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This document contains supplementary theorems on regressions with nonstationary out-

comes, proofs, additional discussion concerning mechanisms for convergence clustering, further

simulation results, and other supplementary regression results to those reported in Morgan

et al. (2023). Proofs are provided in the Appendix to this Online Supplement. We begin by

considering some pitfalls in two-way fixed effect (TWFE) regressions when trends are present.

1 Pitfalls of TWFE estimation I: nonstationary outcomes

under a homogeneous trend

We illustrate some of the problems that can arise in the use of an explanatory TWFE regresion

(given below in (2)) when the outcome data yit employed are generated by a simple panel DGP

involving individual stochastic trends with linear drifts of the following form

yit = ai + bit+ ξit, ξit = ξit−1 + eit, i = 1, · · · , N ; t = 1, · · · , T (1)

Here, the primary innovations eit are assumed to be cross-sectionally independent and stationary

and ergodic over time with zero mean, finite variances and positive long run variances ω2
ei, whose

cross-sectional average 1
n

∑n
i ω

2
ei has a finite positive limit ω2

e = limn→∞
1
n

∑n
i ω

2
ei > 0. The

policy regressors xit that appear in the TWFE regression (2) below are assumed to be cross-

sectionally independent, strictly exogenous (i.e., independent of the innovations eit in (1)), and

stationary over time with variances σ2
xi, whose cross-sectional average 1

n

∑n
i σ

2
xi has a finite

positive limit σ2
x = limn→∞

1
n

∑n
i σ

2
xi > 0. Further, centered time series averages of xit satisfy a
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central limit theorem (CLT) so that T−1/2
∑T

t=1(xit −mxi) ⇝ N (0, ω2
xi), where mxi = Exit is

the mean and ω2
xi > 0 the long run variance of xit. The limit of the cross section average of the

products of the long run variances of xit and eit, viz., limn→∞
1
n

∑n
i=1 ω

2
xiω

2
ei, is also assumed

to be finite and positive.

In this panel DGP framework (1) for the outcome variables yit, trend slope homogeneity

clearly depends on the coefficients bi being equal for all i. If bi ̸= b for all i then the yit have

heterogeneous deterministic linear trends. If the bi are random, then these linear deterministic

trends have stochastic slope coefficients cross section.

We suppose a TWFE regression model is conducted to explain these data, taking the form

yit = ai + θt + βxit + uit, (2)

where, for simplicity, no variables beyond the policy variable xit are included in the regression.

Under the null hypothesis that the policy variable coefficient β = 0 and a maintained assumption

that the time specific effect is the linear drift θt = bt, the implied true regression error in (2) is

uit = (bi − b)t+ ξit, (3)

thereby making slope homogeneity on bi relevant to the properties of the regression. To formalize

the analysis we employ assumptions that distinguish the relevant two cases, starting with trend

homogeneity.

Assumption 1 (Homogeneous trends): bi = b for all i.

Let βfe be the TWFE estimator of β from (2) and define the demeaned data ẏit as follows

ẏit := yit −
1

T

T∑
t=1

yit −
1

n

n∑
i=1

yit +
1

T

1

n

n∑
i=1

T∑
t=1

yit =: yit − ȳi• − ȳ•t + ȳ••, (4)

with similar definitions for ẋit and u̇it. Then the TWFE regression equation has the form

ẏit = βẋit + u̇it, (5)

with u̇it = ξ̇it and the centered TWFE estimator is

β̂fe − β =
1
nT

∑n
i=1

∑T
t=1 ẋitu̇it

1
nT

∑n
i=1

∑T
t=1 ẋ

2
it

=
1
nT

∑n
i=1

∑T
t=1 ẋitξ̇it

1
nT

∑n
i=1

∑T
t=1 ẋ

2
it

. (6)

It is useful to note that both the form and the asymptotic properties of β̂fe are unaffected if

the policy variable xit has a homogeneous deterministic trend, such as xit = ct+ x0
it, where x0

it

has the same properties earlier ascribed to xit, as in this case it is easy to see that composite

demeaning as in (4) leads to the equivalence ẋit = xit − x̄i• − x̄•t + x̄•• =: ẋ0
it.

Under the stated conditions the denominator of (6) has a well defined limit in probability as

(n, T ) → ∞. The numerator has more complex behavior due to the nonstationary characteristics

of ξ̇it and the effects of removing fixed effects in the regression by demeaning. The following
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result gives the limit behavior of the standardized and centered TWFE estimator β̂fe.

Theorem 1 Nonstationary outcome with a stationary policy Under the conditions

stated above and homogeneity in Assumption 1, as (n, T ) → ∞ the limit distribution of β̂fe is

given by
√
n
(
β̂fe − β

)
⇝ N (0, Vβ) , (7)

where Vβ = V/σ4
x with

V = lim
n→∞

1

n

n∑
i=1

ω2
xiω

2
ei

6
, and σ2

x = lim
n→∞

1

n

n∑
i=1

σ2
xi. (8)

The proof of Theorem 1 is given in the Appendix and here we provide an intuitive discussion of

the asymptotics. For this purpose it is useful to compare the present setting with the conven-

tional framework where the outcome variable is trend stationary with a homogeneous trend and

simple iid innovations. In that model the TWFE estimator in (2) has the usual
√
nT conver-

gence rate, giving a typical panel data gain from both time series and cross section averaging.

But, as Theorem 1 shows, when the outcome variable has a stochastic trend component some

of this conventional gain is lost due to the impact of stochastic nonstationarity and this is so

even under a homogeneous deterministic trend. As is apparent from (6), the effective residual

in the regression is ζit := ẋitξ̇it, which carries the impact of the stochastic trend component ξit

with order Op(
√
T ) rather than the conventional Op(1) of a panel regression residual. On the

other hand, the signal from the regressor ẋ2
it retains its conventional Op(nT ) strength. The net

effect, therefore, is that the consistency of the TWFE estimator relies solely on the size of n

and more time series observations T do not improve estimation accuracy. In effect, stochastic

trend residuals have a measurable impact on panel TWFE regressions: consistency is retained

by cross section averaging of the independent individual components in the panel, while the

‘mildly spurious’ impact of a stochastic trend in the residuals weakens the advantage of time

series averaging without inducing inconsistency.

To estimate the asymptotic variance Vβ in (7) consistently under the assumption that there

is cross section independence in both xit and ξit, the following panel robust variance estimator

may be employed, viz.,

V̂β =

(
1

nT

n∑
i=1

T∑
t=1

ẋ2
it

)−1(
1

n

n∑
i=1

ˆ̇w2
iT

)(
1

nT

n∑
i=1

T∑
t=1

ẋ2
it

)−1

, (9)

with ˆ̇wiT = 1
T

∑T
t=1 ẋit

ˆ̇uit where ûit is the residual from the TWFE regression. Consistency

of the variance estimator (9) is shown in the Appendix and relies on joint asymptotics with

(n, T ) → ∞ as well as cross section independence over i. In the presence of cross-sectional

dependence (including spatial dependence), however, estimators such as V̂β are typically not

consistent, although a clustering approach (Cameron and Miller, 2015) can be successfully used

to achieve consistency when there is an underlying cluster form of dependence that is known

to the investigator. Consistency of V̂β and extensions to allow for cross section dependence

facilitate inference about the slope coefficient β and hence the impact of the policy variable xit
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on the outcome variable yit in the panel.

2 Pitfalls of TWFE Estimation II: nonstationary outcomes

under heterogeneous trends

In formulating (1) and developing asymptotic theory for TWFE regression using (2) we now

allow for heterogeneous trends.

Assumption 2 (Heterogeneous trends) bi ̸= b for some i.

