Bradient Methods of I

by Herman Chernoff -
- Jean Bronfenbrenner

1. Introduction

In éstimating & set of paramsters by maximm I.ikelit'ood methods, it
is ordinarily necessary to find the point in the parameter space which
maximizes a certain function (the likelihood':fmﬁong}.' Frequently the
form of the function and the number of independent variasbles involved
make it_préhibitiv&iy"dﬁficult to deternine the maximizing point directly,
and methods of suecessive approximations are asaerdingly used.

Suppose we have an approxinztion x(o)[#(‘ﬁtg)%--x:(g)...x(g) )] to the point
¢ [a(cy co ,..c_-,',)] which maximizes a function £{¢). Then if we expaud £(x)
in a Taylor serics sbout x.(o) we have a means for obtalning an improved
approxiﬁation to ¢. Presumably the more terms of the eipansion we consider,
the greater the speed with which we may expect to spproach c. However,
calculation of terms involving higher order derivabives ircreages considerably
the computational cest of each iteration.

The methods of Suceessive approximation to be discussed in this paper
are gradient methods using the first order derivatives only and the Newton
method which uses first and second ordéi‘ terms. In both cases it is possible
to obtain from the succaéssive aspproximations gertain relevant information
gbout terms of higher order than those ac’mxallycmwhed, and to use this
information to improve cemvergence.

2. Gradient Mathods

Given an initisl approximation z(0) [é(xfgi ::.;g)...z(g))] it is natural
t0 choose the next approximation %) in such ‘& way that the step from x(0) to
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x(1) 1s in the MW of steepest ascent with pespe t to £(x), 1.0., in

the direction of tha gradiem The direction a£ ﬁ%ﬁapﬂt ascent depends,

however, on the cmt of distance used. In amm3 there is no reason to
assume that a unit ar diatance along the xi-e:xiﬂ 13 i.n any sonse equivalent
toaunitofdismalongﬂwxj-ams, i;‘:. The:ﬁfbrlc chosen implies a
particular sysm fm‘ weichting these units, e
Let & =(¢ 1, &2,..., en), and suppose tha% ‘lahi diata:ﬁce from x(o) to
the point (x(o) +€) h& dﬂﬁIBd as 1 ‘
a= (2 B, €€ 3}?

where Bi= || Bij' 1 ia a; positive definite synwm.e m:m.x vhich may or
mey not depend on the pOin‘b x(O) Then the locus at paints (x(o) +&) lying
at 2 distance k fraa x(m is given by the elli;saoid '
LBy €4 € g =K
with center at x{m |

If we now let €, = k °1 this e¢llipsoid becomes

4
(1) o 2Bjy 85§51

Then the direction af steepest ascent in the k-«wighbovhood of x(o) is the
direction from x(o) ‘to _the point of the allipsqﬁ.d _.'.t_sr which the function is
a maxirum, In *!'.he ﬁnﬁ.ﬂng case as k approach'a?a; sero it is easy to approxi-
mate this dircction by writ.ing the Taylor exwmi.on of f(x(o) +» k&), maxi-
mising subject to the restraint (1) and disrega ':i"

lﬂ;gher order terms in XK.
For a part.icular value of Xk, the ma:d.mizim vﬂ;una of the 5 give the
projection on tha x; xa,..xn - gpace of the stupes'b sacant that can e drawn
through the {(n + 1) - dimensional point [x(O)_'
=x©) . x§, f(x(‘” . kS )1 such that § satistiss (X}

: {9);""’]- ard any poimb

k-0, ‘the ma:dmizing values of the &, give the pr':ajéction of the steepest
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‘tangent line through @, £(x(0))]." The two d:memicm}. case is illustrated
in the graph below. The curves enclosing ¢ are co:rt.our 14nes, each corres-
ponding to £(x) =_comta;i_‘rb. .The curves enéloaing 'xm) are ellipses corres-
ponding to different ﬁ-luea of k. The arrows i:ﬁicaf.e the directions of the
steepest secants for the resrective values of k.,

ﬁ .
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‘ Df '
Let 2. be a row vector whose :J'h element. is aﬁ [- fi.] and let L be a

