Geometrically (see Figure 1), any rising straight line $y = \lambda k$, $\lambda > 0$, through the origin will eventually cross the curve $y = f(k)$, as k is made larger and larger — no matter how small the slope λ.

We shall assume exogenously given exponential labor force growth

$$(1) \quad L_t = e^{\lambda t}, \quad \lambda > 0,$$
choosing the initial labor force at time $t = 0$ as the unit of labor force, $L_0 = 1$. We shall speak as if the labor force is the entire population, merely to avoid the extra symbol that would be required if we assumed the labor force to be a constant fraction of the population.

Using a continuous time variable t, and using dotted symbols for time derivatives such as $\dot{K} = \frac{dK}{dt}$, output is allocated to consumption C_t and to net capital formation \dot{K} according to the identity

$$(2) \quad F(L_t, K_t) = C_t + \dot{K}.$$

The corresponding identity in terms of per-worker capital k_t and consumption $c_t = C_t/L_t$, is obtained* by dividing through by L_t,

$$(3) \quad f(k_t) = c_t + \lambda k_t + \dot{k}.$$

* Because $\dot{k} = \frac{d}{dt}(K_t e^{-\lambda t}) = (\dot{K}_t - \lambda K_t)e^{-\lambda t} = \dot{K}_t/L_t - \lambda k_t$.

This identity, basic in all that follows, says that per-worker output is allocated to three ends, (1) per-worker consumption c_t,

(2) an investment of λk_t needed if one merely wants to keep the
per-worker capital stock constant (that is, to keep the absolute capital stock K_t growing in proportion to the labor force), and (3) a net rate of increase k_t (positive or negative) in the capital stock per-worker.

The formula (3) assumes that capital does not depreciate. A simple reinterpretation will cover the case of exponential depreciation at a rate δ as well: One replaces λ in (3) by

$$\lambda^* = \lambda + \delta.$$

2. The golden rule of accumulation.

Before discussing the choice of the objective of growth policy in general, we look at a special problem so defined as to leave only one obvious choice of the objective.

Suppose that the economy of the island Roswesri Adelphi satisfies all the assumptions we have made. Upon its admission to the United Nations, the World Bank offers, as a once-and-for-all gift, to supply whatever additional "capital" is needed to bring the total capital stock at $t = 0$ to any level the newly sovereign government specifies. This generous offer is subject to only one condition, deemed indefinitely enforceable by all concerned: the people of Roswesri Adelphi must at all times $t \geq 0$ allocate just enough of their output to investment to keep the per-worker capital
stock constant,

\[k_t = k \text{ for all } t \geq 0. \]

What initial capital-per-worker \(k \) should the government ask for? Inserting (5) in equation (3) shows that consumption per worker

\[c_t = c = f(k) - \lambda k \]

has also become a constant. Figure 1 shows the construction of \(c \)

[Figure 1]

as the excess, at the point \(k \), of the curve \(f(k) \) over the straight line \(\lambda k \). Obviously, the only sensible objective is to maximize \(c \), once-and-for-all. This requires (Figure 1) choosing that \(k = \hat{k} \) for which the slope \(f'(k) \) of the tangent to the curve \(f(k) \) equals \(\lambda \),

\[f'\left(\hat{k}\right) = \lambda, \quad \hat{c} = f(\hat{k}) - \lambda \hat{k}. \]

Among all paths with a constant per-worker capital stock, the highest consumption per worker is attained and maintained by that path on which the marginal productivity of capital equals the (constant) rate of population growth.

This simple but important proposition was discovered many times over in the late fifties and early sixties. Nine independent discoverers are listed by one of them, Phelps [1966, pp. 3,4], in what is by now the fullest discussion of its many ramifications.
The nine papers vary in the generality of their assumptions. Some of them permit labor-augmenting technical progress. The policy of maintaining the per-worker capital stock that, once attained, permits the highest consumption per worker has been called the golden rule of accumulation by Phelps, because then

"... each generation saves (for future generations) that fraction of income which it would have past generations save for it ..."*

* [1966], p. 5.

The path resulting from the policy has been called the golden rule path.

If, by way of comparative dynamics, one considers an archipelago with different population growth rates on different islands, then as λ approaches zero the capital-per-worker k prescribed by the golden rule approaches the unattainable infinity unless one reintroduces a positive rate of depreciation.

3. Choice of the objective.

The golden rule path is, of course, available only after the required initial capital stock has been attained. For any different, historically given, initial capital stock one needs a more discriminating criterion. But even if the requisite per-worker
capital stock were to be on hand, we must remember that the rule was derived from an arbitrary condition of the unchangeability of that capital-labor ratio. We must still explore what an economy not bound by such a condition might want to do.

We shall first discuss this problem for a constant population. The criterion most used is the sum over time (literally a sum for discrete time, an integral for continuous time) of future utilities discounted to the present time. One postulates a utility function \(u(c) \) that expresses the utility flow generated at any time in the future at which consumption flows at the positive rate \(c \). The function is assumed to increase with \(c \), but at a decreasing rate,

\[
(8) \quad u'(c) > 0, \quad u''(c) < 0 \quad \text{for all} \quad c > 0.
\]

Finally, to avoid the possibility that a zero rate of consumption could temporarily be optimal, we give the utility curve a vertical tangent at \(c = 0 \),

\[
(9) \quad \lim_{c \to 0} u'(c) = \infty.
\]

Figure 2 indicates a possible form of \(u(c) \), with \(u(0) \) finite. Another form, with \(\lim_{c \to 0} u(c) = -\infty \), has been used in Figures 5 to 8 below.
As the objective of growth policy we now consider a utility functional that depends on an entire consumption path c_t, $0 \leq t \leq T$, in the form of an integral

\begin{equation}
U_T = \int_0^T e^{-\rho t} u(c_t) dt, \quad 0 < \rho < 1.
\end{equation}

ρ is the constant (instantaneous) discount rate, $e^{-\rho}$ the discount factor for one unit of time (one year, say).