Under Assumption 2 and the generating mechanism (1), the regression error in (5) becomes

u̇it =

(
bi − n−1

n∑
i=1

bi

)(
t− T−1

T∑
t=1

t

)
+ ξ̇it =: (bi − b̄)(t− t̄) + ξ̇it,

so that u̇it includes deterministic trends with zero cross section and time series sample averages

in addition to ξ̇it. It follows that the asymptotic properties of the TWFE estimator now depend

on whether the regressors ẋit themselves have heterogeneous trends. When both outcome and

policy regressor variables have heterogeneous trends, asymptotic properties in TWFE estimation

depend on the characteristics and relationship between the slope coefficients of the deterministic

trends. To fix ideas let

xit = cit+ x0
it, (10)

where x0
it is stationary and ergodic over time with the same properties as earlier in Section

1 with no deterministic trend dependence. Under the null of no policy impact (β = 0) and

when the trend slope coefficients bi and ci are random iid sequences with respective variances

σ2
b and σ2

c and zero covariance Cov(bi, ci) =: σbc = 0, then we may expect different asymptotic

results from when there is nonzero covariance between the sequences. In the latter case there is

naturally induced correlation between the policy xit and the outcomes yit. Similar correlations

occur when the trend slope coefficients bi and ci are fixed, nonrandom sequences for which

limn→∞
1
n

∑n
i=1 b̃ic̃i = σbc ̸= 0, where c̃i := ci − n−1

∑n
i=1 ci with matching definitions for

b̃i and t̃ = t − T−1
∑T

t=1 t. In both these two cases, the induced correlation between the

policy and outcome variables affects the limit theory, much in the same way as there is always

(potentially spurious) correlation between deterministically trending time series (Durlauf and

Phillips, 1988; Phillips, 1986). Under these conditions Theorem 1 can be extended with a

similar
√
n convergence rate for β̂fe when σbc ̸= 0 but with a different asymptotic variance that

is dominated by the variances (σ2
b and σ2

c ) of the slope coefficient sequences. To proceed we

assume for the following result that bi and ci are random iid sequences with means mb and mc

and covariance Cov(bi, ci) = σbc. Note that after mean transformation the policy variable has

the form ẋit = c̃it̃ + ẋ0
it. The next result, proved in the Appendix, gives the limit behavior of

the TWFE estimator when policy variable has heterogeneous trends.

Theorem 2 Nonstationary outcomes and heterogeneously trending policies Under

Assumption 2, equation (10), and the conditions given above for the random sequences (ci, bi)
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of trend slope coefficients, as n, T → ∞,

√
n
(
β̂fe − β

)
→d N

(
0, σ2

b/σ
2
c

)
. (11)

The form of the limit theory in (11) is natural and somewhat expected in this simple two

variable panel TWFE regression since the linear trend terms in the policy regressors xit and

the outcome variables yit are dominant in the regression asymptotics even in the presence of a

stochastic trend ξit in yit.
1

A further case that is relevant in some empirical settings occurs when the the outcome

variable has heterogeneous trends but the policy variable xit is stationary with no trend. Using

the same notation as above, the TWFE estimator has the following decomposition

β̂fe − β =

∑n
i=1

∑T
t=1 ẋitb̃it̃∑n

i=1

∑T
t=1 ẋ

2
it

+

∑n
i=1

∑T
t=1 ẋitξ̇it∑n

i=1

∑T
t=1 ẋ

2
it

. (12)

Compared with (6), where there are no deterministic tends in the outcome variable, the error

in the TWFE estimator now contains the effect of the outcome trends in the first term on the

right side of (12). This first term then dominates asymptotically because of these retained trend

effects which produce high variance. The implication is that even when the policy coefficient

β = 0, the TWFE estimator diverges asymptotically, producing potentially large (positive or

negative) values in finite samples. The following result, proved in the Appendix, formalizes the

asymptotic behavior.

Theorem 3 Impact of heterogeneous trends with no trends in policy Under As-

sumption 2 and the conditions of Theorem 2, but when regressors are stationary with no trend

components, as (n, T ) → ∞, the asymptotic behavior of β̂fe has the following form

β̂fe − β = Op

(√
T

n

)
+Op

(
1√
n

)
, (13)

so that β̂fe is inconsistent and divergent when n = o(T ).

As shown in the Appendix, heterogeneous deterministic trends in the outcome variables yit

of (1) continue to dominate the asymptotics and β̂fe − β = Op

(√
T/n

)
still holds when the

outcome variables yit have stationary innovations ξit.

The above analysis is developed for linear deterministic trend functions, allowing also for

random heterogeneous slope coefficients. The empirical applications to Covid-19 data in Morgan

et al. (2023) show that a linear trend model may not always provide a good representation of

the data when nonlinear trends such as U -shape or inverted U -shape patterns may apply. To

assist in addressing such trend behavior in panel data Phillips and Sul (007a) (hereafter P-S)

1We mention that this feature of the limit theory is not necessarily the case in multiple regressor models,
where stochastic trend effects can manifest in a weaker direction when the limit theory is degenerate, as
shown in Park and Phillips (1988).
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used the following data generating process

yit = bitθt, (14)

where θt is (typically) assumed to be the dominant (possibly stochastic) common trend and the

bit are time varying slope coefficients that induce variations in the trend patterns across the

panel. The DGP in (1) can be rewritten in this form as

yit = ai + bit+ ξit = (ai/t+ bi + ξit/t)t = bitt.

If bit ̸= b for some i, then TWFE estimation generally suffer from pitfalls such as those con-

sidered in Theorem 3. To accommodate this type of practical problem and to allow for more

general varying behavior over time and across section while permitting some (possibly unknown)

commonalities Morgan et al. (2023) utlize a dynamic clustering mechanism. The next section

provides a short review of the mechanism of relative convergence (Phillips and Sul, 007a) that

enables this more general approach and a discussion of issues that can arise in the practical

implementation of these procedures.

3 Relative convergence tests and convergence clustering

If (14) holds and yit/yjt →p 1 as t → ∞, then yit is said to relatively converge to yjt over time.

Let µ̂t be the sample cross-sectional average of the yit. Then, if yit/µ̂t →p 1 as t → ∞ for all

i, then we say that the yit relatively converge to their cross-sectional average. In this case, the

yit share the same common (stochastic) trend. Relative convergence can be tested using the

following so-called log t regression developed in P-S

log
H1

Ht
− 2 log (L (t)) = a+ b log t+ et, (15)

where

Ht =
1

n

n∑
i=1

(hit − 1)
2
, forhit =

yit
µ̂t

, (16)

L(t) = log t, t = p+ 1, . . . , T , p = ⌊r × T ⌋ with r = 1/3, and ⌊·⌋ denoting the floor function.

Under the null of relative convergence, Ht asymptotically converges to zero over time since

hit → 1 as t → ∞. Hence, log(H1/Ht) is increasing over time. If the t-value for b̂ is larger than

-1.65, then the null of relative convergence is not rejected at the 5% level. In finite samples,

the term 2 log (L (t)) serves as a penalty function in the regression (15), as explained in P-S.

Under relative divergence, Ht and log(H1/Ht) should respectively increase and decrease over

time. This behavior means that b̂ becomes significantly less than zero as t increases. When

Ht is simply fluctuating over time, then the dependent variable on the left side of (15) will be

decreasing over time due to the presence of the penalty function of −2 log(L(t)).

For practical implementation of this log t regression P-S imposed some restrictions. The first

is non-negativity in yit ≥ 0 for all i and t. The second is that the first 1/3 of the time series
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observations be discarded in performing the test. The latter condition is naturally restrictive

because discarding this much time series data can be expected to lower discriminatory power

of the test.2 Both of these conditions can be relaxed. It is particularly useful to address the

second condition and, as discussed shortly, the restriction can be considerably relaxed.

3.1 Measurement units invariance

A further practical issue in performing log t regressions of the type (15) is that the relative

transition parameter, hit, in (16) depends on the choice of measurement units. Suppose, for

instance, that yit is log per capita nominal or real GDP for country i-th at time t. In 2020

US per capital nominal GDP was $63,543.58, a value can be expressed in alternate units as

$63.5K or $0.0635M. Let k be the measurement unit, which can be any number such as k =

$1, $1, 000, or $1M . Next, suppose the data generating process is the simple mechanism yit =

bitθt, where bit is the i-th time varying loading at time t, and θt is the dominant common factor

trend. We assume that θt > 0 for all t, which does not require yit ≥ 0 for all i and t. If some

yit are negative, then the corresponding loading bit < 0. Now let

yit = log (Y ∗
it × k) = b∗itθt + log k, (17)

where Y ∗
it is a latent level variable which is not observable and assume that min1≤i≤n,1≤t≤T log Y ∗

it

is much smaller than log k. The relative transition parameter hit is then contaminated by the

measurement unit k in the following way

hit =
yit

1
n

∑n
i=1 yit

=
b∗it + log k/θt

1
n

∑n
i=1 b

∗
it + log k/θt

̸= h∗
it, for any k ̸= 1. (18)

Further, for large k → ∞, hit → 1, thereby distorting detective capability in testing for relative

transition.