22 Q¢ £
matrix whose ijth elemnt iz ~ox; axj [a "fij ]. 'l'l'lan __

(x(®) + x§) i--fj(tm)) vk 52 &) -§5L(x(ﬂ))3' + eee Y
Kaxinizing subject to the restraint (1) we have -

k'@ -2 1a®) 5. L a2 5",
where A is a Lagmm mltiplier, and for w}ery smll kK

8t L)

except for a scale‘ faictor. This indicatas in ei‘chte t,hn ‘proper direction for
a step, in the limﬁ:b as the size of the step appm@ehas gero. The problem
then arises as to hO‘l’ larrfe a step may profitably be taken in the limiting
direction ind:.catad. ‘ Thia clearly depends on how f:wt. 'bhe slope of f(x)
changes as we depart. i'ram x{0) 1in various dimatians atd s0 cannot be determined
without sorme comidem:len of higher order tem. :

We observe that 11'
u>.xm)+hs'-ﬂm'+ha i’km%

A vector x is conaidered to be amatriij.ﬁ';
transpose of x, wauld therefore censist of
s * product, of & and %. _

‘,l-,m ralr and 1 the
\ (_:_‘c S‘?\. is '
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then for small encugh h >0 we necessarily ham
) > £a®).
For : L
£(x(1)) -t(ﬁt(m+ hs) = f(x(o)) +h 511(1(0)) + oees
=ra©®) snz &yl @), .,
But | |
b &(x“”) 120y >0
since h>0 ard- B 15 paai:bive def:.nite.
It may mrthér be shown that if a sequeme of successive approximations
x(0), x(1), ..., xim),... is formed, where
2) @) S U, ey
then if the mitial approximation is in a suffic 9_": ;

snall neighborhood of
¢ this sequence cqrmarges to ¢ for smfic:.ent}:y smal‘l values of h. To
establish this result. we expand 1(x) about ¢4 Iatting X ~C ® ¢ we have
(3) z2x)' = 1(¢‘+ e')' ¥c)' ~Llc) e’ + oue w - L(c) @l * ees
since ¥(c) = 0. I.f x(m) - ¢ = e we have fﬁm (2) and (3)

£ L ot wx®) o' 5o eﬁﬂ} e

w e(ml)' -W[I - h 5 1) ] e(m)‘fvf.I""-'- 11-( y I (0

Now if ¢ is an ianlated maximm, L{c) is a poait&ve dei‘imﬁe matyix and E lL(e)
is therefore the’ product of two positive defixﬂ.te mtrices and itself positive
definite. Let/\. &m /l 1, i=1, 2,.0an be mpeatiwly the charasteristic
values and vectom of g} L(c). Then Ay>0 :g;g_- a1l i. Indeed we assure

,’{1 > 2 .“ a An » (0. We observe the.t "t‘he/ui are also the
characteristic veeisors of I -h B L(e) whz.le 1- -hA 11, 2.,

are the cnammqgm_mmm. For by dafmm__._io:;-.
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m»:} i

- -.j ' T
[ L(c) w'_/_'Li :c],m‘i =0
ul-h B-"% L_,(c),u,' -l hA ul
[I-h B~1 L(t:) - (1 - h,li):c],ai - o'_'

For sufficiently mall values of hy, we have 0 < 1 = h}l 3< 1~3-'-/ since /'l 20.
We may decomosa 'bhe vector (x(o)-c) = e(o) into canponents along the
n orthogonal charact.mristic vectors M . Then (Ig) gim form =0

e(l)":[I - h B-l L(c)] [klﬂl + 1{? /:{.2 + uao * k:ia ] +O(B(o)2)_/

ll(l - h’ll) kl}l- 1 ¥ ses ¥ (1 - h’ln) knﬂ *0(9(0)2)

From this the proof of ccnvergence is evident foa:* an izﬁ.tial approxiuation

close enough to ¢. We have furthermore

(5) p(mel)! a (1 AP KM+ ees s (L=h A B* l,n,un
() g m)* --zg’w‘_‘) @ (o) a‘”) B (e) [T M) PO

o .

