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Abstract

Inferring causal treatment effects in the presence of possible omitted variable bias is as well-known
problem. Altonji, Elder and Taber (2005) suggest that the degree of selection on observable variables might
be used as a guide to the remaining bias in controlled regressions. I expand on their setup and demonstrate
how, with an equal selection assumption, a causal effect can be recovered using coefficients, R-squared
values from controlled and uncontrolled regressions and an estimate of the iid noise in the outcome. I
discuss the relationship between this technique and the heuristic procedure of adding sequential controls
until coefficients stabilize. I consider two validation exercises which explore whether coefficients adjusted in
this way are closer to the truth. First, I estimate the impact of early life and prenatal influences on child
IQ. Simple controlled regressions give misleading estimates; the bias-adjusted estimates are significantly
better. However, I show that the progressive adding of controls in this setting is not effective. Second, I
match observational and randomized trial data for 31 treatment-outcome pairs in three public health
settings. I estimate a best-fit degree of adjustment across all settings (the free parameter is the amount of
iid noise in the outcome). I show that the bias-adjusted coefficients preform much better than simple
controlled coefficients; the total error reduction is 30% and a number of false-positive results are rejected
without significant loss in true-positive results. The magnitude of the best-fit adjustment suggests
adjusting the controlled coefficient by approximately the same amount as the movement between
uncontrolled and controlled coefficients.
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1 Introduction

Inferring causality from observational data with possibly omitted variables is a well known challenge. It

has many proposed solutions. These include, but are not limited to: use of instrumental variables, selection

models, difference-in-difference analyses and collecting randomized data or identifying naturally randomized

settings. These solutions are all effective (assuming the assumptions underlying them are not violated)

although all make strong requirements of existing data (a valid instrument, a valid natural experiment) or

require collecting new data.

In the absence of meeting any of these requirements, some bias can be addressed by simply controlling

for the confounds which the researcher is able to see. The assumption under which the resulting treatment

effect is causal is very strong – namely, that there are no confounds which remain unobserved – and difficult to

test. However, reporting such treatment effects as causal occurs in economics and is especially prevalent in

public health. In the latter case, such analyses may have real consequences for policy. For example: for years

the medical profession recommended a low-fat, high carbohydrate, diet as a key to better health. It turned out

this was based on biased estimates. When randomized data from a large study was released in 2006, this result

was seriously weakened (Prentice et al, 2006; Beresford et al, 2006; Howard et al, 2006).

A natural question is whether it is possible to do better in these settings without new data or new

instruments. In an influential paper, Altonji, Elder and Taber (2005) (hence, AET) suggest that the degree of

selection on observable variables might be used to guide assumptions about selection on unobservables. In the

context of a linear model they suggest an informal procedure which would calculate bias under this type of

assumption; this follows the discussion in Murphy and Topel (1990). This proportional-selection theory also

underlies a commonly used heuristic of looking at how the treatment effect moves when controls are added and

drawing conclusions about possible movements with unobserved controls. Adjusting coefficients using a

version of this assumption provides an alternative benchmark for causal inference in these settings. Whether

this benchmark, or a modified version of it, is a good one is ultimately an empirical question. Would we draw

more accurate conclusions with a bias adjustment of this type?

It is this question which I take up in this paper. I begin by expanding on the discussion in AET and

connecting their bias adjustment directly to coefficient movements. I provide some explicit guidance for

preforming a bias adjustment based on this theory and discuss conditions under which the “coefficient

movement” heuristic is informative. I then turn to validation with two applications. In the first, I explore a

single setting – the impact of prenatal and early life behaviors on child IQ – and demonstrate how this bias

adjustment might be carefully applied. In the second, I consider a large range of treatment-outcome pairs with

both observational and randomized evidence, and ask whether this bias adjustment might be generally applied

to reach better conclusions.
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I begin in Section 2 with theory. I consider a simple setup: an outcome Y is fully determined by a

treatment variable X, a vector of observable controls W , an (orthogonal) vector of unobserved controls C and

some error term which is uncorrelated with X, W and C, denoted γ. I adopt the assumption of equal selection

described in AET: Cov(W,X)
V ar(W ) = Cov(C,X)

V ar(C) . I demonstrate that the causal effect of X on Y in this setting can be

calculated directly from (1) the coefficients on X with and without controls for W ; (2) the R-squared values

from controlled and uncontrolled regressions and (3) an assumption on the maximum R-squared (i.e. an

assumption on the importance of γ). More specifically, denote the true effect β, the uncontrolled coefficient ξ,

the coefficient with controls Λ and the two r-squared values as R1 and R2. Finally, the maximum R-squared is

Rmax. Under the assumption of equal selection: β = Λ− (ξ−Λ)(Rmax−R2)
(R2−R1) . The intuition is straightforward: if

the coefficient moves a lot when the controls are added and there is a lot of remaining variation in Y which

could be explained by related variables, the bias on Λ is large.1

A straightforward corollary of this is that any variables which are correlated with X and Y but do not

have any unobserved components should be included in both the “uncontrolled” and controlled regressions and,

from there, the bias adjustment is identical. This is simply to say that if the issue is omitted measures of

socioeconomic status, but age is also an important control, age should be included in “uncontrolled”

regressions and not used to guide the bias adjustment. I also consider the case where the observables have two

components which can be included in turn – specifically, I ask whether observing that treatment effect

converge as better controls are added should lead one to conclude further controls would not alter the

coefficient. Although this is a very common heuristic, I show it only implies that Λ = β if the R-squared is

simultaneously converging to the maximum R-squared.

In Section 3 I turn to the first of two validation exercises. I consider four prenatal and early life

behaviors: maternal weight before pregnancy, maternal drinking in pregnancy, low birth weight and months of

breastfeeding. All of these have been linked in some observational studies to child IQ, but not all of these links

appear robust. All are subject to a concern about unobserved family background characteristics driving the

associations.

Using the National Longitudinal Survey of Youth, I first document the results from naive regressions of

child IQ on behaviors, child age and sex, and a standard set of socioeconomic status controls (maternal age,

education, marital status, etc). I show these regressions lead to misleading conclusions in three of four cases.