To avoid this dependence Sul (2019) suggests normalizing the data by the minimum value

of yit, viz.,ymin = min1≤i≤n,1≤t≤T yit. Note that

ymin = min
t

min
i
(b∗itθt + log k) = min

t
min
i
(b∗itθt) + log k = y∗min + log k,

so that the normalized observations y+it satisfy

y+it = yit − ymin = b∗itθt − y∗min.

With this normalization, y+it no longer depends on the nuisance parameter k and

h+
it =

b∗it − y∗min/θt
1
n

∑n
i=1 b

∗
it − y∗min/θt

≈ h∗
it. (19)

Further, as is apparent in (19), h∗
it is close to h+

it whenever y
∗
min is small and/or the trend factor

2See Kwak (2021) for a detailed discussion.
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θt is large. This modification therefore provides a simple relaxation of the first restriction that

yit ≥ 0 for all i and t since by construction we always have y+it ≥ 0.

3.2 Fixed rule for initial discarding

The reason it is useful to discard some initial observations in the log t regression is the nature

of the log t function itself. Both the dependent variable, log H1

Ht
, and the log t regressor originate

at zero when t = 1, whereas the penalty function 2 log (L (t)) with L(t) = log t is undefined at

t = 1. Further, by virtue of its concave shape log t increases rapidly for small t: for the sequence

t = 1, 2, 3, 4, 5, we have log t = 0, 0.693, 1.099, 1.386, 1.609, 1.792, so that the growth rates in

the first three values are relatively large compared with those for the larger t values. Hence, if

some initial observations are not discarded, estimation of the coefficient b in (15) can become

inaccurate, as pointed out in P-S, Remark 3.

We now propose a fixed rule for discarding the data using m, defined as the first sample

observation used in the regression, in place of r, the fraction of the sample observations that

are discarded. As P-S showed in their Figure 3, and as demonstrated in the next section, the

t-ratio test statistic of b̂ typically increases with m, rising as more observations m are discarded.

Then, under the alternative of divergence, as more data are discarded, the null becomes harder

to reject and test power is weaker. The recommendation for the setting r = 1/3 in P-S was

based on simulation experiments conducted with a simple data generating process under the

null. The next section, investigates appropriate settings for the parameter m comparing finite

sample performance in more realistic conditions.

There is another benefit to using a fixed m value in practical work. Panel data typically

evolve over time. For instance, panel observations that are initially divergent may begin to

converge over time or vice versa. To capture such evolution requires some re-examination

of relative convergence behavior over the sample. Two common ways of assessing dynamic

evolution are through rolling and recursive regression. Convergence analysis based on rolling

samples relies on choice of the rolling window and convergence results can fluctuate considerably

over the sub-samples. More stable regression outcomes can be obtained with recursive sampling

by fixing a starting sample and monitoring the evolution of convergence patterns over time in

the cross section one observation at a time. If instead of a fixed starting sample a fixed fraction

r of the time series is eliminated, as in P-S, the size of the discarded sample rises with the

number of observations included in the regression, leading to less robust use of the data for

detecting time variation in the panel.3 For this reason we recommend using a fixed m value in

determining the size of the discarded sample observations.

3.3 Robust estimation of a core convergence club

The original clustering algorithm suggested by P-S requires finding a core convergence club

within the panel. Using a cross section ordering based on the final time series observation, the

3Movements in the observed t-ratio test for b̂ may then be due to discarding more initial observations
rather than the inclusion of more sample information.
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first two individual series are selected and a log t regression is run to see if these series relatively

converge. If so, an additional individual series is added, based on the last observation ordering,

and a second log t regression is run, testing for relative convergence. This procedure is repeated

until the addition of an individual series leads to the rejection of the null of convergence. The

core club is identified as the group with the maximum t-ratio from the individual series obtained

from this sieve procedure. We call this method the ‘max−t rule’. Once this core club is fixed,

log t regressions are run by adding each non-core individual to the core club, one at a time. If

the t-ratio in this regression exceeds a certain threshold value τ , then the added individual series

is identified as a member of the first convergence club. Successive repetition of this procedure

identifies members of the first convergent club. For the remaining series in the panel, the same

procedure is repeated to identify a second convergence club, and so on. The overall procedure

is called an ‘convergence clustering mechanism’ (CCM) and readers are referred to P-S for full

details concerning its implementation.

Let Cit be the club membership for the i-th individual at time t. In earlier discussion we

explained the use of recursive sampling in the implementation of the log t regression test. In the

determination of core convergence club membership, the final sample observation ordering may

change over time in recursive sampling, which may in turn lead to a change in core convergence

club membership. To prevent this ambiguity, we suggest using the full time series sample to

determine core club membership.

The steps in applying the dynamic automatic clustering technique are as follows:4

Step 1: Using the full sample, find the core group using the max t rule described in P-S

Step 2: With the fixed core from Step 1, run the CCM with a sub-sample of the data, t = 1 : T0

and record the club membership.

Step 3: Increase the subsample to t = 1 : T0 + 1 and re-run CCM using the fixed core from

Step 1

Step 4: Repeat, adding one additional observation at a time until the whole sample is included.

The CCM is built upon an initial core convergent club and its asymptotic justification, as

P-S showed, is based on the assumption that the number of core club members goes to infinity

as n → ∞. In a finite sample, the size of a core club is fixed, which can be a problem if the size

is extremely small, such as only two members.5 If this outcome arises, the estimated club mem-

bership Cit can be unstable due to the extremely small size of core members. In this case, users

need to check whether the DCCM leads to robust club membership over time. If club mem-

berships fluctuate significantly over time, then the size of the core members should be increased.6

4A Stata program is available for this ‘dynamic convergence clustering mechanism’ (DCCM) upon request.
5As discussed above, the max−t rule is initially based on two series of which the last observations are

largest. In extremely rare cases there is a chance that adding any other individual does not lead to an
increase the t−ratio. In such a case, the max−t rule selects only two series as a core club.

6It is easy to alter the max−t rule by considering only t−ratios with more than two series. Consider
the following hypothetical example. The t−ratio which initially selected two individuals is -6.5. Adding an
additional individual – now the size of core becomes three –, of which the last observation is third highest,
leads to a t−ratio of -4.5. Adding another individual leads to a t−ratio to -3.2. Then rather than selecting the
initial two individuals, users can select the first three individuals as a core club. If the DCCM leads to robust
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4 Monte Carlo Simulations

We consider the following data generating process (DGP) to compare the fixed discarding rule

with the fractional rule

yit = ai + bitt+ ϵit, with bit = bi − (c0ai)t
−α, (20)

where ϵit ∼ N (0, 0.5). Note that the time varying loading, bit, is an inverse function of the fixed

effect, ai, which leads to so-called β-convergence unless c0=0. If bi = b for all i, then the yit

are relatively convergent as long as α > 0, where α is the speed of convergence parameter. The

DGP in (20) is slightly different from the DGP considered by P-S in the sense that there is no

slowly time varying function L(t)−1 in (20). If this function is added in bit, then the two DGPs

are asymptotically equivalent. Since P-S did not consider the case under the absence of the

L(t)−1 function, we exclude the L(t)−1 term in the DGP on purpose, but include it in the log t

regression. Technically speaking, the null of convergence without including the L(t)−1 term is

not well defined asymptotically when α = 0. However, the DGP in (20) is more conveniently

interpreted such that convergence holds only when α > 0. This exclusion may lead to slight

over-rejection of the null of relative convergence. As we will show shortly, the null is more often

rejected with smaller m and T values. Naturally, this setting leads to a more conservative choice

of m. For robustness, we also introduced serial dependence in ϵit, but we found that there was

little difference in convergence results.

We let c0 = 0.01 and ai ∼iid U [0, 5]. Under the null of convergence, we let bi = 0.2. Under

the alternative, we let bi = 0.2 if i ≤ n/2, and bi = 0.4 otherwise. Two values of the speed

of convergence parameter α are assigned: α = 0.05 (slow convergence) and α = 1.1 (rapid

convergence). Next, to evaluate the impact of the data discard parameter m on the size and

power of the test, we consider the following log t regression.

logH1/Ht − 2 logL(t) = a+ bt+ ut for t = m+ 1, · · · , T. (21)

In our experiments here we focus on small sample sizes. If T is large (e.g., T > 30), 1/3 of

the sample can be discarded since the discard parameters r or m have relatively little influence

on the size and the power of the test with large T . We set n = 100. The simulation results have

little variation with different values of n. The simulation is repeated 5,000 times.