- 'f Ai(ll-- h R 1)*“*1 k, .u.. N
3. Choice of h

We mentioned abnve that an intelligent ehaiaa of h depends on some

information regarding hi;her order terns in the Taarlar upa.nsion of £(x).
It appears from (5) ‘bhaf the relevant information wmms the charac'beristic
values of Bt L(c), .fer by letting h = i‘i we W«ﬂlmimte the 18 terms on
the right in (5). In particular it will be shmn btlow how we may, without

explicitly evaluaﬁng I., use successive itara‘biﬂm 'ﬁ.th a.n;r sufficiently small
h to estimate A 1 an; A the largest and the smk

’g of the characteristic

values,

1/ 1f B is not ntﬁ: m constant‘, we may assums _approaches a certain
value as x approaches ¢ Then A behave ar fashion and the
inequality above is va d for x sufficient o c. :

2/ y =0(x) indicates that y is at most of

. 'I'ha.t. is there #0 that fyl & ¥}
notation to ¥ {vial.

The extension of this
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1 :
Now if we 1,31-. hw. Tn the last term in (¢
L 1

i o8 but the coefficient

of the first becones

andthismayﬁewrylargeifl is mch

 greater than 2- ‘On the other hand if h = *!;m 'i'irst term vanishes

but the coeffieient of the last becones (1 - I )m]', a.nd this, while less

than unity, my deéﬂase very slowly as m immsﬁa Therefore, if a constant
h is to be used thb valwa
2

h = 'i +* /‘1
is recommended. This mnimizes the maximum vnlve af ‘ leh A \ by making

the largest poaitiﬂ and the largest negata.ve valva amarica.lly equal. I.e.,

it makes
22

-(1-hz11)-1 hl '.l. T"—,T,;
‘11"’111
-ﬂ-ﬂ-—-:—-—-—-—-
1 n

R V)

However there 18 no reason why & ccnst.ant valve 0£ h should be used in
successive iteratibm. On the contrax"y 3.t muld seam desirable to vary h

over the range.betman 1/ l and 1/ Ay, in oz.ﬂer -tp-.p_mvide opportunitles for

coming clcse to the receprocals of as many of the l as poss:.blee In this

case we have imma.d of (5) and (6)

(m*l}' . k . 2]
(7 ik # \- It

@ g .e(m*$.)5': YL ,11

i

1/ 8ince this is hs.'%."'thm unity, it i'ollows from (5) t.hat. such an i is
small enough ‘Uo assur«z convergence if mg, original aporoximation is
close enouph
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The procedure tor estimating the smallest mot;l from the successive
approximations x‘“} 18 as follows, assuming 2 >)71 fér all i # n, Let
(m)be the 3B elemant. or x(®), SgF‘) the Jﬂ‘_ Joment 2t § () ang ¢ W33
the 3B element @Mi Then from (8)

Since l is the 'sﬁllest of ‘the -1 it folle\'u" :th'a-‘t. -ih. both mumerator
and denomnat.or the last. term in the summation becm donﬂ.mnt after

many it.erations wi‘bh small enough positive h.- For i.t‘ we divide both
mumerator and denominator by r a- hk A ) then tha it‘h term of each

will contain as & rj'actor

fo-ns

-2 ' |
=TT 1-m Ai _1 h;l )
B2 0 TTH An -\L-EAq
TT(1 “h Ay)
where h i3 the smaueat of the hy. Form suffie:‘..ently large this becomes
arbitraerily Small, i # n. ‘since the renaining factoz‘s are bounded, it
follows that for large m we may neglect all terms mept the last in both

nunerator and demminator. Thus we have

§™ g o), - Ay |
©) 93 ~ mn’] w0 . ef{l=hp1An)
i (kn Mn)s &(l-nk).n;)z_ §

Since only A n is mﬁcnﬂwn we may solve this eqﬁatim-fbr the desired
estima’be of ;1. n; |
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The estimatdon of Ay is more difficult and mich less precise. Given
an approximation to (5" L(c) I® ()", we may make use of the fact that
for large m | |