Note that if we choose to make a linear change

\begin{equation}
v(c) = \alpha u(c) + \beta, \quad \alpha > 0,
\end{equation}

in the utility scale, similar to the change from Fahrenheit to centigrade in the measurement of temperature, then the utility functional is rescaled in the same way,

\begin{equation}
v_T = \int_0^T e^{-\rho t} v(c_t) dt = \alpha U_T + \gamma.
\end{equation}

Therefore, a path optimal with reference to the u-scale remains optimal if the v-scale is used instead.

If c_t is a continuous consumption path, the quantity

\begin{equation}
\varphi = e^\rho \cdot \frac{u'(c_0)}{u'(c_1)}
\end{equation}

is the ratio of the present marginal utility of one small extra unit of consumption now to the present marginal utility of the sure prospect of an extra unit of consumption one year from now. Its excess
over unity, $\varphi - 1$, represents what Irving Fisher [1950, Ch. IV] has called "time preference" or, synonymously in his usage, "impatience." If consumption is the same at the two points in time, $c_0 = c_1$, then $\varphi = e^\rho$ is the reciprocal of the discount factor, and $\varphi - 1$ is Harrod's "pure time preference," of which he disapproves. If on the other hand $\rho = 0$, so pure time preference is absent, but $c_0 \neq c_1$, then Fisher's impatience $\varphi - 1$ arises solely from the fact that the higher rate of consumption entails the smaller marginal utility. In this connection Harrod argues persuasively that a society anticipating rising consumption would exhibit a positive interest rate even in the absence of pure time preference.

Since the second factor in (12) is a ratio of marginal utilities, time preference is likewise unaffected by any linear scale change (11). However, a nonlinear scale change would affect time preference as defined above. This did not worry either Fisher or Harrod, since both attribute a natural cardinal meaning to utility. If, like the present author, one is reluctant to do so, then one must fall back on the statement that there is one special class of scales, all linearly related, in which the utility functional (10) has the simple form of an integral over discounted "utilities" (so scaled). If thereafter one uses the expression marginal utility, it is to be tacitly understood that one uses the term "utility" with reference to a scale of that special class. While the use of such a scale is not obligatory, it brings the benefits of pos-
tulated simplicity.

This point deserves emphasis because the simplicity of (10), and with it the seeming cardinality of the utility scale, are bought at the price of an implication of noncomplementarity of consumption levels at different points in time.* That is indeed a steep price!

* In the present state of our knowledge. For axiomatic discussions of the form of (10) and of some of its alternatives see Koopmans [1960, 1966], Koopmans, Diamond and Williamson [1964], and Diamond [1965].

In maximizing the integral (10) under a technological constraint, the extent to which $u'(c)$ decreases as c increases acts as a redistributive device. That is, the slope of the function $u'(c)$ — hence the curvature of $u(c)$ — regulates a shift of consumption from well-provided generations to poorer ones, much like a progressive income tax redistributes income among contemporaries. If we want again to exploit the simplicity of (10) we must express also the progressiveness of the redistributing effect of $u'(c)$ in a form unaffected by linear scale changes. The expression $1 - u'(c + \gamma)/u'(c)$ for given γ would do, but still depends on an arbitrary γ. This can be avoided by taking

\begin{equation}
\lim_{\gamma \to 0} \frac{1 - u'(c + \gamma)/u'(c)}{\gamma} = -\frac{u''(c)}{u'(c)} = -\frac{d}{dc} \log u'(c) = \eta(c), \text{ say },
\end{equation}
which depends only on \(c \), as it should. The measure \(\eta(c) \) will be used below.

As to the time horizon \(T \) in (10), for social planning an infinite horizon, \(T = \infty \), naturally expresses the fact that no end to society is ever planned. Under present assumptions this creates no complications as long as positive pure time preference is present (\(\rho > 0 \)). But if \(\rho = 0 \) there is no inherent reason why the utility integral (10) should converge for all paths of interest. Ramsey saved his ethical principle (for a constant population) by the ingenious though somewhat artificial mathematical device of a bliss level \(\hat{c} \) of consumption: to exceed that level was by his assumptions either not desired, or productionwise not sustainable. Instead of maximizing (10), Ramsey then minimized the integral,

\[
(14) \quad \int_0^\infty (u(\hat{c}) - u(c_t))dt ,
\]

of the excess of bliss utility over attained utility. This integral converges for the optimal path \(\hat{c}_t \) (which satisfies \(\lim_{t \to \infty} \hat{c}_t = \hat{c} \)) and for all alternative feasible paths worth comparing to it.

Our present purpose is better served if instead of Ramsey's device we employ its modern variant proposed by von Weizsäcker [1965] and named the over-taking criterion by Gale [1967]. This criterion achieves the essential comparisons of consumption paths over an in-
finite future while using only integrals of type (10) for finite values of \(T \). A path \(c_t \) is declared better than an alternative path \(c_t^* \) if there exists a time \(T^* \) such that

\[
\int_0^T e^{-\rho t} u(c_t)dt > \int_0^T e^{-\rho t} u(c_t^*)dt \quad \text{for all} \quad T \geq T^* .
\]

From time \(T^* \) onward, the utility integral (10) for path \(c_t \) has overtaken that of path \(c_t^* \). The fact that for \(\rho = 0 \) not every pair of contending paths is comparable under this criterion will turn out to be innocuous.