Table 1 reports the frequencies of rejection for the null of convergence under both the null

and the alternative. Since the DGP in (20) does not include the slowly varying function, the

rejection rate under the null should be higher than the nominal size with a small T . With m =

2 or 3, there is huge size distortion when T is less than 20. The size distortion is worse with a

club membership, there is no need to increase the core membership further. Otherwise, increase the numbers
in the core club by including additional individuals until the DCCM produces a robust club classification.
As long as the core convergent club is relatively converging, the clustering method is asymptotically well
justified.
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higher speed of convergence. More interestingly, the size of the test has a U -shape over m when

T < 22. As T increases, the minimum size of the test is often found with large m values. This

result is consistent with the P-S finding that the t-ratio of b̂ typically increases as more m are

discarded, as mentioned in Section 2.2. With higher t-ratios, we reject the null less frequently,

thus minimizing the size of the test. (Recall that this is a one-sided test and the null is rejected

when tb̂ < −1.65.) Under the alternative, the power of the test is nearly 100 with small m. As

m increases, the power gets worse, again coinciding with the results that the t-ratio increases

with m.

To investigate choice of an optimal value of m we combine power with size for each m. As

is shown in Table 1, the optimal value of m is 5 or 6. Note that we cannot calculate the exact

size-adjusted power since we intentionally do not include the L(t) function in our DGP.

To address the issue of a measurement unit, and how well the minimum rule works, we treat

yit as a latent value, and the actual observations are generated as follows

y1,it = yit + log 102, y2,it = yit + log 103, y3,it = yit + log 106. (22)

Let, y+it = yj,it −min yj,it which is free from measurement units. We treat yit as an unobserved

latent variable, y∗it. We select m=5 and 6, following the results in Table 1.

Table 2 reports the simulation results. The performance with min yit or y+it is just slightly

worse than that of the infeasible case, y∗it, in terms of the size and power of the test. As k gets

larger, the size of the test gets worse. When k = log 106, the size becomes almost unity, which

implies that the null is falsely rejected 100% of the time. This indicates that measurement

unit could in fact be very problematic, particularly with large k, and a strategy was needed to

correct for the potential distortion. Overall, the simple modification with y+it appears to resolve

the measurement unit problem and performs well.

Next, we investigate how the max−t rule affects the finite sample performance of the au-

tomatic clustering mechanism. We create two distinct clubs using the DGP in (20), where

ai ∼iid U [0, 5] and bi = 0.6 if i ∈ G1, otherwise ai ∼iid U [0, 3], and bi = 0.4. We then randomly

select ten members from G1 and set them as the core. We call this selection of core members

‘infeasible’ since in reality true club membership is unknown to the researcher. To highlight the

effectiveness of the max−t rule and the automatic clustering mechanism, we then apply both

to the created dataset. We allow n = [50, 100, 200] and T = [40, 50, 70, 100], and set the speed

of convergence parameter to α = 0.05. (The performance with high α values is very similar,so

these results are not reported.)

Table 3 shows the results. We calculate the acceptance frequencies of the null of convergence

when an additional individual is added to the core club. If the max−t rule and CCM work well,

this acceptance rate should be close or equal to one when the added individual is in G1, thereby

accurately detecting club membership. The rate should be zero, or close to it if the added

individual is in G2, since members of G2 do not converge with the core of G1.
7 As Table 3

shows, both the max−t rule for selecting the core group and infeasible random selection of core

7We found that after filtering the first convergent club, the remaining series always relatively converged.
Hence, we did not need to run the automatic clustering method with the rest of the samples.
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members lead to perfect performance regardless of the choice of threshold values. A threshold

value in this case is the minimum t-ratio that would qualify an individual as having membership

in the same club as the core group. Meanwhile, the acceptance frequencies with an individual in

G2 are different. With the max−t rule, the acceptance frequencies approach zero very rapidly as

either n or T increases. The random but infeasible rule, however, shows poor performance even

though the acceptance rates are decreasing over T and n. This evidence shows how accurate

the original CCM is at detecting actual club membership. Also, it is worth noting that the

threshold value affects the acceptance rates, as we would expect. With a high value (τ = 0),

the acceptance rate is much smaller than with a low value (τ = −1.65).

Last, we examine how recursive estimation effectively detects club membership over time.

To investigate this, we change the DGP to the following system with

bit =


b1 + (c0ai)t

−α if i ∈ G1,

b2 + (c0ai)t
−α if i ∈ G2, & t < T/2

b2 + (b1 − b2)(1− τ−2
t ) + (c0ai)t

−α, if i ∈ G2, & t ≥ T/2

(23)

where xt = 0 if t < T/2, and i ∈ G2, and xt = 1− τ−2
t with τt = t− T/2 if t ≥ T/2, and i ∈ G2

initially. Hence, as t exceeeds T/2, xt approaches 1 rapidly so that i joins G1 after t > T/2. We

setm=5 and examine the effectiveness of the club clustering technique with differing convergence

speeds, α. As we discussed before, once the core club is selected by using the whole sample, the

convergence club members are estimated for T ≥ 20. When T = 20, the initial club clustering

is estimated and based on this filtering, the previous membership is determined. For example,

if y1t is assigned to Club 1 by using T = 1, ..., 20, then the first individual is assigned to Club 1

from T=1 to T=20, and the same for Club 2.

Denote Ĉit and Cit as the estimated and true club memberships for the ith individual at time

t, respectively. Note that Cit is ambiguous during the transition periods. We assign b1 = 0.6,

b2 = 0.4, and Cit = 1 if bit ≥ 0.55, otherwise Cit = 2. The accuracy of club clustering is

measured by the following mean and variance losses. Let Bit = Ĉit − Cit. Then we have

M1 =
2

nT

n∑
i=1

t=T/2∑
t=1

Bit, (24)

V1 =
2

nT

n∑
i=1

t=T/2∑
t=1

[Bit −M1]
2. (25)

M1 measures the biasedness and V1 shows the efficiency. Note that in (24) and (25) for each t,

half of Cit is equal to 1 and the other half is equal to 2. To examine the accuracy after treatment,

we use the second half of the samples and calculate M2 and V2 from t = T/2 + 1, · · · , T .
Table 4 reports the estimated Mj and Vj by Monte Carlo simulation. As is shown in Table

4, a small false inclusion rate – including non-convergent members in Club 1 – occurs with

small T . This small mistake blows up by setting club membership from t = 1 to t = 20. Also

as n gets larger, the chances of assigning a wrong membership increase. Due to this problem,

a downward bias presents with M1 when the convergence speed, α, is small. As α increases,

12



this downward bias disappears very quickly. Meanwhile, when t ≥ T/2, the club memberships

are accurately estimated. The estimated M2 shows little bias even with small T and n. The

variances of M1 and M2 are small, which implies that the club membership estimation is done

accurately. All programs are performed in MATLAB and the codes are available upon request.

(including automatic clustering mechanism).
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Table 1: Rejection Frequencies with Various m values