Bl L(c) e a (57 1) ]m(klM;_ +-k2;ﬂ2 +ovet kp My)
' ' _ ! m '
e By + A kg My ¢ eer + Anlndly

ol n t
-“"11 KMy

since 21 is the largest characteristic valua. Then

y W element Gf[B"l Lic) @ NOL
jth ‘

(0 =

clenent of (5L 1(c) L o(0)"

The approximstion to {B"’l Lic) ]m 8(0) may be obta_inad by a recursive

process, ¥e hav*e
a) M0yt a ) Oy [I._hog—s_:t,_n_(c,5(0)'_(9(0)-,_,,03»1”6)@(0)'

@D x(B)y ' -hlB"lL (c)e(l) ""‘hlBylx..(e)_ [_I"hoB-lL (c)Je(0)’

(11b)  enElaee @ hohl_['ﬂ.-lh(c)-}z e
(@) ey lie) [1-hy o) IEngBee) ] o
(11c) ey lL(e)e @) 4 h2(h04h15_[B‘1L9c) 2 o0’
—hghyhy (1. (0) e (O
Bto. |

Fron these we: iobt.ain.'the following relations by 'mpeated substitution.

1 .
(122) 5 lne)e(®'x - B =V O



O

. 1 . AR ’
@)  oeR o0y - Fh e ) g -0

az) i@ P o0 T (g Pl shghp (higehy ) (x(2)-x (1))

Ete, '
Tt should be noted that (12b) depends om bothi 11b and 12a; (12c)
depends on (1le) (m} and (12b); and se bn, ﬁm &13. these expressions

neglect tams in hﬁgher powers of the elements ei‘ ﬁ(m this provides
opportunity for- tha cum:lat" on of errors as @ imm ard limits the
accuracy with whi_ch)._l may be estimated by ms.s m_ioms.

L. Newton liethod

Vie have not yat. discussed the choice of mmm B. There may be
some a priori reaam: for weighting errors in am pmter more strongly
than errors in amther. Barring this sn.tuat:‘.m :I.‘b ia desirable to choosa
B in such a wa.y as ho speed convergence as "mh as. Msible. This may
involve varying B !be‘bmen iterations. If B"' L Ig(n} is close to the identity
matrix then its chﬁmteristlc values, the /11; 'lﬁl 83.1 be clecse to unity.
Since from (5) =

etm)*z'.?i- :§ Qe X" g g +(e‘“’2>

it is clear that a ohod.ce of h close to urﬂ.w a&ll than quickly reduce
all the terms in tha summation on the right, pemittihs x{) to converge
rapidly to c.

With this in mind it would seem desireble to'set B = L(x(®)) since

in the neighbom of ¢ we may expect L‘]-(x(ﬁ; L{c} ‘to be close to the
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identity matrix. Then we have
2@1)? @ o L@y 2’ ()

3) § )t o )t | @) o @) 3 (x@)

But this is -equivélent to the Newton method of fg&icpessive approximations,
in which we appz‘pﬁma‘be £(x) to second order terms 'o.f' ‘the Taylor expansion
(about x(m)) and then chose x{81) g6 as to max:im.zet.he quadratic thus

obtained. For if we write

£(x) = £(x@)e §(0)) mp(x(n)) + §) ;'(xfmh-% § Iy (x(m)) glm)?

and maximize with respect to & (@) we cbtain

;'_(x(:%)’) -nix®) s =g

ard (13) follows immediately.

It should be noted that speed of convergence ‘increases as we move
closer to the mmmm. ‘This is obvious sinﬁe thachamteristic valies,
A ;s are pushod togather as L-(x™) L(c) approsches the identity matrix.
In fact it may be shown that in the neighborhood of (c), the elements of
e{(™1) are of the '_oi-'dai' of magnitude of the squame of the elements of &™),
This property makes the Newton method valuable when we ;l*.l)l::'e_.very close to
the macimum., : |

However, the computational cost of finding the secmi order terms for
each iteration ma,ybe considerable. To lessen thia mt while still re-
taining some of the mantagas of the Newton mﬁwﬂ. the following modi-~
fication may be Wed The metric B (i.e., ﬂze sacond order matrix