When the discount rate \(\rho \) is positive, use of the overtaking criterion is equivalent to the maximization of (10).

Neither Ramsey nor Harrod indicated in the references cited how the prescription against discounting is to be interpreted if population growth is anticipated. The most highly principled interpretation would seem to require applying the overtaking criterion to

\[
\int_0^T L_t u(c_t)dt .
\]

Here \(c_t \) is again per-worker consumption, \(u(c_t) \) the utility there-of — or, more precisely the utility level of each individual, were consumption to be equally distributed among all contemporaries, and were the same utility function applied to all of them. The product \(L_t u(c_t) \) then represents the sum of individual utility flows at
time \(t \), which (16) integrates over time. Inserting a discount factor \(e^{-\rho^* t} \) in (16) would give the criterion

\[
(17) \quad \int_0^T e^{-\rho^* t} L_t u(c_t) dt ,
\]

to be called the sum of discounted individual utilities.

In (16) and (17) generations are weighted according to their numbers. An alternative to (17) is to give equal weight to per-worker utilities of different generations, regardless of their size,

\[
(18) \quad \int_0^T e^{-\rho t} u(c_t) dt .
\]

For the same discount rate, \(\rho = \rho^* \), these two criteria are obviously quite different. In fact, if the labor force grows by a constant rate \(\lambda \), as in (1), then the two criteria are mathematically identical if and only if

\[
(19) \quad \rho = \rho^* - \lambda .
\]

In that case, the criteria are distinct in their interpretation but not in the effects of their implementation.

For definiteness sake, most of the discussion below is couched in terms of the criterion (18), interpreted literally as the sum of discounted per-worker utilities. However, we shall occasionally use (19) to reinterpret the same findings as applications of (17), the sum of discounted individual utilities. In
particular, the existence of this alternative interpretation will lead us to take an interest also in negative values of \(\rho \) in (18), which would go against intuition in the literal interpretation.

4. Propositions Concerning Growth Paths Maximizing the Sum of Undiscounted Per-Worker Utilities.

Analysis of diagrams with common coordinate axes placed side by side can carry us a long way toward understanding theorems proved elsewhere* about growth paths "optimal" under the various criteria.

* The exposition most closely follows Koopmans [1965], where the 1's are dotted and the t's are crossed.

In this section, we assume a positive rate of population growth, unless the contrary is specified. In Figures 3 to 8 we consider the objective (18) of a sum of undiscounted per-worker utilities.

The analysis of Section 2 has shown the importance of the function

\[
\sigma(k) = f(k) - \lambda k ,
\]

the excess of the curve \(f(k) \) in Figure \(\mathcal{G} \) over the sloping straight line \(\lambda k \). It represents that part of per-worker output available for distribution between per-worker consumption \(c \) and net increase
\(k \) in the per-worker capital stock,

\[
g(k_t) = c_t + k_t.
\]

In particular, if during any period \(k_t \) is constant, \(k_t = k \), then \(c = g(k) \) is the constant per-worker consumption resulting therefrom.

Figure 3 shows this function in the left hand diagram, with the independent variable \(k \) set off on the vertical axis, the values of the function \(g(k) \) on the horizontal axis, increasing toward the left. The curve \(g(k) \) has a vertical tangent at the point \(k = \hat{k} \) corresponding to the golden rule path. Since \(g''(k) = f''(k) < 0 \) for all \(k \), the curve slopes toward the left for \(k < \hat{k} \), toward the right for \(k > \hat{k} \), everywhere bending to the right as \(k \) increases.

[Figure 3]

In the right hand diagram various alternative paths of capital-per-worker \(k_t \) are drawn, with \(t \) on the horizontal axis, \(k_t \) on the vertical. All paths start, at time \(t = 0 \), with the given initial per-worker capital stock \(k_0 \). We begin by comparing the paths labeled (1) and (2). On path (1) the per-worker capital \(k_t^{(1)} = k_0 \) maintains the initial level forever. On path (2), \(k_t^{(2)} \) increases over an initial period \(0 \leq t < \tau \) to a level
\(k^{(2)} \) held constant thereafter, \(k^{(2)}_t = k^{(2)} \) for all \(t \geq \tau \).

Because of the way in which the two diagrams are aligned, the constant per-worker consumption flows \(c^{(1)} \), \(c^{(2)} \) associated with the level segments of the two paths are read off from the curve \(g(k) \) at the same levels \(k_0 = k^{(1)} \), say, and \(k^{(2)} \), respectively. If the initial per-worker capital is below the golden rule level, \(k_0 < \hat{k} \), and as long as also \(k^{(2)} < \hat{k} \), we must have \(c^{(1)} < c^{(2)} \) because of the shape of \(g(k) \) already discussed. Since \(u(c) \) is increasing with \(c \), we must then have a corresponding relation

\[
u^{(1)} = u(c^{(1)}) < u(c^{(2)}) = u^{(2)}
\]

for the utility flows on the level portions of the two paths.