α = 0.05 α = 1.1

m/T 18 20 22 24 26 18 20 22 24 26

Size

2 43.78 15.12 2.64 0.16 0.00 82.14 58.44 33.08 11.70 2.52

3 7.82 0.96 0.14 0.02 0.00 34.40 13.50 3.22 0.70 0.02

4 1.36 0.28 0.00 0.00 0.00 9.60 2.28 0.40 0.10 0.02

5 0.36 0.02 0.00 0.00 0.00 3.20 0.72 0.14 0.00 0.00

6 0.34 0.10 0.00 0.00 0.00 1.78 0.28 0.04 0.00 0.00

7 0.26 0.04 0.00 0.00 0.00 1.30 0.30 0.04 0.00 0.00

8 0.28 0.08 0.00 0.00 0.00 1.50 0.30 0.02 0.00 0.00

9 0.40 0.00 0.00 0.00 0.00 1.36 0.38 0.02 0.00 0.00

10 0.72 0.04 0.02 0.00 0.00 2.08 0.44 0.10 0.00 0.00

Power

2 100 100 100 100 100 100 100 100 100 100

3 99.96 99.98 100 100 100 99.94 100 100 100 100

4 99.32 99.88 100 99.98 100 99.48 99.84 99.98 100 100

5 98.46 99.74 99.94 100 100 98.54 99.56 99.94 100 99.96

6 96.58 99.16 99.78 99.96 100 96.56 98.94 99.7 99.98 100

7 93.22 97.66 99.64 99.92 100 93.12 97.7 99.34 99.92 100

8 89.08 96.7 99.44 99.92 99.98 89.04 96.14 99.18 99.86 99.92

9 83.3 93.82 98.4 99.78 99.98 83.34 93.16 98.3 99.5 99.86

10 76.8 91.48 97.56 99.56 99.94 75.22 88.76 96.46 99.12 99.9

Power-Size

2 56.22 84.88 97.36 99.84 100 17.86 41.56 66.92 88.30 97.48

3 92.14 99.02 99.86 99.98 100 65.54 86.50 96.78 99.30 99.98

4 97.96 99.60 100 99.98 100 89.88 97.56 99.58 99.90 99.98

5 98.10 99.72 99.94 100 100 95.34 98.84 99.80 100 99.96

6 96.24 99.06 99.78 99.96 100 94.78 98.66 99.66 99.98 100

7 92.96 97.62 99.64 99.92 100 91.82 97.40 99.30 99.92 100

8 88.80 96.62 99.44 99.92 99.98 87.54 95.84 99.16 99.86 99.92

9 82.90 93.82 98.40 99.78 99.98 81.98 92.78 98.28 99.50 99.86

10 76.08 91.44 97.54 99.56 99.94 73.14 88.32 96.36 99.12 99.90
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Table 1 Continued –

α = 0.05 α = 1.1

m/T 10 12 14 16 18 10 12 14 16 18

Size

2 99.02 97.14 91.14 74.20 43.66 99.64 99.26 97.92 94.28 82.32

3 82.68 70.72 50.72 24.90 6.96 89.16 84.08 74.58 55.28 32.20

4 52.88 39.22 20.36 7.46 1.56 62.26 52.98 39.78 23.08 9.44

5 35.50 22.66 10.56 2.96 0.68 42.28 33.40 21.22 10.34 3.66

6 29.52 17.66 6.88 1.58 0.18 32.88 23.88 14.46 5.70 1.64

Power

2 99.86 99.90 100 99.96 99.98 99.96 99.96 99.98 100 100

3 96.48 98.34 99.34 99.60 99.82 97.82 99.00 99.46 99.80 99.92

4 82.64 91.34 95.88 98.38 99.30 85.68 93.30 97.12 98.88 99.56

5 64.92 78.32 88.74 95.24 98.40 68.96 81.70 91.36 95.42 98.78

6 51.34 65.34 78.94 90.26 95.92 54.18 68.52 81.26 91.06 96.48

Power - Size

2 0.84 2.76 8.86 25.76 56.32 0.32 0.70 2.06 5.72 17.68

3 13.80 27.62 48.62 74.70 92.86 8.66 14.92 24.88 44.52 67.72

4 29.76 52.12 75.52 90.92 97.74 23.42 40.32 57.34 75.80 90.12

5 29.42 55.66 78.18 92.28 97.72 26.68 48.30 70.14 85.08 95.12

6 21.82 47.68 72.06 88.68 95.74 21.30 44.64 66.80 85.36 94.84
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Table 2: Rejection Frequencies with Various k values

m = 5 m = 6

Size y∗it log 102 log 103 log 106 y+it y∗it log 102 log 103 log 106 y+it

T=10 34.66 77.08 82.82 88.06 46.36 28.56 57.18 62.58 68.26 35.2

T=12 23.06 83.72 90.40 94.98 40.34 17.52 65.80 74.70 82.82 28.32

T=14 10.66 87.10 94.62 98.50 26.84 6.62 66.12 78.26 89.04 16.32

T=16 3.12 85.84 95.24 99.06 13.96 1.62 65.20 81.38 92.76 7.70

T=18 0.38 81.80 94.94 99.32 5.32 0.32 59.58 81.28 94.86 2.46

T=20 0.04 75.86 94.06 99.44 1.48 0.02 48.88 77.50 94.58 0.38

T=22 0 59.74 90.34 99.48 0.20 0 34.72 69.88 93.98 0.10

T=24 0 43.08 83.40 99.12 0.10 0 20.12 59.16 92.82 0

T=26 0 23.46 73.10 98.26 0 0 8.66 43.78 89.84 0

Power

T=10 65.16 96.6 98.22 99.18 76.06 52.78 85.12 89.20 93.08 61.16

T=12 78.68 99.8 99.96 100 89.08 65.22 98.14 99.24 99.64 76.90

T=14 88.94 100 100 100 96.02 79.50 99.90 100 100 90.34

T=16 95.22 100 100 100 98.86 89.74 99.98 100 100 96.24

T=18 98.20 100 100 100 99.68 96.28 100 100 100 99.26

T=20 99.38 100 100 100 99.96 99.06 100 100 100 99.88

T=22 99.80 100 100 100 100 99.76 100 100 100 99.98

T=24 99.98 100 100 100 100 99.98 100 100 100 100

T=26 100 100 100 100 100 100 100 100 100 100

Power - Size

T=10 30.50 19.52 15.40 11.12 29.70 24.22 27.94 26.62 24.82 25.96

T=12 55.62 16.08 9.56 5.02 48.74 47.70 32.34 24.54 16.82 48.58

T=14 78.28 12.90 5.38 1.50 69.18 72.88 33.78 21.74 10.96 74.02

T=16 92.10 14.16 4.76 0.94 84.90 88.12 34.78 18.62 7.24 88.54

T=18 97.82 18.20 5.06 0.68 94.36 95.96 40.42 18.72 5.14 96.80

T=20 99.34 24.14 5.94 0.56 98.48 99.04 51.12 22.50 5.42 99.50

T=22 99.80 40.26 9.66 0.52 99.80 99.76 65.28 30.12 6.02 99.88

T=24 99.98 56.92 16.60 0.88 99.90 99.98 79.88 40.84 7.18 100

T=26 100 76.54 26.90 1.74 100 100 91.34 56.22 10.16 100
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Table 3: Effectiveness of max− t Rule and CCM in Detecting Club Membership

No. of P
[
tϕ̂i

< τ |i ∈ G1

]
P
[
tϕ̂i

< τ |i ∈ G2

]
Core max t infeasible max t infeasible

T n Members τ = 0 τ = −1.65 τ = 0 τ = −1.65 τ = 0 τ = −1.65 τ = 0 τ = −1.65

40 50 8.97 1 1 1 1 0.033 0.143 0.678 0.848

50 50 9.32 1 1 1 1 0.021 0.088 0.676 0.837

70 50 9.46 1 1 1 1 0.008 0.032 0.534 0.711

100 50 9.64 1 1 1 1 0.002 0.008 0.285 0.473

40 100 8.59 1 1 1 1 0.002 0.022 0.588 0.785

50 100 9.05 1 1 1 1 0.001 0.009 0.561 0.759

70 100 9.33 1 1 1 1 0.000 0.001 0.416 0.613

100 100 9.55 1 1 1 1 0.000 0.000 0.228 0.400

40 200 8.49 1 1 1 1 0.000 0.008 0.522 0.743

50 200 8.97 1 1 1 1 0.000 0.002 0.496 0.712

70 200 9.22 1 1 1 1 0.000 0.000 0.336 0.530

100 200 9.50 1 1 1 1 0.000 0.000 0.171 0.336
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Table 4: Difference between DGP and log t Club Membership

α = 0.01 α = 0.05 α = 1.1

T/n 50 100 200 50 100 200 50 100 200

M1

40 -0.03 -0.01 0.01 -0.04 -0.01 0.03 -0.04 0.01 0.04

50 -0.02 -0.01 0.00 -0.03 0.00 0.02 -0.02 0.01 0.03

70 -0.02 -0.04 -0.06 -0.02 -0.04 -0.02 0.01 0.02 0.03

100 -0.06 -0.12 -0.15 -0.07 -0.11 -0.14 0.00 0.01 0.01

M2

40 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03

50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

70 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

100 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00

V1

40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

70 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

100 0.03 0.03 0.03 0.02 0.02 0.02 0.00 0.00 0.00

V2

40 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01

50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

70 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

100 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
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5 Smoothing parameter choice in the HP filter

As mentioned in the main paper, we applied the HP filter to the cumulative vaccination rate

data due to a handful of states having small presumed data errors. Here we report how the

choice of the HP smoothing parameter affects the DCCM results and the unconditional logit

regressions. Figure 1 shows log cumulative vaccination rates for Kentucky and New Mexico. The

cumulative vaccination rate in Kentucky suddenly dropped at week 25, and that of New Mexico

fell at week 26, which are presumably data errors since cumulative rates cannot decrease. To

smooth out these series, we applied the HP filter with the smoothing parameter (λ) of 1600. As

Hamilton (2018) and Phillips and Jin (2021) point out, the HP filter does not estimate either

the trend or cyclical components consistently. But a boosting iteration (Phillips and Shi, 2021)

does successfully estimate trend and cycle consistently and this modification of HP is often well

captured by a single extra interation (HP2) or by suitable changes in the smoothing parameter.