Maternal weight before pregnancy appears to lower child IQ, a fact which is not supported in the best

controlled studies. Maternal drinking in pregnancy appears to increase child IQ in these simple regressions.

Although there is mixed evidence on whether maternal drinking lowers IQ, virtually no one would suggest it

improves it. Both low birth weight and limited breastfeeding seem to decrease IQ; although the link with low

1The bias adjustment done this way is identical to what is calculated in the procedure outlined in AET in the case where Rmax

is 1. In particular, AET suggests that selection may not be equal, so δ
Cov(W,X)
V ar(W )

=
Cov(C,X)
V ar(C)

, where δ 6= 1, but their procedure

assumes that γ = 0. I will discuss the comparison in practice when I get to the validation in Section 4.
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birth weight is robust, and has good biological underpinnings, randomized evidence on breastfeeding and

overall IQ does not support that link.

I then discuss the application of the selection-on-observables bias adjustment to these results and, in

particular, ask whether it would pick out the low birth weight link as robust. The key missing piece in doing

this is an assumption on the maximum R-squared. I choose this setting precisely because we have, from

studies of siblings, some sense of the maximum amount of variation in IQ which could be explained by family

background. I use a figure of 0.385, drawn from the sibling correlations reported in Scarr and Weinberg

(1983). I show the adjustment preforms well: it rejects the associations between breastfeeding, maternal

weight and maternal drinking and child IQ, while confirming the link between child IQ and low birth weight.

It is clear that this is linked with coefficient movements: the low birth weight coefficient moves the least

when the controls are introduced, and the impact of mother’s drinking gets less positive. However, in this

application I also show how the method of continually adding more precise controls can be misleading. In all

four cases adding controls in sequence shows convergence of coefficients – in fact, it would be difficult to

distinguish the four cases from each other visually. The issue is that in none of the cases does the R-squared

converge to what we think is the maximum, which is what would be necessary to suggest these coefficients are

converging to the truth.

In Section 4 I consider a broader form of validation. I collect data on several health settings in which

(a) I observe both observational and randomized results for the same analysis, (b) the observational data is

subject to possible omitted variable bias and (c) the primary omitted variable concern is (broadly)

socioeconomic status. The three settings considered are: exercise and adult health, vitamin d+calcium

supplementation and women’s health and breastfeeding and child health. In each setting I use observational

data to run naive regressions which would be standard in the public health literature (i.e. health outcome on

treatment with simple socioeconomic status controls). I match the point estimate from the observational data

to the corresponding estimate in randomized data.2

I then approach this as an estimation with Rmax as the free parameter. Because outcomes vary wildly

in the plausible predictability (due either to measurement error or to correlation with other variables which

are unrelated to the treatment), I parametrize Rmax as a function of R1 and R2. I assume that

Rmax = R2 + ψ(R2 −R1) and estimate ψ. This can be interpreted as using the information on how much of

the variation in Y is explained by the observables to guess how much would be explained by the

unobservables; a value of ψ = 0 would suggest the simple controlled coefficient matches the results.

I estimate the value of ψ which would lead the observational point estimate to match the randomized

result. I then combine across settings and ask what adjustment value minimizes the distance between the

bias-adjusted observational coefficients and the randomized results. Given this, I can then ask whether the

2Altonji et al (2008) also compare results from their adjustment to randomized results in a single case (catheterization), although
they consider only the test of the null hypothesis rather than comparing magnitudes.
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adjusted coefficients with this common adjustment factor are a better match to the randomized data than the

controlled coefficients. It is important to note that this is a falsifiable test. Although for any given

treatment-outcome pair I will be able to find an adjustment value which matches the two coefficients (as long

as the controls cause the coefficient to move in the right direction), it is much less clear that a single

adjustment value will be broadly applicable.

I estimate that a value of ψ = 1.018 provides the best fit to the data. This value suggests that the

unobservables explain about the same amount of variation in Y as the observables. The adjustment with this

value of ψ generates coefficients which match the randomized effects significantly better than the controlled

coefficients. The reduction in error is 30%. The largest adjustments come in places where the relationship in

the observational data significantly overstates the effect in randomized trials. The bias-adjustment is effective

at rejecting a number of false-positive results, such as the impact of vitamin D supplementation on exercise

and serum glucose levels. At the same time it retains a number of true associations, such as that between

exercise and weight.

In its role as validation, this evidence suggests that a version of this adjustment is effective at better

matching randomized results. A single value of ψ works well over a large number of settings. In addition, this

value of ψ could be used in comparable settings where researchers are considering the relationship between a

health outcome and some health behavior and the primary concern is omitted socioeconomic status. This

covers a wide variety of studies in public health and epidemiology. It would be simple for researchers to report

their coefficient estimates (and, with bootstrapping, their standard errors) under this adjustment value. This

could also be helpful in evaluating the plausibility of published results.

2 Theory

2.1 Baseline Result: Bias Calculation Under Equal Selection

Consider a linear model relating an outcome Y to treatment X.

Y = α+ βX +W + Z + γ (1)

W and Z are indies of control variables which are related to both X and Y. W and Z are orthogonal to each

other; the researcher observes W but not Z. The final term, γ, is an iid noise term. Without loss of generality

I assume the variance of X and W are equal to 1, and the variance of Z is Vz. The key assumption is of equal

selection: the relationship between W and X is informative about the relationship between Z and X.

Formally, denote the covariance between W and X as Cwx and between Z and X as Czx. Equal selection
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assumes the following equality holds.

Cwx =
Czx
Vz

Were both W and Z observed, it would be possible to recover β from a standard linear regression model. With

Z unobserved, the researcher is able to estimate two equations:

Y = α̂+ ξX + o (2)

Y = α̃+ ΛX + ΨW + τ (3)

ξ is the coefficient on X with no controls, and Λ is the coefficient on X when including all the observed

controls. Both ξ and Λ are subject to omitted variable bias. Since the models are linear, the relationship

between these coefficients and the true β is straightforward:

ξ = β + Cwx + Czx

Λ = β +
Czx̃
Vx̃

where X̃ is the residual from a bi-variate regression of X on the observed controls W. The central question I

address here is to what extent the difference between these coefficients ξ and Λ can allow us to draw

conclusions about the magnitude of the bias on Λand, by extension, allow us to calculate β. The results is

summarized in Proposition 1.