L) may be held comtmh rar geveral iterations, "i:: in, we may use
L(x(r)) +0 com)uw &(ﬁl} é(r")’.-o, 6 (ﬂ'k) m WOiding calculatlon
of L{x(r#)), L(,;(M)),..., Lix(rek)y, Huwever ﬂmre nill be no change in

the A i and no increase in the speed of conver ﬁo long as the metric

is held constant.



n of simple pradient mm centered around
the size of tha stgp tn be taken in the chosen < :.:_. 'ﬁ

on, i.e., the
choice of h. The l‘ielrbon method in its ordinary I‘em implies a value of
hequaltol. Sroio.ngas this is tmeit.uﬂlhafom’xi that the itera~
tions temd to mﬂershoot or cvershoot 't.he w‘k Sm a aystanatw fashion
deperding on third order terms. By observing ve iterations we
nay correct for this systematic tendency without- m}.]y camputing the
third order tems 'I‘he following procedure is: appliosf—ble %o the modified

Hewton method. We deal firast with the om—dimemﬁ.ml case,

Let x(*) e the last point for which the mcm oxder tern was
evaluated. Than nﬁng 'bhe expansiong of £ and 1\‘;: Mvatlves about ¢,

we have for & ()

s"“) . ...____...f""(m).? . e®e"e) *z‘l(m)e 2" (o) + O (@)

. £ (x(r)) f (c) + e( )f (c) + O(Q(I‘)z)
1f x (@) (m) o 8 (f“) » wWe have

(1)

almel) o, e-.(m) “, 8 (nn) = %e(m) (23(1')_ e(m))fﬁl(c) . G(E(P)ze(m))
£ + o 2" (e} + 0 ()

5) = a(m) (26(r). e:(m)._;;-}:_'zz F=f1 + O ()]

Sincs e'B) 1s very close to - § (m) it is':#iéar that we could substane
t1ally reduce the right hand side of (15) by add.mg t.o it

g (%(r)_ e(my .._,.Ll

Thus convergence muld be specded if we forme& x(“"'l)hy adding to x(m)
not S(m) but - § (‘h) mltiplied by an apprapriate ”;S?imgle factorhs

;(m*l).. £ .1 g?(m)) 5 (n_x) :
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where
(16) ‘P (M.(ze(r) o(™)y ;f g:;
Then

~(m*13. o g, cP(m).)-_;" ﬁ(gfm} o(r)?)
Thus far .P‘m) is unimown. A relatively umaphiaﬁcated nethod of

approximating this ractor is the following, em 80), Xl 1 (), § ()
and § (r-n-l)

an _ s(r»i)&_ o(rel) 1 (), o(r

This can be used w estlmnte £ (c)/2f ().

We note that if x“') is close to ¢, e(r*l) e‘m)u. will be small compared

(r) dm o) £ (e) r4l}) . (m),. g 200 £0(e) |
to e(*) and while ?(r e s ‘f( x e Lned

Approximating efr ) Mr - 8(") we have from 17

.5r+1)

(18) ?(Nl) re (=2 & (r))_ _ég);’?_ =@ t

If x(r) is no*h very close to ¢, ¢ () w:.ll tmﬂ to change a little
() £ () () £7'0e)
less rapidly i‘rm q m to Ze 'f"'(':':')"

For this reason om may £ind the fonmdng'sugﬁa;y more sophisticated

approach useful especially in those cages vmera the work per iteration

flll ( )
2¢"(c)

without performing——as required by (17)---an iteration in which no "finajle

is ;:ons:.derabla. I‘hia approach a slso makes it pogsible to estimate

factor® is used.
Suppose that $ (m- 1) was used as an apprmﬁmtitm to cp(m’l) in the
m {teration. (q_?(m-l) is never known oxactly ami may be approximated with

varying degrees of agouracy. q’ g (r-1) may even he zﬁm if no previous knowledge

econcerning third oﬁﬂer terms has been obtained) I‘hws x(m)n (=1}, g(ﬂi-l) (1+ ?(m-
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Then for m & rvl, we lﬁ.’s'e (15) to obtain

19) o oy 1)1, f{>(m"1))-e(m"llssé';ijfié“"f‘*)?-o(m'l)] %f‘"%} .