We therefore used the HP filter in our empirical work and to raise robustness we investigated

a range of smoothing parameter choices. As is shown in Figure 1, with a large λ value (greater

than 2500), the filtered series look like a simple linear trend, whereas with λ = 500, the estimated

growth components are too close to the original series given the presence of measurement error.

In view of these findings we decided to retain the use of the setting λ = 1600.

(a) Kentucky (b) New Mexico

Figure 1: Filtered Vaccination Rates with Various λ’s

Table 5 shows how the choice of λ changes the results of the DCCM groupings. The overall

patterns are very similar: over time, the size of convergent club 1 gets larger. By the 17-th

week, all states merge into a single convergent club. There are some slight differences during

the transition periods, particularly weeks 14, 15 and 16. Between the settings λ = 1300 and

λ = 1700, these sensitivities are minor.

Table 6 reports the regression results with various λ values. Overall results are consis-

tent: none of the state level vaccination policy coefficients are significantly different from zero.

Only the combined federal mandates and employer mandates variable impact club membership.

Among cross section variables, political variables do not influence club membership regardless of
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Table 5: Role of HP Filter Smoothing Parameter on DCCM

Week # λ=500∼1200 λ=1300∼1500 λ=1600∼1700 λ=1800∼2500

13 G0 G0 G0 G0

14 G1 G1 G2 G1

15 G1 + MS G1 G3 G3 + NM
16 All G3+ MS G3 + MS G3 + MS+ NM
17 All All All All

Notes: G0 = CT, DC, FL, MA, MD, ME, NH, NY, OR, RI, UT, VT, WA.
G1 = G0 + CA,
G2 = G1 + NJ,
G3 = G2 + VA

the value of λ. Significance levels for other control variables vary slightly but these are all cross

section variables, so they are not responsible for the dynamic patterns of club memberships.
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Table 6: Impact of HP Filter Smoothing Parameter on Logit Regressions

Dependent Variable: Club Membership (Ĉit)

λ
500∼1200 1300∼1500 1600∼1700 1800∼2500

Federal Mandate and Employer Mandates 205.5∗ 142.4∗ 101.0∗ 102.0∗

State Incentives
Lottery 0.218 0.229 -1.468 -1.137
Cash -2.298 -2.398 -0.084 0.902
Community Service -1.687 -1.903 -2.440 -2.383

State Policies
Vaccine Mandate State Employees -7.057 -7.149 -1.919 -1.710
Indoor Vaccine Mandate 46.54 18.63 14.33 11.45
Mask Mandate -2.721 -3.951 2.096 3.220
Ban on Proof of Vaccination -3.902 -5.469 -3.164 -3.102
Mask Mandate Ban -1.558 -2.021 -1.810 -1.412

Political
Percent of State House that is Republican 4.542 9.702 7.037 12.00
Percent of Vote for Trump 2020 -17.13 -16.95 -13.66 -17.07

State Characteristics
Population Density 11.61∗ 13.98† 11.36 12.53†

Median Household Income 3.459† 3.723 2.379 3.786†

Percent Foreign Born 14.35∗ 17.82∗ 13.26† 12.42∗

Percent of People Employeed by Industry
Health care and social assistance 3.069† 3.516† 3.626† 3.293†

Government and government enterprises -3.045∗ -3.106† -2.055 -2.378†

Retail trade 16.13∗ 16.01∗ 11.90∗ 13.53∗

Wholesale trade -15.50∗ -16.87† -13.07† -15.68∗

Transportation and warehousing -10.04∗ -10.36† -9.513 -9.013†

Notes: Median household income is measured in tens of thousands of dollars and population density is per 1,000 square miles.
The binary club membership obtained from the dynamic P-S club clustering technique, Ĉit, is the dependent variable in the logit
regressions. The coefficient on the federal-level mandates in the unconditional logit model is large and all state level policies had
no impact on the likelihood of being in the high vaccination club. †p < .05,∗ p < .01
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6 Appendix

Proof of Theorem 1: The numerator in (6) has elements involving the demeaned quan-

tity ξ̇it that depend on the stochastic trend ξit =
∑t

s=1 eis = Op(
√
t) for each i. Under the

stated conditions, 1√
T
ξit=⌊Tr⌋ ⇝ Bi(r) as T → ∞ for r ∈ (0, 1], where the limit process

Bi(r) is Brownian motion with variance ω2
ei, the long run variance of eit, again for each i. It

is assumed that the cross-sectional average long run variance 1
n

∑n
i ω

2
ei has a finite positive

limit ω2
e = limn→∞

1
n

∑n
i ω

2
ei > 0. Standard methods give T−3/2

∑T
t=1 ξit ⇝

∫ 1

0
Bi(r)dr, so

that 1√
T
ξit=⌊Tr⌋ − 1

T 3/2

∑T
t=1 ξit ⇝ Bi(r) −

∫ 1

0
Bi(r)dr =: B̃i(r), the demeaned functional of

Brownian motion Bi(r). Further, due to cross section independence over i and the fact that

Bi(r) ∼i.ni.d N (0, ω2
ei), together with the finite limit ω2

e = limn→∞
1
n

∑n
i ω

2
ei > 0, it follows that

as (n, T ) → ∞

1

n
√
T

n∑
i=1

ξit=⌊Tr⌋ ∼a
1

n

n∑
i=1

Bi(r) =
1√
n

(
1√
n

n∑
i=1

N (0, ω2
ei)

)
= Op

(
1√
n

)
, (26)

so that 1
n

∑n
i=1 ξit ∼a Op

(√
T√
n

)
at most, for all t ≤ T. In a similar fashion and using the fact

that E
(∫ 1

0
Bi(r)dr

)2
= ω2

ei/3, we deduce that

1

T

1

n

n∑
i=1

T∑
t=1

ξit ∼a

√
T

n

n∑
i=1

∫ 1

0

Bi(r)dr =

√
T√
n

(
1√
n

n∑
i=1

N (0, ω2
ei/3)

)
= Op

(√
T√
n

)
. (27)

With these results in hand and expanding ξ̇it we have the decomposition

ξ̇it := ξit −
1

T

T∑
t=1

ξit −
1

n

n∑
i=1

ξit +
1

T

1

n

n∑
i=1

T∑
t=1

ξit,

= ξit −Op(
√
T )−Op(

√
t√
n
) +Op(

√
T√
n
)

= Op(
√
T ) for all t ≤ T as (n, T ) → ∞. (28)

It follows that when (n, T ) → ∞ and r ∈ (0, 1]

ξ̇i,t=⌊Tr⌋√
T

∼a

ξi,t=⌊Tr⌋√
T

− 1

T

T∑
t=1

ξi,t√
T
⇝ Bi(r)−

∫ 1

0

Bi(r)dr =: B̃i(r) (29)

where B̃i(r) is demeaned Brownian motion Bi(r). Result (28) and the limit theory
ξ̇i,t=⌊Tr⌋√

T
⇝

B̃i(r) in (29) rely on joint asymptotics as (n, T ) → ∞.