Proposition 1. Denote the R-squared in equation (2) as R1 and the R-squared in equation (3) as R2.

Further, denote the full R-squared from Equation (1) as Rmax. Under the given assumption of equal selection,

β = Λ− (ξ−Λ)(Rmax−R2)
(R2−R1) .

Proof. The bias is Czx̃
Vx̃
. Since W and Z are orthogonal, Czx̃ = Czx; . equal selection implies that Czx = CwxVz.

Further, Vx̃ = 1− C2
xw. The bias is therefore CwxVz

1−C2
wx
. The difference between ξ and Λ is

ξ − Λ = Cwx + CwxVz − CwxVz
1−C2

wx
. Dividing, I can express the relationship between this coefficient difference and

the bias:

ξ − Λ =

(
Cwx(1− C2

wx − C2
wxVz)

CwxVz

)
CwxVz

1− C2
xw

Now consider the variances from equations (2) and (3):

Vo = 1 + Vz − C2
xw[1 + Vz]

2

Vτ = Vz −
[CwxVz]

2

1− C2
wx
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Straightforward simplification yields:

Vτ
Vo − Vτ

=
CwxVz

Cwx(1− C2
wx − C2

wxVz)

Which therefore implies that CwxVz
1−C2

xw
= (ξ − Λ) Vτ

Vo−Vτ . The definition of the R-squared in a linear model yields

the result.

The result directly relates coefficient movements to the bias, as well as giving a way to calculate the

bias. Calculating this bias requires observing both coefficients and R-squared values from these regressions and

making an assumption about the maximum R-squared. One assumption (the one adopted by AET) is that

this value is 1: that if all of the unobservables were observed, they would explain all variation in Y. This

assumption may be too strong in many cases where there is some either random component of Y

(measurement error, for example) or some variables which predict Y but do not are orthogonal to X. Below I

will discuss how one might develop such an assumption in an empirical context.

A straightforward corollary to this proposition consider the case in which there is another index of

observed controls – call these M – which are fully observed, do not have a related unobserved component and

are orthogonal to W and Z. In a health context these could be, for example, age or sex – baseline variables

which explain some of the variation in Y and related to X but do not generate omitted variable concerns.3 In

this case, Equation (4) below is the full equation, and the two estimable equations are (5) and (6):

Y = α+ βX +W + Z + ∆M + γ (4)

Y = α̂+ ξX + ∆M + o (5)

Y = α̃+ ΛX + ΨW + ∆M + τ (6)

Corollary 1 summarizes the bias calculation in this case.

Corollary 1. Denote the R-squared in equation (4) as Rmax, the R-squared in equation (5) as R1 and the

R-squared in equation (6) as R2. Under the assumption of equal selection, β = Λ− (ξ−Λ)(Rmax−R2)
(R2−R1) .

Proof. Because M is fully observed, both the coefficient and variance expressions given in the proof to

Proposition 1 hold and, therefore, the result goes through as above

Before moving on, a brief note on the relationship between these results and those in AET. They

consider an virtually identical setup, with two changes. First, they assume there is no γ, so Rmax = 1. Second,

they assume proportional selection but not (necessarily) equal selection. That is, they allow that δCwx = Czx
Vz

,

3In practice, obvious elements of M like age or sex are often correlated with possible omitted variables. This is fine, we simply
define the W and C category as the parts of those variables which are orthogonal to M.

7



where δ may be different than 1. In the results they show how this bias can be calculated using the data (by

directly calculating variance and covariance values). Their calculation is identical to the one above, under the

assumption that Rmax = 1 and δ = 1. Ultimately, the spirit of the results is the same, with a different free

parameter. When I turn to estimation and validation in Section 4 I will show the results with their version as

well.

2.2 Bias Results with Added Precision

The proposition in Section 2.1 gives a method for calculating bias using information on the movement of

coefficients from the fully uncontrolled fully uncontrolled to the fully controlled regression. It follows simply

from that result that if the coefficient on X doesn’t change much from the fully uncontrolled to the fully

controlled regression, this suggests limited bias. Effectively, this will only occur if Cwx is small, which then

means the remaining bias is also small. A common, related, heuristic is to look for a slowing in the movement

of coefficients as the number of controls increases. Even if there is a large change in the coefficient when some

controls are added, if further controls do not change the coefficient very much, the conclusion is that the result

is approaching the causal coefficient.

I capture this setup with the assumption that the true model is as follows:

Y = α+ βX +W1 +W2 + Z + γ

In this case, I imagine both W1 and W2 are observed, while Z is unobserved. I retain the assumption of equal

selection, in this case assuming the variance of W1 is 1:

Cw1x =
Cw2x

Vw2

=
Czx
Vz

A common procedure in this case is to run the three regressions below in order, and compare the coefficients ξ,

Λ1 to Λ2.

Y = α+ ξX + o+ γ (7)

Y = α̃+ Λ1X + Ω1W1 + τ + γ (8)

Y = α̂+ Λ2X + Ψ1W1 + Ψ2W2 + κ+ γ (9)

All three coefficients are biased, with the exact formulas given below.

ξ = β + Cw1x(1 + Vw2 + Vz)

8



Λ1 = β +
Cw1x(Vw2 + Vz)

1− C2
w1x

Λ2 = β +
Cw1xVz

(1− C2
w1x(1 + V 2

w2
))

The common heuristic holds that if Λ1 and Λ2 are close, even if ξ and Λ1 are far apart, then the remaining

bias on Λ2 is small. The proposition below summarizes the condition for this to be the case.

Proposition 2. A small difference in Λ1 and Λ2 relative to the difference between ξ and Λ1 implies a small

remaining bias if and only if a small Vw2 implies that Vz is small.