On the other hand, over the initial time interval \([0, \tau]\) the investment on path \((2) \) exceeds that on path \((1) \). It is therefore to be expected that this entails a sacrifice of consumption, \(c^{(2)}_t < c^{(1)}_t \) for \(0 \leq t < \tau \), which is reflected also in the corresponding utility integrals. We therefore have the following tabulation:

<table>
<thead>
<tr>
<th>Table 1</th>
<th>(\int_{T}^{\tau} u(c_t)dt) if ([T, \tau]) is</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, (\tau)]</td>
<td>(\tau u^{(1)})</td>
</tr>
<tr>
<td>[(\tau), (T)]</td>
<td></td>
</tr>
<tr>
<td>[0, (T)]</td>
<td></td>
</tr>
<tr>
<td>path ((1))</td>
<td></td>
</tr>
<tr>
<td>path ((2))</td>
<td>(\tau u^{(1)} - x), say</td>
</tr>
</tbody>
</table>
While we expect $x > 0$, neither the value of x, nor that of $y = (u^{(2)} - u^{(1)})_t + x$, matters for the outcome of the comparison. By the overtaking criterion we must determine whether, for large enough T,

$$\int_0^T (u(c_t^{(2)}) - u(c_t^{(1)})) \, dt = (u^{(2)} - u^{(1)}) \, T - y$$

is positive. Since $u^{(2)} - u^{(1)} > 0$, this is the case for all $T \geq T^*$ if

$$T^* = \text{the larger of the numbers} \ 1 \ \text{and} \ \frac{y}{u^{(2)} - u^{(1)}} + 1,$$

surely a finite positive number. Hence path (2) is better than path (1).

Note that this reasoning is independent of the length of the time interval $[0, \tau]$, and of the level $k^{(2)}$ at which path (2) becomes constant, as long as $k^{(1)} < k^{(2)} < \hat{k}$. Therefore path (3) is again better than path (2), and so on. Thus, given any path such as \tilde{k}_t in Figure 4 which rises from k_0 and either approaches the golden rule level \hat{k} as an asymptote, or attains, and remains at, that level from a certain point in time on, we find that any path initially coinciding with \tilde{k}_t and then branching off to remain constant at some level below \hat{k} is overtaken by any other such path that branches off later, at a higher level below \hat{k}.
If, on the other hand, \(k_0 > \hat{k} \), a similar result is obtained in which the word "rises" is replaced by "falls", "below" by "above," and "higher" by "lower."

These comparisons are made within a highly restricted class of paths. Could a path that fluctuates, finitely or infinitely often, be better than any path that moves in one direction or stays put?

[Figure 4]

Figure 4 shows that a path \(k_t \) that has at least one fluctuation, let us say extending below the golden rule level \(\hat{k} \), must contain a bulge. This is defined as a time interval \([\bar{t}, \hat{t}] \) in which \(k_t \) attains the same below-golden-rule level \(k \) at its beginning and its end, \(k_{\bar{t}} = k_t < \hat{k} \), and lower levels for \(\bar{t} < t < \hat{t} \).

Compare \(k_t \) with a path \(k^*_t \) remaining constant at \(k^*_t = k_{\bar{t}} \) for \(t \leq \bar{t} \leq \hat{t} \), and coinciding with \(k_t \) at all other times. Then, over the interval \([\bar{t}, \hat{t}] \), \(g(k_t) \) averages less than \(g(k^*_t) \).

Over the same interval, the net increase of \(k_t \), as well as that of \(k^*_t \), equals zero, hence averages zero. Therefore, by (21), \(c_t \) averages less than \(c^*_t \). But since \(u(c) \) is concave and \(c_t \) fluctuates, \(u(c_t) \) averages at less than \(u(\text{average of } c_t) \), whereas \(u(c^*_t) \) averages to \(u(\text{average of } c^*_t) \) because \(c^*_t \) is
constant. Therefore k_t^* has overtaken k_t from $t = \bar{t}$ on. Similar reasoning precludes mirror image bulges above \hat{k}.

Not even a flat segment at a level k different from \hat{k} can be part of an optimal path. Figure 4 further compares the above path k_t^*, which is now assumed to attain the golden rule level \hat{k} from $t = T$ on, with another path \tilde{k}_t defined by

$$\tilde{k}_t = k_t, \quad 0 \leq t \leq \bar{t},$$

$$\tilde{k}_t = k_{t+\tau}, \quad t \geq \bar{t}, \quad \tau = \bar{t} - t$$

which anticipates the post-\bar{t} future course of k_t immediately following \bar{t}, thus omitting the flat segment, and attaining \hat{k} from time $T-\tau$ on. The comparison is made in Table 2, omitting those parts of the future for which the two paths coincide.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>$\int_{T}^{\bar{T}} u(c_t)dt$ if $[T, \bar{T}]$ is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[t, \bar{t}]$</td>
</tr>
<tr>
<td>path k_t</td>
<td>$\tau u(g(k))$</td>
</tr>
<tr>
<td>path k_t^*</td>
<td></td>
</tr>
</tbody>
</table>

From time T on, path k_t^* has overtaken path k_t by

$$\tau\left(u(\hat{g}) - u(g(k))\right),$$

a positive amount whenever $k \neq \hat{k}$. As is
seen below in another case, this reasoning can be refined for a path \(\hat{k}_t \) that approaches the level \(\hat{k} \) asymptotically instead of attaining it at some finite time.

We now know that, if an optimal path \(\hat{k}_t \) exists, it must approach \(\hat{k} \) monotonically in a finite or infinite time. We can determine the required shape of \(\hat{k}_t \) if we can find out how the slope \(\dot{k}_t \) of the path \(\hat{k}_t \) depends on the level attained at time \(t \). There is no loss of generality in looking at this problem just for time \(t = 0 \), for various alternative values of \(k_0 \).

This time the question raised cannot be answered without bringing the shape of the utility function \(u(c) \) into the diagram. A beautifully simple reasoning, suggested by Keynes to Ramsey [1928] for the case of a constant population, can readily be adapted to the present case of population growth. It is one of these intuitive heuristic arguments that convey the simple answer in a flash to a reader willing to be persuaded as to which quantities of "first order of smallness" need to be carried along, and which quantities of "higher order of smallness" can be ignored.