Proceeding with the main argument and noting that, under the maintained conditions on

xit,
1
T

∑T
t=1 xit ∼a mxi +Op(T

−1/2), we now find that, as (n, T ) → ∞,

ẋit := xit −
1

T

T∑
t=1

xit −
1

n

n∑
i=1

xit +
1

n

n∑
i=1

1

T

T∑
t=1

xit,
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= xit −
(
mxi +Op(T

−1/2
)
− 1

n

n∑
i=1

mxi −
1

n

n∑
i=1

(xit −mxi) +
1

n

n∑
i=1

mxi +Op(T
−1/2)

= xit −mxi −
1

n

n∑
i=1

(xit −mxi) +Op(T
−1/2) = xit −mxi +Op(n

−1/2) +Op(T
−1/2), (30)

since under the maintained conditions the centered variables exit := xit −mxi satisfy the CLT

T−1/2
∑T

t=1(xit −mxi) ⇝ N (0, ω2
xi), where mxi = Exit is the mean and ω2

xi > 0 the long run

variance of xit for each i, so that 1
n

∑n
i=1 exit = Op(

1√
n
). It then follows by virtue of (29) and

by standard weak convergence arguments to a stochastic integral that, as T → ∞,

1

T

T∑
t=1

exitξ̇it ∼a

T∑
t=1

ξ̇it√
T

exit√
T
⇝
∫ 1

0

B̃i(r)dBxi(r) ≡ MN
(
0, ω2

xi

∫ 1

0

B̃i(r)
2dr

)
, (31)

where, as T → ∞, 1√
T

∑⌊Tr⌋
t=1 exit ⇝ Bxi(r), Brownian motion with variance ω2

xi for all i, and

where MN denotes mixed normality. Since the limit variates are independent over i with zero

mean, variances
∫ 1

0
EB̃i(r)

2dr, and finite fourth moments by virtue of the properties of Brownian

motion, it follows that as n → ∞

1√
n

n∑
i=1

∫ 1

0

B̃i(r)dBxi(r)⇝ N (0, V ) , (32)

where

V = lim
n→∞

1

n

n∑
i=1

ω2
xi

∫ 1

0

EB̃i(r)
2dr = lim

n→∞

1

n

n∑
i=1

ω2
eiω

2
xi

6
, (33)

which limit exists if limn→∞
1
n

∑n
i=1 ω

2
xiω

2
ei exists. Standard calculations, given below in (35),

lead to EB̃i(r)
2 = ω2

ei

(
1
3 − r(1− r)

)
and then

∫ 1

0
EB̃i(r)

2dr =
ω2

ei

6 , leading to the stated variance

in (33) above. It now follows from results (29) - (32) that as (n, T ) → ∞

1√
n

n∑
i=1

1

T

T∑
t=1

ẋitξ̇it ∼a
1√
n

n∑
i=1

T∑
t=1

ξ̇it√
T

exit√
T

∼a
1√
n

n∑
i=1

∫ 1

0

B̃i(r)dBxi(r)⇝ N (0, V ) , (34)

with V given by (33) above. This result gives us the limit behavior of the standardized numerator

in (6).

Expanding the variance calculations given above we now show that EB̃i(r)
2 = ω2

ei

(
1
3 − r(1− r)

)
.

Observe that

EB̃i(r)
2 = EBi(r)

2 − 2

∫ 1

0

EBi(r)Bi(s)ds+ E
(∫ 1

0

Bi(s)ds

)2

= ω2
eir − 2ω2

ei

∫ 1

0

r ∧ sds+ 2ω2
ei

∫ 1

0

∫ r

0

sdsdr

= ω2
eir − 2ω2

ei

∫ r

0

sds− 2ω2
eir

∫ 1

r

ds+ ω2
ei

∫ 1

0

r2dr
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= ω2
eir − ω2

eir
2 − 2ω2

eir(1− r) +
1

3
ω2
ei

= ω2
eir + ω2

eir
2 − 2ω2

eir +
1

3
ω2
ei

= ω2
ei

(
1

3
− r(1− r)

)
, (35)

as required. Then,
∫ 1

0
EB̃i(r)

2dr = ω2
ei

∫ 1

0

(
1
3 + r2 − r

)
dr = ω2

ei

(
2
3 − 1

2

)
=

ω2
ei

6 , and

lim
n→∞

1

n

n∑
i=1

ω2
xi

∫ 1

0

EB̃i(r)
2dr = lim

n→∞

1

n

n∑
i=1

ω2
xiω

2
ei

6
,

confirming (33).

From (6) we have the suitably standardized and centered TWFE estimator

√
n(β̂fe − β) =

1√
n

∑n
i=1

1
T

∑T
t=1 ẋitξ̇it

1
nT

∑n
i=1

∑T
t=1 ẋ

2
it

.

The limit distribution of the numerator is given in (34). To obtain the limit distribution of
√
n(β̂fe − β), we combine this limit behavior with that of the denominator, which is given by

1

nT

n∑
i=1

T∑
t=1

ẋ2
it ∼a

1

n

n∑
i=1

1

T

T∑
t=1

e2xit ∼a
1

n

n∑
i=1

σ2
xi →p lim

n→∞

1

n

n∑
i=1

σ2
xi =: σ2

x, (36)

and assumed to exist. It follows from results (34) and (36) and by continuous mapping that
√
n(β̂fe − β)⇝ N

(
0, V/σ4

x

)
, giving the stated result of the theorem. ■

Validation of the consistency of V̂β

First, in view of the decomposition (30) and since xit is stationary and ergodic with finite second

moments we have

1

n

n∑
i=1

1

T

T∑
t=1

ẋ2
it →p lim

n→∞

1

n

n∑
i=1

E(xit −mxi)
2 = lim

n→∞

1

n

n∑
i=1

σ2
xi = σ2

x. (37)

Second, ˆ̇uit = ẏit − b̂ẋit = u̇it − (b̂− b)ẋit = ξ̇it +Op(
1√
n
) so that

ˆ̇wiT =
1

T

T∑
t=1

ẋit
ˆ̇uit ∼a

1

T

T∑
t=1

ẋitξ̇it ⇝
∫ 1

0

B̃i(r)dBxi(r)

and then

1

n

n∑
i=1

ˆ̇w2
iT ∼a

1

n

n∑
i=1

(∫ 1

0

B̃i(r)dBxi(r)

)2

=
1

n

n∑
i=1

E
(∫ 1

0

B̃i(r)dBxi(r)

)2

+
1

n

n∑
i=1

[{(∫ 1

0

B̃i(r)dBxi(r)

)2

− E
(∫ 1

0

B̃i(r)dBxi(r)

)2
}]
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=
1

n

n∑
i=1

E
(∫ 1

0

B̃i(r)dBxi(r)

)2

+Op

(
1√
n

)
→ lim

n→∞

1

n

n∑
i=1

ω2
eiω

2
xi

6
(38)

Combining (37) and (38) we have

V̂β =

(
1

nT

n∑
i=1

T∑
t=1

ẋ2
it

)−2

1

n

n∑
i=1

ˆ̇w2
iT =

(
1

nT

n∑
i=1

T∑
t=1

ẋ2
it

)−2

1

n

n∑
i=1

(
1

T

T∑
t=1

ẋit
ˆ̇uit

)2

→ 1

σ4
x

lim
n→∞

1

n

n∑
i=1

ω2
eiω

2
xi

6
= Vβ , (39)

as required.

Proof of Theorem 2 We first consider the standardized signal in the denominator of (6).

Expanding the standardized signal in the mean adjusted policy variable and using the fact that

ẋit = ẋ0
it + c̃it̃, we have the following components in the denominator

1

nT

n∑
i=1

T∑
t=1

ẋ2
it =

1

nT

n∑
i=1

T∑
t=1

c̃2i t̃
2 +

1

nT

n∑
i=1

T∑
t=1

(
ẋ0
it

)2
+ 2

1

nT

n∑
i=1

T∑
t=1

c̃it̃ẋ
0
it. (40)

For the first component of (40) observe that c̃i = ci − c̄ = ci −mc +Op(1/
√
n) where mc = Eci,

so that by virtue of cross section independence and the existence of the moments of ci we have
1
n

∑n
i=1 c̃

2
i ∼a

1
n

∑n
i=1(ci −mc)

2 →p σ2
c , as n → ∞. Also 1

T

∑T
s=1

s
T →

∫ 1

0
rdr = 1

2 , giving

1

T

T∑
t=1

(
t̃

T

)2

=
1

T

T∑
t=1

(
t− t̄

T

)2

=
1

T

T∑
t=1

(
t

T
− 1

T

T∑
s=1

s

T

)2

→
∫ 1

0

(r − 1/2)
2
dr =

1

12
,

as T → ∞. It follows that

1

nT

n∑
i=1

T∑
t=1

c̃2i t̃
2 =

T 2

n

n∑
i=1

c̃2i
1

T

T∑
t=1

(
t̃

T

)2

∼a T 2 1

n

n∑
i=1

c̃2i

∫ 1

0

(r − 1/2)2dr ∼a T 2σ
2
c

12
.