Proof. The difference between Λ1 and Λ2 is Cw1x
Vw2 [1−C2

w1x
(1+Vw2+Vz)]

(1−C2
w1x

)(1−C2
w1x

(1+Vw2 )) . I can express this relative to ξ−Λ1 :

Λ1 − Λ2 = (ξ − Λ1)
Vw2

(1− C2
w1x(1 + Vw2

))

If this is small when ξ − Λ1 is large, it implies that
Vw2

(1−C2
w1x

(1+Vw2 )) is small. The overall bias on Λ2 is

Cw1xVz
(1−C2

w1x
(1+V 2

w2
)) . The assumption of a large difference between ξ and Λ1 rules out the claim that Cw1x is small.

Therefore, this will be small only if Vz
(1−C2

w1x
(1+V 2

w2
)) is small. Which is implied by the small difference between

Λ1 and Λ2 only if a small Vw2
implies a small Vz.

The mechanics of this claim are very straightforward, but do make it clear that using this heuristic

requires two assumptions. The first is the equal selection assumption (or, more generally, that selection on

observables guides selection on unobservables). In addition, one must assume that the fact that the second set

of observables included are less important that the first set implies that the unobservables are also less

important. This may be generally plausible, for example if we think that surveys mostly include important

confounds and those that are left are of minimal importance. This analysis makes clear, however, that this is

also testable, if one takes a view on the maximum R-squared. If Vz is small, then the R-squared from

estimating Equation (9) should be close to Rmax. If it is not, then this implies that Vz must be large and,

hence, one cannot conclude the remaining bias is small.

It is worth noting that observing that the R2 stabilizes as further controls are added is also not

informative. Under the equal selection assumption the R-squared values will move in proportion with the

coefficient movements. Again, only if the R2 value stabilizes at or close to Rmax can one conclude that the

remaining bias is small.

If one does not want to take a stand on the maximum R-squared, one could combine this pattern in the

data with an assumption about proportional decay in the importance of controls. In the language of the

above, the researcher could assume that 1
Vw2

= δ
Vw2

Vz
for some δ ≥ 1. Using this, if the coefficient stabilize one

can automatically conclude that the further control will make only a small difference. This is a stronger and

largely untestable assumption. Even if one observes this type of decay in the observables, it is no guarantee
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that the unobserved components follow this pattern. In addition, if doing this it is crucial to include controls

beginning with the control which explains the most variance in Y and follow with the second-most, etc.

2.3 Summary

The results in this section formalize some commonly used heuristics by expanding on the AET results.

Together, they suggest several things.

First, movement in the coefficient of interest when controls are added is informative about remaining

bias under the assumption of equal selection, but must be used along with some assumption about the

maximum amount of variance explained by the observables and unobservables together.

Second, the relevant movement in the coefficient is that which occurs after inclusion of the set of

controls for which we are concerned about omitted components. If a coefficient moves a lot after inclusion of a

precise measure of individual age, this is probably not informative about how much further moment would be

observed with controls for socioeconomic status. Controls of this type should be included in all regressions.

Third, stability in the coefficient of interest as controls are added is reassuring only if the R-squared

stabilizes at or close to the maximum R-squared.

Together, this provides guidance in how these heuristics might be better used in practice. But it does

not provide evidence on whether this procedure is effective in identifying causal impacts. To learn that, it is

necessary to preform some validation. Below, I consider two validation examples. First, I explore a single

setting (child IQ and early life influences) in detail. Second, I preform an estimation exercise using a large

number of public health settings where we have both randomized and observational data. In both cases I ask

whether the bias adjustment described would lead us to correct conclusions based on observational analyses.

3 Results: Impact of Early Life on Child IQ

I begin first with exploring a single application, estimating the impact of early life and prenatal

influences on later child IQ. A literature in economics demonstrates that health shocks while children are in

the womb can influence later cognitive skills (e.g. Almond and Currie, 2011). A second literature, largely in

epidemiology and public health, suggests that even much smaller variations in behavior – occasional drinking

during pregnancy, not breastfeeding – could impact child IQ. These latter studies, however, are subject to

significant omitted variable concerns. The behaviors which are linked to child IQ tend to also be closely linked

to maternal socioeconomic status.

In this section I demonstrate how the adjustment described in Section 2 would work in this setting. I

consider possible links between child IQ and four early life influences: breastfeeding, maternal drinking in

pregnancy, low birth weight and maternal weight prior to conception. All of these have been linked in some
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observational studies to lower child IQ.4 However, when I look at the best studies – either randomized data or

meta-analyses of high-quality observational data – these links are not all confirmed. Low birth weight does

seem to contributes to lower IQ (Salt and Redshaw, 2006), a link which also has a biological underpinning (de

Kieviet et al, 2012). Randomized data does not show a significant link between breastfeeding and full-scale IQ

(Kremer et al, 2008). In the case of maternal drinking, it is known that heavy drinking in pregnancy can use

significant disability, but the vast majority of evidence on light or occasional drinking indicates no impact on

child IQ (see, for example: Faltreen Eriksen et al, 2012; O’Callaghan et al, 2007). The link between IQ and

maternal pre-pregnancy weight has not been tested in a randomized settings but well controlled studies on

many cohorts do not suggest a link (Brion et al, 2011) and there is no strong biological underpinning. It

therefore seems unlikely this link is causal.

The analysis here represents both a demonstration of the method and a validation test. I show that in

simple regressions with controls, there is a significant link between these behaviors and child IQ. I can then

ask whether the adjustment procedure in Section 2 would lead to the “correct” conclusions about the validity

of these relationships. I will also explore the extent to which the adjusted relationships are sensitive to

variation in the control set, and compare this procedure to the heuristic of looking for stability in coefficients

as controls are added.

3.1 Data

This section uses data from the National Longitudinal Survey of Youth Children and Young Adult

Survey (NLSY). The NLSY is a longitudinal survey of women, and the Children and Young Adult module

collects information on the children of NLSY participants. The outcome of interest is IQ for children aged 5 to

9, measured by PIAT test scores. The treatments of interest are: months of breastfeeding, maternal drinks per

week during pregnancy, an indicator for low birth weight (<2500 grams) and an indicator for maternal

overweight prior to conception. The last of these uses maternal weight as close as possible to the time of

conception. These variables are summarized in the first rows of Table 1.

