Quadratic Forms Definite Under Linear Constraints

Gerard Debreu

August 13, 1951

This paper offers a proof of a theorem whose applications in the classical theories of economic equilibrium are numerous.

x, A, B are matrices of orders n.1, n.n, n.m. x being a matrix,

$M_{p,q}$ is obtained from M by keeping only the elements in the first p rows and the first q columns; M_p stands for $M_{p,p}$. Primed letters denote transposes.

Th. 1 $x'Ax > 0$ for every $x \neq 0$ such that $B'x = 0$ if and only if there exists a number λ such that $x'Ax + \lambda x'B'x$ is a positive definite quadratic form.

It is sufficient.

Now, the function $y(x) = \frac{x'Ax}{x'B'B'x}$ is continuous on the set $\{x: x'x = 1$ and $B'x \neq 0\}$, and tends to $-\infty$ whenever x tends to a boundary point; it has therefore a finite maximum λ^*. Any $\lambda > \lambda^*$ has the desired property.

Th. 2 $|A + \lambda BB'|$ is a polynomial in λ whose term of highest order (possibly null) is $(-1)^m \begin{vmatrix} A & B \\ B' & 0_{m,m} \end{vmatrix} \lambda^m$.

Note: My acknowledgments are due to J. Marschak whose interest in this problem made me initiate this paper and to M. Slater with whom I had most valuable discussions.
From \[
\begin{bmatrix}
A & \lambda B \\
B' & -I_m
\end{bmatrix}
\begin{bmatrix}
I_n & 0_{n\times m} \\
B' & I_m
\end{bmatrix}
= \begin{bmatrix}
A + \lambda BB' & \lambda B \\
0_{m \times n} & -I_m
\end{bmatrix}
\] follows
\[
A, \lambda B = (-1)^m A + \lambda BB'
\]

In the development of the left-hand determinant a term contains the highest possible power of λ if in every one of the last m columns one takes an element of λB. Such terms are unaffected if $-I_m$ is replaced by any other $m \times m$ matrix: take $0_{m \times m}$.

Th. 3 Let A be symmetric and $|B_{m\times m}|$ be different from zero. $x'Ax > 0$ for every $x \neq 0$ such that $B'x = 0$ if and only if

\[
(-1)^m \begin{vmatrix}
A & B_{r \times m} \\
B' & 0
\end{vmatrix} > 0 \quad \text{for } r = m+1, \ldots, n.
\]

1) Necessity: Consider the equations

\[
\begin{cases}
Ax + B\xi = 0 \\
B'x = 0
\end{cases}
\]

where ξ is an $m \times 1$ matrix. A solution $\begin{bmatrix}x \\ \xi \end{bmatrix}$ is such that $x'Ax + x'B\xi = 0$, i.e., $x'Ax = 0$. This must imply $x = 0$, therefore $B\xi = 0$, and, since $|B_{m \times m}| \neq 0$, $\xi = 0$. The system must have no other solution than 0, i.e.,

\[
\begin{vmatrix}
A & B \\
B' & 0
\end{vmatrix} \neq 0.
\]

From th. 1, for every $\lambda > \lambda^*$ one must have $|A + \lambda BB'| > 0$.

From th. 2 one must have $(-1)^m \begin{vmatrix}A & B \\
B' & 0
\end{vmatrix} > 0$.

This argument can be made for any r, $m \leq r \leq n$.

2) Sufficiency: I shall prove that the coefficient of the term of highest order in λ of $|A_{r \times r} + \lambda B_{r \times m} B'_{r \times m}|$ is positive whatever be $r \leq n$.

It will therefore be possible to choose λ large enough to make these n leading minors positive and consequently $[A + \lambda BB']$ positive definite.

a) If $r > m$, it is true by assumption.

b) If $r \leq m$, the development technique used in the proof of th. 2 shows that every term of $|A_{r \times r} + \lambda B_{r \times m} B'_{r \times m} + I_m|$ of order higher than r vanishes.
The rth order term is $\sum (-1)^{m-r} \left| \begin{array}{c} A_r \\ \tilde{B}_r \\ -B_r \end{array} \right| \lambda^r$ where \tilde{B}_r is any $r\times r$ submatrix of B_{rm} whose columns are in the natural order.

This term is equal to $(-1)^m \lambda^r \sum |\tilde{B}_r|^2$, and finally the coefficient of λ^r in $|A_r + \lambda B_{rm} \tilde{B}_r|_2$ is $\sum |\tilde{B}_r|^2$ which cannot vanish since $|B_{mn}| \neq 0$.

A similar argument proves

Th. 4 Let A be symmetric and $|B_{mn}|$ be different from zero. $x'Ax < 0$ for every $x \neq 0$ such that $B'x = 0$ if and only if

$$(-1)^r \left| \begin{array}{c} A_r \\ B_{rm} \\ \tilde{B}_r \end{array} \right| > 0$$

for $r = m+1, \ldots, n$.