In a similar fashion for the third component of (40), assuming that ci and xit are correlated

with σcx = E(ci −mc)(x
0
it −mxi), we find that

2

nT

n∑
i=1

T∑
t=1

c̃it̃ẋ
0
it ∼a 2T

1

T

T∑
t=1

(
t− t̄

T

)
1

n

n∑
i=1

(ci −mc)(x
0
it −mxi)

= 2T
1

T

T∑
t=1

(
t− t̄

T

)
σcx +

2T√
n

1

T

T∑
t=1

(
t− t̄

T

)
1√
n

n∑
i=1

[(ci −mc)(x
0
it −mxi)− σcx]

= 2T

(∫ 1

0

(r − 1/2)dr +O

(
1

T

))
σcx +

2T√
n

1

T

T∑
t=1

(
t− t̄

T

)
1√
n

n∑
i=1

[(ci −mc)(x
0
it −mxi)− σcx]

= O(1) +
2T√
n

1

T

T∑
t=1

(
t− t̄

T

)
1√
n

n∑
i=1

[(ci −mc)(x
0
it −mxi)− σcx] (41)
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which is at most Op

(
T√
n

)
since

∫ 1

0
(r − 1/2)dr = 0 and by cross section independence and

central limit theory 1√
n

∑n
i=1[(ci − mc)(x

0
it − mxi) − σcx] ⇝ Ξcx ≡d N (0, Vcx) where Vcx =

Var
(
(ci −mc)(x

0
it −mxi)

)
as n → ∞. Finally, for the second component of (40) we have, as in

(37) above, 1
nT

∑n
i=1

∑T
t=1

(
ẋ0
it

)2 →p σ2
x. Combining these three components of the denominator

we deduce that

1

nT

n∑
i=1

T∑
t=1

ẋ2
it ∼a T 2σ

2
c

12
. (42)

Next consider the numerator of (6). Using ẋit = ẋ0
it + c̃it̃ and u̇it = ξ̇it + b̃it̃, we have the

following four components

1

nT

n∑
i=1

T∑
t=1

ẋitu̇it =
1

nT

n∑
i=1

T∑
t=1

c̃ib̃it̃
2 +

1

nT

n∑
i=1

T∑
t=1

b̃it̃ẋ
0
it +

1

nT

n∑
i=1

T∑
t=1

c̃it̃ξ̇it +
1

nT

n∑
i=1

T∑
t=1

ẋ0
itξ̇it

=: I + II + III + IV.

Considering each term in turn, we have

I =
1

nT

n∑
i=1

T∑
t=1

c̃ib̃it̃
2 =

1

n

n∑
i=1

c̃ib̃i
1

T

T∑
t=1

t̃2 = Op

(
n−1/2

)
×O

(
T 2
)
, (43)

when Cov(ci, bi) = 0. Otherwise, I = Op(T
2) and the TWFE estimator β̂fe is inconsistent, as

shown below. Next

II =
1

nT

n∑
i=1

T∑
t=1

b̃it̃ẋ
0
it =

T√
n

1

T

T∑
t=1

t− t̄

T

1√
n

n∑
i=1

(bi − b̄)ẋ0
it = Op

(
T√
n

)
, (44)

III =
1

nT

n∑
i=1

T∑
t=1

c̃it̃ξ̇it =
T 3/2

n

n∑
i=1

(ci − c̄)
1

T

T∑
t=1

t− t̄

T

ξ̇it√
T

∼a
T 3/2

n

n∑
i=1

(ci − c̄)

∫ 1

0

r̃B̃i (r) dr

=
T 3/2

√
n

∫ 1

0

r̃

(
1√
n

n∑
i=1

(ci − c̄)B̃i (r) dr

)
= Op

(
T 3/2

√
n

)
, (45)

since ci and ξit are independent and, as T → ∞, T−5/2
∑T

t=1 (t− t̄) ξ̇it →
∫
r̃B̃i (r) dr, where

B̃i(r) is given in (29). Finally, as in (34), we have

IV =
1

nT

n∑
i=1

T∑
t=1

ẋ0
itξ̇it =

1

n

n∑
i=1

(
T∑

t=1

ẋ0
it√
T

ξ̇it√
T

)
= Op

(
1√
n

)
. (46)

Combining components (43) – (46), evidently term I dominates the numerator and we have

1

nT

n∑
i=1

T∑
t=1

ẋitu̇it =
T 2

n

n∑
i=1

c̃ib̃i
1

T

T∑
t=1

(
t̃

T

)2

+Op

(
T√
n

)
+Op

(
T 3/2

√
n

)
+Op

(
1√
n

)

∼a
T 2

√
n

∫ 1

0

r̃2dr
1√
n

n∑
i=1

c̃ib̃i =
1

12

T 2

√
n

1√
n

n∑
i=1

c̃ib̃i. (47)
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Using the dominant terms (42) and (47) from the denominator and numerator, we obtain the

following reduced expression and limit theory for the standardized and centered TWFE estima-

tor

√
n
(
β̂fe − β

)
=

1√
nT

∑n
i=1

∑T
t=1 ẋitu̇it

1
nT

∑n
i=1

∑T
t=1 ẋ

2
it

∼a

T 2

12
1√
n

∑n
i=1 c̃ib̃i

T 2 σ2
c

12

=

1√
n

∑n
i=1 c̃ib̃i

σ2
c

⇝ N
(
0,

σ2
b

σ2
c

)
, (48)

The limit theory (48) holds when ci and bi are independent and each sequence is independent

over i. But when the covariance C(ci, bi) = E(ci −mc)(bi −mb) = σcb ̸= 0, we have instead as

n, T → ∞,

β̂fe − β =
1
nT

∑n
i=1

∑T
t=1 ẋitu̇it

1
nT

∑n
i=1

∑T
t=1 ẋ

2
it

→p
σcb

σ2
c

, (49)

and β̂fe is inconsistent. The same result applies when the trend slope coefficients ci and bi are

non-random sequences, in which case inconsistency continues to apply with the same limit form

given in (49), but with σcb = limn→∞
1
n

∑n
i=1(ci − c̄)(bi − b̄) and σ2

c = limn→∞
1
n

∑n
i=1(ci − c̄)2

rather than limits in probability. In this case, the inconsistency of β̂fe may be interpreted as the

result of spurious trend regression in a panel context. ■

Proof of Theorem 3 From (12) we have the estimation error

β̂fe − β =

∑n
i=1

∑T
t=1 ẋitb̃it̃∑n

i=1

∑T
t=1 ẋ

2
it

+

∑n
i=1

∑T
t=1 ẋitξ̇it∑n

i=1

∑T
t=1 ẋ

2
it

, (50)

The denominator asymptotics in both terms of follow from (36), giving

1

n

n∑
i=1

1

T

T∑
t=1

ẋ2
it →p lim

n→∞

1

n

n∑
i=1

σ2
xi = σ2

x, (51)

In view of Theorem 1 and the fact that

1√
n

n∑
i=1

1

T

T∑
t=1

ẋitξ̇it ⇝ N (0, V ) ,

from (34), the second term of (50) has the following asymptotic behavior

∑n
i=1

∑T
t=1 ẋitξ̇it∑n

i=1

∑T
t=1 ẋ

2
it

=
1√
n

1√
n

∑n
i=1

1
T

∑T
t=1 ẋitξ̇it

1
NT

∑n
i=1

∑T
t=1 ẋ

2
it

= Op

(
1√
n

)
. (52)

Upon standardization and using (30), the numerator of the first term of (50) is

1√
nT 3/2

n∑
i=1

T∑
t=1

ẋitb̃it̃ ∼a
1√
n

n∑
i=1

(bi − b̄)

T∑
t=1

(xit −mxi)√
T

t− t̄

T
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∼a
1√
n

n∑
i=1

(bi − b̄)

∫ 1

0

(r − 1

2
)dBxi(r)⇝ N

(
0, σ2

bω
2
x

∫ 1

0

(r − 1/2)2dr

)
(53)

= N
(
0,

σ2
bω

2
x

12

)
, (54)

by standard central limit theory for independent variates using the fact that the bi and xit (and

hence the limit Brownian motions Bxi) in (53) are independent. It follows that

1

nT

n∑
i=1

T∑
t=1

ẋitb̃it̃ = Op

(√
T

n

)
.

Combining (50), (51), (52), and (54) we have

β̂fe − β = Op

(√
T

n

)
+Op

(
1√
n

)
, (55)

so that β̂fe is inconsistent and divergent when n = o(T ). It is clear from (50) and the above

analysis that heterogeneous deterministic trends in yit continue to dominate and β̂fe − β =

Op

(√
T/n

)
still holds when the outcome variables yit have stationary innovations ξit. ■
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