These data also contain demographic controls. These are summarized in the remainder of Table 1. They

include: child age and sex, race, maternal age, maternal education, maternal income, maternal marital status

and maternal AFQT score.

3.2 Results

Preforming the bias adjustment here requires the researcher to take a stand on two elements. First,

what controls are in W and which are in M? Recall that M should contain any elements which may impact

the coefficient but do not have omitted counterparts. In this case, it seems appropriate to include child age

4See Gabbe, Neibyl and Simpson (2006) for a summary of information on everything other than pre-pregnancy weight. For the
latter, see Basatemur et al, 2013.
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dummies and child sex in this vector. These are fully observed and we do not think, for example, that there is

remaining bias associated with child age after we control for age dummies. These controls will be included in

both the “uncontrolled” and controlled regressions.

The vector W includes the variables with omitted counterparts. In the primary results below I include

standard maternal demographics: education, income, race, martial status and maternal age. These variables

noisily measure socioeconomic status and certainly there are related variables which are not observed. I will

also explore the robustness of the adjustment to adding or subtracting some from this W set. In principle,

since such a change should move both the R-squared and the coefficient, the results should be relatively stable.

This would be an attractive feature of this procedure.

The second important element is the maximum R-squared. How much of the variation in child IQ could

be explained if I had full controls for family background? This is a figure for which we need to go outside the

data. In this case it seems unlikely that it is 1 – even identical twins raised together do not have the same IQ

scores. I suggest that the appropriate figure is the IQ correlation between siblings raised together. This

captures the effects of family background which include maternal IQ. Based on the average correlations from

the two studies reported in Scarr and Weinberg (1983) this figure is 0.385.5

Panel A of Table 2 shows the initial results using the most standard control set: maternal education,

income, race, marital status and age. The first column shows the regression of IQ on treatment including only

child age and sex and the second column reports the R-squared from this regression. The third and fourth

columns show the coefficient and R-squared with controls. More breastfeeding is associated with higher IQ in

these regressions, and low birth weight and maternal pre-pregnancy overweight status are associated with

lower child IQ. Interestingly, more maternal drinking appears in these data to be associated with higher child

IQ later. There is no biological reason to think this is the case; in a sense, this must be due to selection.

The final column in Panel A shows the bias-adjusted coefficient. Standard errors are calculated with a

bootstrap over individuals. The adjustment preforms quite well. The relationship between low birth weight

and IQ remains significant while none of the others do. Put simply, if I relied on the coefficients in Column 3 I

would have conclude that breastfeeding increases IQ, as does maternal drinking in pregnancy, whereas

maternal weight decreases it. The adjusted coefficients in Column 5 would lead to us to reject those

associations, while continuing to accept that low birth weight impacts later child IQ. The bias-adjusted results

reflect the best available evidence: breastfeeding doesn’t impact IQ, maternal drinking does not affect IQ and

low birth weight does. For the more equivocal issue of maternal weight, the evidence is consistent with

biological theory in rejecting the claim that it impacts IQ and suggests the existing results may well be due to

confounding.

Panel B shows the same analysis but includes maternal AFQT score in the controls; Panel C does a

5This is consistent with other overview studies which suggest values in the range of 0.35 to 0.4 – see, for example, Bouchard and
McGue, 2003.
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similar thing but excludes maternal education (and excludes maternal AFQT). The goal here is to explore the

sensitivity of these results to changes in the control set. Since the possible set of controls varies across studies,

this procedure would appear to be most useful if it delivers similar implications even with variations in

controls. Although the exact figures vary across panels, the qualitative conclusions are very similar. In all three

cases the low birth weight relationship is confirmed by the bias adjustment and the three others are rejected.

These results suggest that doing this bias adjustment on these simple observational analyses would do a

good job in separating true from false associations. It seems useful to consider whether a similar conclusion

could have been reached from using the “coefficient stability” heuristic. To do this, for each treatment I run

regressions progressively including controls. I choose the order of controls by ranking the demographics based

on the amount of variation in child IQ that they explain in the data; I include these controls in the same order

in each analysis. Figures 1a-1d show coefficients and R-squared values for the four analyses.

These figures are not very useful for distinguishing among these analyses. All four show a very similar

pattern of stabilizing coefficients. Based on these alone it would be quite difficult to identify one of the

relationships as more robust than the others. In line with the discussion in Section 2.2, the issue is clear: the

R-squared in the fully controlled regressions here is around 0.25, far below the figure of 0.385 that was drawn

from existing data. Given this, the fact that the coefficient has stabilized is not fully informative.

I argue this section provides significant support for the use of this selection-on-observables adjustment.

The regressions run here are very straightforward: the data is easy to obtain and the analysis easy to preform.

Standard controlled regressions give clearly biased results – they contradict randomized data and, in one case,

show coefficients which are clearly wrong-signed. Although of course more nuanced analyses, perhaps with

more data or randomization, would be the optimal way to derive causal conclusions, the evidence here

suggests that significant progress could be made using evidence on coefficient movements when controls are

introduced. At the same time, this does suggest that the even simpler heuristic of looking for stability in

coefficients may be problematic.

This suggests the value of this procedure in a particular context, and in a setting where we have the

ability to think carefully about the maximum R-squared. In the next section I ask a broader validation

question: in the general context of the link between positive health behaviors and health outcomes, can a

version of this procedure help us separate the “true” from “false” associations without us having to carefully

consider the maximum R-squared for a given setting?

4 Results: Health Behaviors and Health Outcomes

A large literature in epidemiology and public health looks to estimate the relationship between positive

heath behaviors and health outcomes. Do individuals who exercise live longer? Does taking a vitamin

supplement lower your blood pressure? Observational studies in this literature suffer from clear omitted
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variable bias problems, largely stemming from correlations between high socioeconomic status and both

positive health behaviors and good health outcomes. Likely due to this issue, when randomized studies are run

to look at similar questions the results are often at odds with what was seen in observational data.