Assume that a smooth optimal path \(\hat{k}_t \) as shown in diagram A of Figure 5 exists. For the moment the datum is the initial per-worker capital \(k_0 \), the unknown its initial rate of increase \(\dot{k}_0 \), the slope of \(\hat{k}_t \) at \(t = 0 \). Choose a time unit small enough that, on the interval \([0, 1]\), \(\hat{k}_t \) can be treated as a straight line
segment, hence the variation of k_t^* ignored. Small enough also that the variation of $g(k(t))$ for $0 \leq t \leq 1$ can be ignored. Then, at $t = 1$, per-worker capital "equals" $k_0 + \dot{k}_0$, whereas per-worker consumption up to that time runs to

$$\hat{c}_0 \approx g(k_0) - \dot{k}_0,$$

the consumption $c_0 = g(k_0)$ that would have occurred in one unit of time had k_t^* remained constant, less the actual increment \dot{k}_0 to k_t^* in that time. The numbers c_0 and \hat{c}_0 are transferred, with the help of a mirror suitably positioned in diagram 5B at a 45° slope, to the c-axis in diagram 5C.

[Figure 5]

In tracing utility implications of alternative paths in diagram 5C we use our option to change the utility scale linearly by adopting the scale

$$v(c) = u(c) - u(\hat{c}) = u(c) - \hat{u},$$

in which the golden rule consumption level \hat{c} produces a zero flow of v-utility. The v-utility accumulated in the first unit of time along the path \hat{k}_t^* is then $\hat{v}_0 = v(\hat{c}_0)$ as shown in diagram 5C. To make clear that this is the product of a rate \hat{v}_0 with the length l of a time interval, we represent it by the area of the
rectangle abde in diagram 5D.

\[A(\text{abde}) = \hat{v}_0 \cdot l. \]

(Being below the horizontal axis, this area is to be counted as a negative number.)

Next we choose \(\tau \) which in turn is absolutely small compared with \(l \), and compare \(\hat{k}_t \) with a path \(k_t \) which attains the level \(\hat{k}_l = k_0 + \dot{k}_0 \) at the slightly different time \(l+\tau \)
(slightly later if \(\tau > 0 \)), while following a straight line path up to that time. Thereafter \(k_t \) imitates \(\hat{k}_t \) with a delay \(\tau \),

\[k_t = \hat{k}_{t-\tau}, \quad t \geq l + \tau. \]

Then, on the interval \([0, l+\tau]\), the rate of increase in \(k_t \) is

\[\frac{\dot{k}_0}{1+\tau} \approx \dot{k}_0(1-\tau) = \dot{k}_0 - \dot{k}_0 \tau, \]

consumption flows at the rate \(\hat{c}_0 + k_0 \tau \), \(v \)-utility at the rate

\[v(\hat{c}_0 + k_0 \tau) \approx \hat{v}_0 + \dot{\hat{v}}_0 \cdot k_0 \tau, \]

taking the tangent, with slope \(\dot{\hat{v}}_0 = v'(\hat{c}_0) \), as if it were the curve; \(v \)-utility accruing over the period \([0, l+\tau]\) is therefore
\[A(afhm) = (\hat{v}_0 + \hat{v}_0^\dagger k_0 \tau)(1+\tau) . \]

Finally, we choose \(T \) so large that \(\hat{k}_{T-T} \) has become equal to, or at least "equal" to, the golden rule level,

\[\hat{k}_{T-T} = k_T \approx k , \]

so that any remaining difference between \(\hat{k}_t \) and \(k_t \) for \(t \geq T \) can be ignored. Table 3 shows the comparison of \(v \)-utility accruals.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>(\int_T^T v(c_t)dt) if ([T, \bar{T}]) is</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1]</td>
<td>[1, T-(\tau)]</td>
</tr>
<tr>
<td>path (\hat{k}_t)</td>
<td>A(abde) (x), say</td>
</tr>
<tr>
<td>path (k_t)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>By time (T), path (k_t) is "ahead" of path (\hat{k}_t) by</td>
<td></td>
</tr>
</tbody>
</table>

\begin{equation}
A(afhm) - A(abde) \approx A(bfpd) - A(mnde) = (\hat{v}_0 + \hat{v}_0^\dagger k_0 \tau)(1+\tau)
\end{equation}

(throwing in \(A(nhpd) \), proportional to \(\tau^2 \), for good measure).

Though \(\tau \) must be small in absolute value, it can be either positive or negative. Hence, if the coefficient of \(\tau \) in (22) were
to be different from zero, an absolutely small enough τ of the same sign would make k_t slightly better than \hat{k}_t. The vanishing of the coefficient of τ in (22) is therefore a necessary condition for the optimality of \hat{k}_0 as the slope of \hat{k}_t at $t = 0$,

\begin{equation}
\hat{v}_0 + \hat{v}_0 k_0 = 0
\end{equation}

Geometrically, this says precisely that the tangent to the curve $v(c)$ in diagram 5C at the point \hat{c}_0 must pass through the point $(c_0, 0)$. (To see this, let τ approach 1 in diagrams 5B and 5C.) Reversing the reasoning, the construction of the optimal initial consumption rate \hat{c}_0 proceeds from the given k_0 via the curve $g(k)$ in 5B to the point marked c_0 in 5C, from which a tangent to the curve $v(c)$ is drawn, with \hat{c}_0 as the c-coordinate of the tangency point. Then $\hat{k}_0 = c_0 - \hat{c}_0$.

As said already, the same construction applies to determining the optimal slope \hat{k}_t from any given value \hat{k}_t reached by the optimal capital path at some given other time t. Reverting to the original utility scale, we have therefore found

\begin{equation}
\dot{k}_t = \frac{u(\hat{c}) - u(\hat{c}_t)}{u'(\hat{c}_t)}
\end{equation}

to be the differential equation connecting any jointly optimal con-
umption and capital paths. For the determination of both paths from a given k_0, (24) has to be combined* with the identity (21) incorporated in the construction of Figure 5.

