COWLES COMMISSION DISCUSSION PAPER: MATHEMATICS NO. 426

NOTE: Cowles Commission Discussion Papers are preliminary materials circulated privately to stimulate private discussion and are not ready for critical comment or appraisal in publications. References in publications to Discussion Papers (other than mere acknowledgment by a writer that he has had access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

Transformations of Dual Linear Programs Summary

by A. W. Tucker

•

April 26, 1954

Dual Linear Programs (with "mixed" constraints):

To maximize $c_1x_1 + \dots + c_nx_n - d$ constrained by

$$a_{i1}x_1 + \dots + a_{in}x_n - b_i$$

$$\begin{cases} \leq 0 & \text{for each i in } M_1 \\ = 0 & \text{for each i in } M_2 \end{cases}$$

$$x_j$$
 = $\begin{cases} \text{nonnegative for each } j \text{ in } N_1 \\ \text{unrestricted for each } j \text{ in } N_2. \end{cases}$

To minimize $u_1b_1 + \dots + u_mb_m - d$ constrained by

$$u_1 a_{1j} + \dots + u_m a_{mj} - c_j$$

$$\begin{cases} \geq 0 & \text{for each } j \text{ in } \mathbb{N}_1 \\ = 0 & \text{for each } j \text{ in } \mathbb{N}_2 \end{cases}$$

$$\mathbf{u_i}$$
 nonnegative for each i in $\mathbf{M_1}$ unrestricted for each i in $\mathbf{M_2}$.

Note. M_1 and M_2 are complementary subsets of the set M = [1, 2, ..., m]; M_1 and M_2 are complementary subsets of the set M = [1, 2, ..., m].

Transformations (reducing the number of constraint equations):

Type 1. Assume $a_{rs} \neq 0$, r in M_2 , s in M_2 . Then the unrestricted variables x_s and v_r can be eliminated through

(1)
$$x_s = \frac{1}{s_{rs}} (b_r - \sum_{j \neq s} a_{rj} x_j)$$

(2)
$$u_r = \frac{1}{a_{rs}} (c_s - \sum_{i \neq r} u_i a_{is}).$$

In this way one passes to equivalent dual programs in which the coefficients are

(3)
$$\left\{ \begin{array}{l} \bar{\mathbf{e}}_{ij} = \mathbf{a}_{ij} - \frac{\mathbf{a}_{ri}\mathbf{s}_{is}}{\mathbf{a}_{rs}}, & \bar{\mathbf{b}}_{i} = \mathbf{b}_{i} - \frac{\mathbf{b}_{r}\mathbf{a}_{is}}{\mathbf{a}_{rs}} \\ \bar{\mathbf{c}}_{j} = \mathbf{c}_{j} - \frac{\mathbf{a}_{ri}\mathbf{c}_{s}}{\mathbf{a}_{rs}}, & \bar{\mathbf{d}} = \bar{\mathbf{d}} - \frac{\mathbf{b}_{r}\mathbf{c}_{s}}{\mathbf{a}_{rs}} \end{array} \right\}$$
 (1 \(\nabla \, \text{r}, \, \text{j} \neq \text{s} \)

with $\bar{M}_1 = M_1$, $\bar{M}_2 = M_2 - [r]$, $\bar{N}_1 = N_1$, $\bar{N}_2 = N_2 - [s]$.

Type 2. Assume $a_{rs} \neq 0$, r in M_2 , s in N_1 . Then the non-negative variable x_s can be eliminated through (1) and the unrestricted variable u_r replaced by the non-negative variable

$$\bar{\mathbf{u}}_{\mathbf{r}} = \sum \mathbf{u}_{\mathbf{i}} \mathbf{a}_{\mathbf{i}\mathbf{s}} - \mathbf{c}_{\mathbf{s}}$$

In this way one passes to equivalent dual programs in which the coefficients are given by (3) and by

$$\ddot{a}_{rj} = \frac{a_{rj}}{a_{rs}}, \quad \ddot{b}_r = \frac{b_r}{a_{rs}}$$
 (j \neq s)

with $\bar{M}_1 = M_1 + [r]$, $\bar{M}_2 = M_2 - [r]$, $\bar{M}_1 = M_1 - [s]$, $\bar{M}_2 = M_2$.

Type 3. Assume $a_{rs} \neq 0$, r in M_1 , s in M_2 . Then the non-negative variable u_r can be eliminated through (2) and the unrestricted variable x_s replaced by the nonnegative variable

$$\bar{x}_s = b_r - \sum a_{rj}x_j$$
.

In this way one passes to equivalent dual programs in which the coefficients are given by (5) and by

$$\ddot{a}_{is} = -\frac{a_{is}}{a_{rs}}, \quad \ddot{c}_{s} = -\frac{c_{s}}{a_{rs}}$$
 (i \neq r)

with
$$\bar{M}_1 = M_1 - [r]$$
, $\bar{M}_2 = M_2$, $\bar{N}_1 = N_1 + [s]$, $\bar{N}_2 = M_2 - [s]$.