1) g, (o2 (o))

e . Py,
Solving this to find an approximate value for S °)and substituting in

ef”\e

(16) we have

@ e PO et

' The error terms can be approximated by varlous methods of somewhat
different accuracy_ _ For example we may use (IS)t.o note that
o - § )o@ o(r))
il o (1) o(m)y o(m)a x(m-1). x(m). g_(ﬂ?){... O@E™ o)
2e(*). e(m)a 2x (7). a;(m).. § @, O™ ol
5e{T) o(m1)u 2p(r). g(m). y(m-1)- g(m),fo(_a(m)-_ ()

Then SR
ot @ gl gl p(-1) g (1)

~ !
(20) (P(m)z ?(M) ‘:.m(r}_x(m)_g(m"l)- S_(ET L x(m,{'ﬁ(mﬂl)"' &(m)

If after obtaining? x("l-)- (rlyr), it is decided'bn malculat-e second

“crder terms we may proceed in the same manner to bbt&in

(20a) ‘?) (r1) . "' S-(rl) ‘. S(rl)* Ep(!‘lhl) & (rl-l)
o (Pl (120l glm) L) (1), o(ry)

In the n-dimensional case we are not in ra.'_:pdaition to determine the
nfinagle factor™ so definitely or uniquely, since we have a vector rather
than a scalar to eliminate., The best we can do is mske use of an appro-

priate succession of h's, which, as we might

20t, are related to the
characteristic roots of a certain matrix. Again'léﬁlx_(r} be the last

point for vhich the second order terms were evalamtad.
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ﬁaﬂf:“'l{&
Tpna Vi .'Z‘:‘,.l {x) and f:!.j {x) in Taylor scries aboub 9;'1_3'm-3_have
P = 5 . ‘ ' X :1. ™ . F a : .
':.; A .‘) I E.-g= fi;l:(cl * .2 '[i:!{.) cn. ep Tli@(c) ‘[‘_”q o.g; .
{(z) + ...

fi ol -#.tlj(c) + 2. e, Lm

wWe have ?ur'?:hﬁ-mom-j :

i) = o) - 2 #50) §eq 2 funsle) BIE) v o

§ Mg fitaé?“?") £

- & (m) f-i&(c)f'J(c) Lz eém)eém)f () £3(c)

i,- ‘ 2 jn,p
* f?- e(‘m) £34(e) Ei‘ik(c) Z e(") z.'.:figqg(é) ij(e)'g oo
.- e§m>- 3 weé >e§,m)fmp(m rijccné 5 e@n) s @ 2590 + ..,
.- eg”"% B0 o (20 &) r@m A3G) » ...
oE1) = ofF) o hm g @ |
- (1) o w zhE 2 e e (20 (1- e,,"") 2125(e) @) + ...

Suppose m = r. Then

S (r}__.e(rl‘ % ﬁ"};m (r)ol()r)fi@(c) fiJ(c)“‘ toc :
- g 3 g ey

If we let U = lﬁ\uj_nr([. ;q;me
Uypm & f,}l-r):m,m ()
then we nmay write in mwr notation

-

_]j Here we are making use of the following fae
then L{c+e) = L{c) + D(e) where D(e) =\ 2 °nfijn-
For (e) sufficiently i

L t(x) = Lﬂq'{c

If__l'(xJ = fl£g,Col
f‘(e e ) + eea ||

3 066 11) + O
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then we mey wri?ﬁ{t__gi#--v_wtor notation
o) L (1 - nenye®" 4 5"3-_1, KON
-[:“"lhr(I - g’) le(r)' +* ooo'.

8ince the elmtt nr ‘(r “1) are small eompurd wﬂh ﬂwm of 0( r)

when we are

close to the mw“ have for the next 11:02‘&‘3!.%

(re1) Lo (r 1) t"\ '.