* Since elimination of \dot{k}_t from (21) and (24) produces a relation between \dot{c}_t and \dot{k}_t directly, the optimal paths are determinable from one differential equation of the first order.

Diagram A in Figure 6 suggests how the values of \dot{k}_0 vary with alternative (unlabeled) initial values of k_0. It also illustrates how the slope \dot{k}_t of the optimal path \dot{k}_t at any time $t = t'$ can be read off from the diagram. Furthermore, using the negative $\dot{u} - u(c) = -v(c)$ of the v-utility function used in Figure 5, it indicates how the optimal consumption rates \dot{c}_0, \dot{c}_t, ..., determined from tangency points can be transferred from diagram 6C to 6D (using lines of 45° slope) to construct the entire optimal consumption path \dot{c}_t associated with k_t. If follows from the construction that \dot{c}_t rises monotonically to approach the golden-rule per-worker consumption level as an asymptot.

[Figure 6]

Finally, Figure 6 shows how an initial per-worker capital k_0^* just enough larger than the golden rule value \hat{k} to
make \(g(k_0^*) = g(k_0) \) leads to a construction of \(k_0^* \) and \(c_0^* \) based on the other tangent to the curve, drawn out of the same point \(c_0 = g(k_0) \), using entirely similar reasoning.

Finding a unique pair of paths \(\hat{k}_t, \hat{c}_t \) jointly meeting necessary conditions for optimality does not prove their optimality. It has been shown elsewhere* that the pair of paths meeting these conditions is indeed optimal, and that the golden-rule levels \(\hat{k}, \sqrt{\hat{c}} \), are approached only asymptotically.

* Koopmans [1965], Proposition (C), and Inagaki [July, 1966].

If one lets the growth rate of the labor force approach zero, then under present assumptions the golden-rule capital stock \(\hat{k} \) approaches infinity; so the present solution evaporates. However, if for \(\lambda = 0 \) we adopt Ramsey's assumption that the per-worker production function \(f(k) \) (now \(g(k) \)) reaches a maximum for a finite per-worker capital stock \(\hat{k} \) (capital saturation), then our solution reverts to the Keynes-Ramsey formula: Along an optimal path the rate of saving (= investment) equals the excess of the maximum sustainable utility level over the utility of the present optimal rate of consumption, divided by the marginal utility of consumption at the latter rate. We have phrased this rule in such a way that it can be applied to positive rates of labor force growth as well, by the mere insertion of the adjectival "per-worker" in
suitable places (and by interpreting "per-worker investment" as \(k_t \)),
the rate of increase in per-worker capital).

5. Comparative Dynamics

The diagrammatic procedures developed in Section 4 can be used to study how the pair \(\hat{k}_t \), \(\hat{c}_t \) of optimal paths changes if one varies the production function \(f(k) \), the utility function \(u(c) \), or the discount rate \(\rho \), in some given manner.

5.1 Effect of the marginal productivity of capital. One would expect that, in comparing two production functions \(f \), \(f^* \) with the same per-worker output \(f(k_0) = f^*(k_0) \) at the initial per-worker capital \(k_0 \), but different marginal productivities

\[
(25) \quad f'(k_0) > f^*(k_0),
\]

the smaller marginal productivity would, by diminishing the future increments in consumption attainable through an extra unit of present investment, lead to a larger consumption in the present. This is confirmed by Figure 7, where \(f(k) \) and \(f^*(k) \) have been chosen so as to lead to the same golden-rule per-worker capital \(\hat{k} = \hat{k}^* \), but different golden-rule per worker consumption rates,

\[
(26) \quad \hat{c} = g(\hat{k}) > g^*(\hat{k}) = \hat{c}^*.
\]
Rather than drawing two different parallel curves \(\hat{u} - u(c) \) and \(\hat{u}^* - u(c) \) in diagram 7C, we draw one curve and refer it to two different vertical scales, identified by the origins 0, 0*, respectively. Then the point \((g(k_0), 0)* \) referred to 0* is vertically above the point \((g(k_0), 0) \) referred to 0. In view of the curvature of the graph of \(\hat{u} - u(c) \), the point of tangency determining \(\hat{c}_0^* \) then is necessarily to the left of that determining \(\hat{c}_0 \), so we have

\[
\hat{c}_0^* > \hat{c}_0, \quad \hat{k}_0^* < \hat{k}_0,
\]

as anticipated.

Further analysis shows that \(\hat{c}_t^* \) must fall below \(\hat{c}_t \) from some positive \(t' \) on, for two reasons. In the first place, since \(g^*(k) \) represents a less productive technology than \(g(k) \) for higher capital intensities \(k > k_0 \), \(\hat{c}_t \) has by (26) a higher asymptotic than \(c_t^* \). In addition to this, if in the technology \(g(k) \) a path \(\hat{c}_t \) started out with the initial consumption rate \(\hat{c}_0 = c_0^* > \hat{c}_0 \), it would on feasibility grounds alone have to pay for this higher immediate consumption by lower rates of consumption, \(\hat{c}_t < \hat{c}_t \), at some later time.

The two optimal capital paths, \(\hat{k}_t \) and \(\hat{k}_t^* \), have the same asymptot \(\hat{k} = \hat{k}^* \) by our assumption, with \(\hat{k}_t^* \) trailing behind
\(\hat{k}_t \) at least initially.