In this section I combine observational data on a number of relationships estimated in the public health

literature with randomized evidence on those relationships. In some cases, randomized trials have confirmed

observational links and in others they have not. Very simply, I ask here whether a version of this adjustment

would have led us to draw more accurate conclusions based on the observational data – more accurate in the

sense that they better match the randomized results. This is similar to what is done in the previous section,

with the main difference that here I do not research the likely maximum R-squared in each setting. Instead,

for each setting I estimate the maximum R-squared that would match the randomized data. I then ask

whether a single adjustment value might provide better inference in a number of settings.

This section serves both as validation and, potentially, provides guidance for using this adjustment

outside of this paper. From a validation standpoint, this addresses the question of whether this procedure

could be used to draw better conclusions. Although I am preforming estimation – effectively, fitting the

observational data to the truth – the model is falsifiable. This procedure will only work for all the cases

together if the coefficients move more with controls in cases where the link is not causal. Put differently, for

any given relationship I can likely estimate an value of Rmax which would lead me to the correct conclusion

(as long as the coefficient moves in the correct direction). But there is no guarantee that a similar value will

work for many settings.

Going forward, this estimation provides guidance for evaluating the robustness of other work in this

area (either existing or new). This section will suggest a precise adjustment, which could be applied elsewhere

and used to comment more concretely on the likelihood that an observational link will be confirmed in

randomized data. It is important, of course, to be clear on the set of settings for which this is likely to be

valid. I am concerned with settings where the left hand side variable is some health outcome and the right

hand side variable of interest is some health behavior. Further, these are all settings where the omitted

variables are around the issue of socioeconomic status. I would argue that this covers many interesting settings

in public health, although of course not all.

4.1 Data

This analysis requires two pieces of data: randomized trial results and observational data. I discuss

these in turn.

Randomized Trials

Randomized trial results are drawn from existing work.

Exercise Evidence on the impact of exercise is drawn from a several papers which are summarized in a
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Cochrane Review meta-analysis (Shaw et al, 2006). I consider only studies which compared exercise to not

exercise; this excludes studies which compared a combination of diet and exercise to diet alone, or a

combination of diet and exercise to no treatment. Outcomes considered include weight, blood pressure,

cholesterol, blood glucose, triglycerides.

Vitamin D and Calcium Evidence on the impact of vitamin D and calcium supplementation comes

from the Women’s Health Initiative, a large scale study of post-menopausal women which has run a number of

important interventions. One trial within the study involved randomizing women into receiving vitamin D and

calcium supplements (treatment) or not (control). Outcomes include bone density, lipids, blood pressure,

exercise, and weight.

Breastfeeding Evidence on the impact of breastfeeding is drawn from a large randomized study called

the PROBIT study, run in Belarus in the 1990s and with follow-up through early childhood (Kramer et al,

2009). This was an encouragement design with much less than full take-up so I scale the impacts to reflect the

increase in breastfeeding at 3 months. Outcomes used are child weight and height.

In Appendix Table A.1 I list the citation for each outcome-treatment pair, the treatment and any

restrictions on age or gender in the study recruitment.

Observational Data

Exercise Exercise data is also drawn from the National Health and Nutrition Examination Survey

(NHANES), Wave III. Individuals are asked detailed questions about exercise. I use this to create a treatment

measure as close as possible to the treatment in each study. In most cases the study includes some kind of

jogging three times a week. Exact populations used are listed in Column 3 of Appendix Table A.1 for each

paper, but in general these tend to focus on middle-aged individuals. Exercise data and the outcomes variables

considered are summarized in Panel A of Table 3.

Vitamin D and Calcium Data on vitamin D and calcium supplementation also comes from the

NHANES-III. Individuals are asked about vitamin and mineral supplements, which allows me to create an

indicator for taking vitamin D and calcium supplementation. To match the Women’s Health Initiative data I

use women aged 55 to 85 (recruitment in this study is women 50 to 80, but evaluation is several years later).

Summary statistics on share of women using supplements and outcomes variables are in Panel B of Table 3.

Breastfeeding I again use the National Longitudinal Survey of Youth Children and Young Adult

Survey (NLSY) for breastfeeding. In this case the outcomes of interest are BMI and height in centimeters.

The treatment is breastfeeding at 3 months. These variables are summarized in Panel C of Table 3. The

randomized evidence on breastfeeding measured children at age 6.5. The NSLY sample size is too small to

limit to only 6 year olds so I use 5, 6 and 7-year-olds for this analysis.
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4.2 Empirical Strategy

Recall that the bias-adjusted coefficient is calculated :

β = Λ− (ξ − Λ)(Rmax −R2)

R2 −R1

where ξ and R1 are the coefficient and R-squared from the fully uncontrolled regression (or the regression

including only the orthogonal controls like age and sex) and Λ and R2 are the coefficient and R-squared from

the fully controlled regression. The free parameter is Rmax. Broadly, the empirical strategy is to estimate – for

each behavior-outcome pair – a value for Rmaxwhich would most closely match the randomized conclusions

and combine these to estimate a value which would minimize the error across all settings.

A key issue is the parametrization of Rmax. One option would be to simply estimate a value for Rmax

which would be the same across all settings. This is somewhat unappealing if, as is true in our settings,

outcomes differ in their predictability, either due to measurement error, or other noise which is uncorrelated

with the treatment behavior.

Instead, I assume that (Rmax −R2) = ψ(R2 −R1) and estimate ψ. Effectively, this assumes that the

amount of Y which is explained by the observables is a guide to how much would be explained by the

unobservables. A value of ψ = 1 would imply that the unobservables explain as much of the variation in Y as

the unobservables; a value larger than 1 implies that the unobservables would explain more, a value less than

1, that they explain less. In addition to having some intuitive appeal, this is a convenient assumption when

the goal is to use the conclusions to evaluate existing work. With this assumption, the calculation of the

bias-adjusted coefficient collapses to β = Λ− ψ(ξ − Λ) and it is not necessary to observe the R-squared values.

Since published papers in public health and epidemiology only very rarely report these values, this makes this

procedure significantly more useful.