(r+2) x> (1 - H” )’ - % (O) f (0) + ses

2 i,n P
. - . 3
O(r'bz) :.:' E[-!‘{’*xfl - U) 9(r+1) * oso’

Similerly, for n)?"‘l. 80 long ae L(x(r)) is um
a(m-tl) z[ - hn(I - WJ&(m) [ - hp(l - v) (1"‘"1)

In this caw ie may knock out the major pért ot‘ e

p*r*-

. :
(m+1) s thus spesding

convergence, if e uhoose h's close to the reai?"; pocal s of the characteristic

valuss of I, %Me II'-O(G "))m a matrix involving th:lrd order terms of the

expansion of f.-"‘l’ht procedwe for determining. ngpmprlata values of h from

successive iteratim is very. similar to that ﬁ-mm earlior for other

gredient mothodss ﬂhmaver saeond order terms m mﬁmpt..ted u will, of

courng, ehange. nnd tho rolevant charaeteristia w.lua will change s.ecordihgly.

This was to be qup#aﬂd since, in the forms um in our digouasion of gradient
methods, a roumuh‘hion of seocond crder terms m & change i the metric B.
Wo have the additiml 1nfomtion that the submqnmt itaraticns without

recalculation of saoond order terms have ﬂie eﬁ'wt Gf spreading the relevant

cheracteristic ﬂlﬁu in a systematic fashion.'::

are the characteristic -nlnoa of U, then 1 - “_Véi m ‘the cherccteristic values

of I = :g: as compared with 1l « ¥, for I-T,
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The method p:apoeed to £ind the snallest Rm be modified to eliminate

dominating chambm*istic cemponents with small g

o E

If.' several comparatively
small h's are uabct rt-he relative importance of cmmteristic vectors with
large A in the ermr torms is diminished. If mmny the component

with the smalleatﬂu 1s very small it may be mﬁ. attar a few such itera-
tions the mein cmmomnts will be those wi‘lm2 alme te a certain value,

say ,7[ This wﬂ.l hs apparent by noting that . 3(") is very close to a
miltipte of § @),

ng) (l-hy g Ag) 5t
Then it would be- wﬂﬁe to use hy = 5-6. This Wﬂt&nﬁ to eliminate the
largest ccmponen‘ts of the error. If thish ia qaite large, it may tend
to revive components with large A's for l-hml mmld be highly negative.
It is therefore wiae to follow a large h with se*mral 8mall ones. A
heuristic method of estimating A, 18 lllustratnd by the following, If
Sfm‘) b S(m"l) hm— was only .4 as large as 11; ghould have been, there-

fore, hy, = 'E' hm_,y. This method is equivalent to ﬁ'xe above for if
Ay = ,20 diffpn s hy = 1//10 'ﬁ' hm.g_. - 1f this rethod is
applied to the m:dified Newton lethod, one shoulzd allow for the spread
of the A sbout 1 immediatelj after the second. nrdoz' terns are calculated.
For example, if n # 1 is used when the second ardgr hms are calculated
and one obtains gﬁr*l)- 18 n. = 1 is cxﬂy .9 4s large as it should
be; thus, we may prafer to use hpn.; = 'g-. Hmwer, *bo allow for the spread
h,,; close to 1+9'p'01ﬂr1 be preferable. o

The method uf‘ finding the largest characbaristic oot of a matrix

on which is based: M}e method of finding the &12% t- l is a well known

_ method. The I\Ieﬁton meﬂ*od and the gradient mathmi wi.t.h Euclidean Yetric




. I
B = I have been known and used frequently in the past..}./ Indecd Curry
has noted that the iterations with different scales along the axes would
give different results. Generalizations of these metiiods have been
applied to functions defined on spaces which are not Euclidean.2/

The Cowles Commission has been using these methods for several years
in Statistical problems of Econometrics e-‘-a-/ Indeed in these problems one
can nmake use of tpe fact that for reasonably large samples, certain
matrices which are relatively easy to compute are practically equivalent

to the matrixz of second order terms.

1/ H. B. Curry, "The llethod of Steepest Descent for Non-Linear liaximi-

T zation Problems," Quarterly of Applied Mathematics, Oct. 1%44. In
this poper Curry also relers 0 papers of Lauchy, Courart s ardd Hadamard
in which these methods have been used.

g/ Wolfowitz has applied the generalisabion of the lewbton method to a
problem in Caleulus of Variatious in an unpublished paper..

3/ Cowles Comnizsion Lonegrnph 10, Section L (Yo be puldished).