5.2 Effect of the "curvature" of the utility function. It was observed in Section 3 that the "curvature" \(\eta(c) \) of the utility function affects the distribution of consumption between periods of markedly different rates of consumption. In diagram 8C, [Figure 8]

the curve \(\hat{u} - u(c) \) is contrasted with a curve \(\hat{u} - u^*(c) \) which, whatever its original scale, has been so (linearly) rescaled that the two curves intersect precisely at the golden-rule consumption rate \(\hat{c} \) and again at the consumption rate \(\hat{c}_0 \) optimal if \(u(c) \) defines the criterion of optimality,

\[
\hat{u} = u(\hat{c}) = u^*(\hat{c}) , \quad u(\hat{c}_0) = u^*(\hat{c}_0) .
\]

It then is immediately apparent that the more highly curved \(u^*(c) \) leads to the higher consumption rate \(\hat{c}_t^* \) at the time \(t = 0 \) (and for some time thereafter), when per-worker consumption is, in both paths, relatively low. Since this also causes \(\hat{k}_t \) to rise above \(\hat{k}_t^* \), the consumption paths \(\hat{c}_t , \hat{c}_t^* \) are bound to cross again at some later time \(t' \).

\(\sqrt{5.3} \) Effect of discounting. To discuss the effect of a positive discount rate \(\rho \), we revert to the type of analysis of Figure 4 in which only the monotonicity, not the shape of \(u(c) \)
is used, and only the monotonicity and the asymptot, not otherwise the shape of \(\hat{k}_t \) are determined.

[Figure 9]

Figure 9 compares paths similar to those of Figure 4, but differs only in that it applies the utility functional (18) with a positive value of \(\rho \). While using the same notations as before, we now specify that both \(\tau \) and the slope \(\frac{dk_t}{dt} \) of the tentative rising capital path shall be small. Small \(\tau \) allows us to ignore discounting on \([0, \tau]\). If the slope of \(\hat{k}_t \) is also small, differences in utility flows between all segments of paths to be compared are small enough for us to replace the utility curve \(u(c) \) by its tangent at the point \(c^{(1)} = g(k_0) \). The criterion can then be simplified to the integral over discounted rates of consumption instead of the associated utility flows, as shown in Table 4.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>(\int_{T}^{\bar{T}} e^{-\rho t} \ c_t \ dt) if ([T, \bar{T}]) is</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, \tau])</td>
<td>([\tau, \infty])</td>
</tr>
<tr>
<td>path (1)</td>
<td>(\tau c^{(1)})</td>
</tr>
<tr>
<td>path (2)</td>
<td>(\tau c^{(1)} - (k^{(2)} - k^{(1)}))</td>
</tr>
<tr>
<td>excess, (2) over (1)</td>
<td>(-(k^{(2)} - k^{(1)}))</td>
</tr>
</tbody>
</table>
The difference between the first column entries for paths (1) and (2) arises, of course, from the additional investment made on path (2). The second column entries are

\[c^{(1)} \int_{\tau}^{\infty} e^{-\rho t} \, dt = c^{(1)}(e^{-\rho \tau}/\rho), \quad i = 1, 2. \]

Since \(c^{(2)} - c^{(1)} \) is itself of the order of \(\tau \), the difference between \(e^{-\rho t} \) and 1 can be ignored in the last entry of the table.

Path (2) is better than path (1) if the sum of the entries in the last row is positive, that is, if

\[(27) \quad \frac{c^{(2)} - c^{(1)}}{k^{(2)} - k^{(1)}} > \rho. \]

This says, understandably enough, that the ratio of the additional perpetual per capita consumption flow \(c^{(2)} - c^{(1)} \) to the initial per capita consumption sacrifice \(k^{(2)} - k^{(1)} \) that made it possible must exceed the discount rate applicable to per capita utility. Figure 9 shows that this will be the case as long as both \(k^{(1)} \) and \(k^{(2)} \) stay below that value \(\hat{k}(\rho) \) for which

\[g'(\hat{k}(\rho)) = \rho, \quad \text{so} \quad f'(\hat{k}(\rho)) = \rho + \lambda. \]

We conclude that, if \(\tilde{k}_t \) is a path rising sufficiently slowly from
to an asymptotic level \(k(\rho) \), then among the paths branching off from \(\tilde{k}_t \) to remain constant from some time \(t' \) on, the path branching off later is always better. (In this case, the pertinent integrals converge on the interval \([0, \infty) \), and the overtaking criterion and the maximization of the utility functional (18) on \([0, \infty) \) give the same answer.)

For the pair of paths \((\tilde{k}_t, \tilde{c}_t) \) to be optimal, it must now satisfy a system of two differential equations of the first order examined elsewhere*.

* Koopmans [1965], Propositions (I), (J), and Section A.7.

As explained above, the optimal per-worker capital and consumption paths found by maximizing the sum (18) of per-worker utilities discounted at a rate \(\rho \geq 0 \) can also serve as optimal paths with reference to the sum of individual utilities discounted at a rate \(\rho^* = \rho + \lambda \geq \lambda \).

6. The Splurge That Gains From Postponement.

The examples of Section 5 have indicated how "optimal" intertemporal distribution depends on specific traits of the production function and of the utility functional. In particular, we have seen that "posterity" is favored, ceteris paribus, by a high
marginal productivity of capital, by a low discount rate, and — if initial capital falls short of the golden-rule level — by low "curvature" of the utility function. The point to be made in this Section, again by an example, is that slanting the data of technology or of policy too much in favor of posterity can be self-defeating. We shall show this by considering a negative discount rate, \(\rho < 0 \), as applied to per-worker utilities. As explained, this can be more naturally interpreted as the case in which a discount rate

\[\rho^* < \lambda, \]

smaller than the rate of labor force growth, is applied to individual utilities (17) before their summation.