Armed with this assumption, the estimation is straightforward. For each outcome treatment pair I

estimate the uncontrolled regression (which could include some simple controls as described above) and the

controlled regression. The selection of controls is addressed below. Given this, and some assumption on ψ, it is

possible to calculate a bias-adjusted estimate. For outcome-treatment pair i denote this adjusted coefficient

βiadj(ψ). From the randomized trial I obtain a value βitrue which is the measure of the true causal coefficient.

The trial also produces a standard error, denoted σi. I calculate the difference between the bias-adjusted and

true coefficient, scaled by the standard error. I sum these over the outcome-treatment pairs and minimize the

sum over the choice of ψ. Formally, I solve:

ψ̂ = argminψ
∑
i

(
βiadj(ψ)− βitrue

σi

)2
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Given this value it is then possible to explore the performance of this adjustment in several ways. First,

I can compare the magnitude of the error under the maximum likelihood value of ψ relative to the assumption

that ψ = 0 (which is the benchmark controlled regression coefficient). Second, I can compare the performance

on each outcome-treatment pair, using bootstrapped standard errors, and ask whether I would have drawn

more accurate conclusions about the null hypothesis from the adjusted analysis. Finally, there are a few

outcomes for which the trials suggests a conclusion about the null hypothesis but where matching magnitudes

is difficult. It is possible to preform an “out-of-sample” test using these outcomes and exploring whether the

same adjustment would lead to more accurate conclusion in these cases.

A final issue which needs discussion is the selection of the control set. In general in these settings,

omitted variable bias concerns center around socioeconomic status. Individuals who have more education, are

wealthier or have more stable home lives are more likely to undertake any given positive health behavior but

also are healthier for other reasons. Most studies observe some rough measures of this – education category,

income category, marital status – but not detailed data. I therefore proceed as if this is the omitted category. I

include available socioeconomic controls – typically, education, income, marital status and race – in W .

Effectively, this assumes that whatever omitted variables there are in these regressions, they are proxied by

these socioeconomic status variables. A related question is what controls should be included in both the

“uncontrolled” and controlled regressions. As in Section 3 it seems natural to include age and sex (the latter

only in cases where both sexes are included in the trial). In addition, in cases where I estimate the impacts on

weight in kilograms I also include a control for height.

4.3 Results

The estimation procedure described above yields a value of ψ = 1.018. This suggests that the omitted

characteristics explain approximately as much of the variation in outcome as the included characteristics.

I begin by illustrating the impact of the bias adjustment. To do so I re-scale each outcome so the 95%

confidence interval from the randomized trial ranges from 0 to 1 (and thus the randomized point estimate is

close to 0.5); this is necessary for visualization since the scale of the effects varies widely across outcomes. I

then convert first the standard controlled coefficient and then the bias-adjusted coefficient onto this scale.

Figure 2a shows the interval for the randomized trial (open circles) and the controlled coefficient (filled in

circle). Although the controlled and true coefficient are similar in some cases, especially when they are both

close to zero, in others the controlled coefficient is wildly outside the confidence interval.

Figure 2b shows the coefficients after the bias adjustment is done with the value of ψ̂ = 1.018. The fit is

significantly better; note the large decrease in scale (the bias-adjusted coefficients on the same scale as the

controlled coefficients can be seen in Appendix Figure 1). In a number of cases where the controlled coefficient

showed significant errors – for example, the impact of vitamin supplementation on weight and exercise – the
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adjusted coefficients are within or very close to the confidence interval. The overall error is significantly

smaller in the bias adjustment case – a reduction of 30% on average.

Table 4 describes the results numerically. Column 1 shows the magnitude of the impacts in randomized

trials (in the case of exercise, where there are often multiple studies used, I show a range), and indicates

significance.6 Columns 2 and 3 show the uncontrolled (i.e. with only age and sex) coefficients and the

coefficients with socioeconomic status controls. Column 4 shows the bias-adjusted coefficients. Standard errors

in the bias-adjusted case are bootstrapped over individuals. It is worth noting that the randomized

experiments here use much larger sample sizes than the observational data and are therefore able to detect

much smaller impacts. Although I report conclusions on the null hypothesis as well as the sample size, it is

therefore worth keeping in mind that in some cases (for example, the impact of vitamin supplementation on

weight) the observational data has no where near enough power to detect impacts of the size seen in the

randomized data.

The evidence in this table shows bias-adjusted impacts which are much closer to the estimates from the

randomized data; this is not surprising given the evidence in Figure 2b. In addition, this table makes clear

much of the value in the adjustment comes in cases where the controlled coefficients lead to false positive

conclusions, or at least to an overstatement of the magnitude of the impact. For example, the controlled

coefficients suggest a large and significant impact of vitamin supplementation on exercise, whereas the

bias-adjusted coefficient is very close to the small and insignificant impact estimated in randomized trials. A

similar story can be told for the impact of supplementation on serum glucose and the impact of breastfeeding

on child weight.

In the case of vitamin supplementation and weight, while the randomized impact is significant it is very

small. The simple controlled coefficients suggests an impact of about 1.5 kilograms on weight, where as the

randomized impact is only about 0.1 kilograms. The bias-adjusted coefficient is quite close to this in size.

Although it is not significant, this reflects the fact that the observational data is simply under-powered to

detect significant effects of that magnitude.

At the same time, the bias-adjustment retains significant effects in many of the cases where there are

large and significant effects estimated in randomized trials – for example, the impact of exercise on weight,

blood pressure and some measures of heart health. This bias-adjustment does a good job of identifying true

from false associations among those which simple controlled regressions show are significant.

The estimation preformed here takes advantage of outcome-treatment pairs where I can generate

comparable magnitudes. In the case of exercise and Vitamin D there are also several outcomes for which

randomized experiments have reached a conclusion about the null but where magnitude comparisons are

difficult. This may be due to differences in the timing of follow-up, the fact that randomized effects are

6In the case of exercise this significance is based on estimates from a meta-analysis (Shaw et al, 2006).
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reported as odds ratios or because generating an exactly parallel analysis is difficult. However, given the

adjustment value estimated above it is possible to return to these outcomes and explore whether the

adjustment procedure used here leads to correct conclusions in these cases.