[Figure 10]

In Figure 10, we consider a long but finite horizon \(T \), and specify (just to choose something) that the terminal per-worker capital shall be at the golden-rule level,

\[k_T = \hat{k}. \]

We shall argue that the path \(\hat{k}_t \) "optimal" under that additional constraint will bulge out as shown, and will if \(T \) is large enough spend most of the period close to that level \(k(\rho) \) where the tangent to the function \(g(k) \) has the (now negative) slope \(\rho \).

Compare the paths \(k_t, \ k^*_t \), that short-cut the bulging
curve \(\hat{k}_t \) by level stretches at levels \(k = \hat{k}_{t' - t'} = \hat{k}_{t'' + t''} \) and \(k^* = \hat{k}_t = \hat{k}_t' \), respectively. Take \(k^* > k \), but take the difference \(k^* - k \) so small that the variation in the discount factor can be ignored within \([t' - t', t']\), and again within \([t''; t'' + t'']\). Writing \(\sigma = -\rho > 0 \) for the negative of the discount rate, Table 5 compares the discounted utility accruals.

Table 5	\(\pi \int_{T}^{T'} e^{\sigma t} u(c_t)dt \) if \([T, T']\) is		
\([t' - t', t']\)	\([t', t'']\)	\([t'', t'' + t'']\)	
path \(c_t \)	\(x, \text{ say} \)	\(\frac{\xi}{\sigma} (e^{\sigma t''} - e^{\sigma t'}) \)	\(y \)
path \(c_t^* \)	\(x - (k^* - k)e^{\sigma t'} \)	\(\frac{\xi}{\sigma} (e^{\sigma t''} - e^{\sigma t'}) \)	\(y + (k^* - k)e^{\sigma t''} \)
excess, \(c_t^* \) over \(c_t \)	\(-(k^* - k)e^{\sigma t'} \)	\(\frac{\xi}{\sigma} (e^{\sigma t''} - e^{\sigma t'}) \)	\((k^* - k)e^{\sigma t''} \)

Since \(e^{\sigma t''} - e^{\sigma t'} > 0 \), the sum of the entries in the last row is positive if and only if

(28) \[\frac{c - c^*}{k^* - k} < \sigma \quad (= -\rho) \]

a condition different from (27) only in the way it is written. In turn, (28) holds as long as both \(k \) and \(k^* \) are below \(k(\rho) \), which confirms the bulging shape of \(\hat{k}_t \).
It is instructive to compare the optimal path \(\hat{k}_t \) with the path \(\tilde{k}_t \) that branches off from \(\hat{k}_t \) as soon as \(\hat{k}_t \) reaches the golden-rule level, and remains at that level from there on. Note that \(\tilde{k}_t \) generates more (discounted) utility than \(\hat{k}_t \), (a) during the remainder of the ascent of \(\hat{k}_t \) to the vicinity of \(k(\rho) \), and (b) during the part of the horizon — for large \(T \) by far the largest part* — when \(\tilde{k}_t \) hugs \(k(\rho) \).

* See Cass [1964], Samuelson [1965].

The superiority of \(\hat{k}_t \) over \(\tilde{k}_t \) for the entire period \([0, T]\) must therefore arise from the final descent of \(\hat{k}_t \) just before the end of the horizon. The reason is most easily grasped if we interpret the maximand as the sum of individual utilities discounted at the positive rate \(\rho^* \). The initial buildup and the long sustenance of an intrinsically excessive per-worker capital stock are justified only by the splurge of consumption thus made possible toward the end of the horizon. The criterion used pushes the splurge toward the end of the horizon because the number of consumers increases at a rate exceeding that by which their individual utilities are being discounted.

It is clear that such a criterion could conceivably make
sense only if there were indeed a foreknown final reckoning at a specific time T imposed on the economy independent of its volition. If the length T of the horizon is voluntary, any postponement of the splurge is desirable by the criterion under discussion. But postponement forever makes no sense at all. A limiting path of $\hat{k}_t = \hat{k}_t(T)$, say, as T approaches infinity does exist, has $k(\rho)$ as its asymptot, and is inferior to the path \tilde{k}_t in regard to the rate of consumption at any time after the two paths have bifurcated.

It has been shown* that under the present assumptions, a path optimal under the overtaking principle does not exist.

* Koopmans [1965], Proposition K and Section A8.

The finding of a minimum discount rate below which an optimal path does not exist recurs in more general models*.

* Inagaki [1966], Koopmans [1967], Mirrlees [1967].

In models with exponential technical progress, product-augmenting (Inagaki) or labor-augmenting (Mirrlees), similar critical points have been found that depend on the rate of progress, on the shape of the utility function for large rates of consumption, and, if progress is product-augmenting, on the shape of the production
function for large capital-labor ratios.

7. Concluding Remark

The moral of our story is that ethical principles, in the subject-matter in hand, need mathematical screening to determine whether in given circumstances they are capable of implementation. Only principles that have passed such a test present ethical, or policy, problems.
References

Figure 1 The golden rule of accumulation

Figure 2 The utility function
Figure 3 Successively better paths $k^{(i)}_t$, $i = 1, 2, ...$

Figure 4 Nonoptimality of bulges and of level segments with $k \neq \hat{k}$.
Figure 5 Determination of \dot{k}_0 and \dot{c}_0.
Figure 6 Construction of optimal paths \hat{k}_t, \hat{c}_t.
Figure 7 Effect of $g'(k_0)$ on optimal paths.
Figure 8 Effect of the "curvature" of the utility function.
Figure 9 Effect of discounting per-worker utilities ($\rho > 0$).

Figure 10 Effect of discounting at a negative rate ρ.