This is done in Table 5. This table is structured similarly to Table 4 except that in the first column I

simply report the hypothesized direction and significance (or not) of the effect in the randomized trial. In

general, the bias-adjustment also preforms well here. In the case of exercise, the controlled coefficients show

significant impacts on both diabetes and mortality (among individuals with heart disease), and the

bias-adjusted coefficients correctly identify only the mortality evidence as robust. In the case of vitamin D the

controlled coefficients incorrectly suggest supplementation matters for mortality, a result which is corrected by

the bias-adjustment. Obviously this is a very small list, but it provides some “out-of-sample” evidence on the

fit of the adjustment.

The theory here draws heavily on the discussion in Altonji, Elder and Taber (2005), as noted. However,

a primary difference is that I assume equal selection and allow the maximum R-squared to vary, whereas they

assumed the maximum R-squared was equal to 1 and suggest there may be variation in the degree of

proportionality of selection. That is, they suggest that rather than assuming Cwx = Czx
Vz

one assumes that

δCwx = Czx
Vz

, with δ as a “free” parameter, but that γ = 0. Both approaches allow for one free parameter and

the same estimation which I describe above can also be preformed with their version of the adjustment. The

analog to Figure 2b, but with the best-fit value of δ used for the adjustment, is shown in Appendix Figure 2.

The estimated value of δ = 0.055. Not surprisingly, this adjustment is also a better fit than the simple

controlled coefficients, as it relies on the same basic idea that the coefficients move more when the controls are

more important.

However, the fit is less good than in Figure 2b, and the reduction in error is only 20%. In addition,

many more of the estimates fall outside the randomized confidence interval. The primary issue is that in many

of these cases the actual R-squared, even with the full set of controls, is quite small, often under 10%.

Assuming that the unobservables would explain all of the additional variation in Y may be less appropriate in

these settings.

5 Conclusions

The goal of this paper is two-fold. First, I expand on the framework in Altonji, Elder and Taber (2005) and

connect the idea of equal selection explicitly to coefficient movements. I show circumstances under which such

movements can be used to generate causal coefficients under the equal selection assumption. I provide some

guidance to discipline the use of this coefficient movement heuristic. I provide a simple form of the adjustment

using only information on coefficient and R-squared values. In particular, I argue that under the assumption of

equal selection, the causal coefficient β can be recovered from the uncontrolled coefficient, ξ, the coefficient
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with controls, Λ, the R-squared from the uncontrolled and controlled regressions (R1 and R2) and an

assumption about the maximum R-squared (Rmax). The exact calculation is:

β = Λ− (ξ − Λ)(Rmax −R2)

(R2 −R1)

Second, I describe two validation exercises. I argue that, regardless of the intuitive appeal of this

approach, it has value only if it is effective in drawing better causal conclusions. In two validations I show this

approach preforms well. In both validation exercises I consider cases where there exists both observational

data which may be biased alongside either randomized data or better observational studies which are more

likely to reflect a “true” relationship.

In the case of child IQ and early life influences I show that a carefully applied version of this approach

does a good job of separating out true associations (between low birth weight and child IQ) from false ones

(positive impacts of breastfeeding and maternal drinking on child IQ, negative impacts of maternal weight).

This application also urges caution in using the heuristic of including controls until the coefficient stops

moving. I show – both in theory and in practice – that that approach only works if one is confident that the

final R-squared is at or close to the maximum possible R-squared.

The second validation exercise takes a number of settings and asks whether I can estimate a general

version of the adjustment which would lead to better conclusions. I consider settings where (a) the outcome is

a health outcome and the treatment is a health behavior and (b) the primary omitted variable bias comes

from socioeconomic status, broadly construed. I argue that this applies to many relationships of interest and is

not limited to the ones I consider here. I approach this as an estimation with the assumption that

(Rmax −R2) = ψ(R2 −R1), and ψ as a parameter to be estimated. I find that a value of ψ = 1.018 provides a

much better fit to randomized results than the simple controlled coefficients. With bootstrapped standard

errors it rejects a number of false-positive associations with limited cost in terms of rejecting true-positive ones.

To the extent that one is comfortable porting these results into other contexts, this suggests a simple

way for researchers to evaluate the plausibility of their results, and for readers of published work to do so, as

well. In particular, the results suggest the following adjustment:

β = Λ− 1.018(ξ − Λ)

This adjustment can be done without knowing the R-squared values (often not provided in public health

papers). The results in this paper suggest not only can this adjustment be done, but doing so would, in many

settings, lead one much closer to the true β.
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Figure 1: Coefficient Stability, Child IQ and Early Life Influences
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(b) Maternal Drinking Pregnancy
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(c) Low Birth Weight (<2500 grams)
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(d) Maternal Overweight before Birth
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Notes: These graphs show the evolution of the estimated relationship between each treatment and child IQ as controls are added. Controls

are added in the same order in each figure. The order is chosen based on ordering the controls by how much of IQ they explain and including

the most important first.

25



F
ig

u
re

2
:

M
o
d
e
l

F
it

W
it

h
A

n
d

W
it

h
o
u
t

B
ia

s
A

d
ju

st
m

e
n
t

(a
)

C
o
n
tr

o
ll
ed

R
eg

re
ss

io
n

B
re

as
tfe

ed
, B

M
I

B
re

as
tfe

ed
, H

ei
gh

t
C

aD
, C

ho
le

st
.

C
aD

, D
B

P
C

aD
, E

xe
rc

is
e

C
aD

, F
em

ur
 B

M
D

C
aD

, G
lu

co
se

C
aD

, H
D

L
C

aD
, I

nt
ro

. B
M

D
C

aD
, S

B
P

C
aD

, T
rig

ly
c.

C
aD

, W
t(

K
g)

E
xe

rc
is

e,
 B

M
I, 

[3
]

E
xe

rc
is

e,
 B

M
I, 

[4
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[1
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[2
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[3
]

E
xe

rc
is

e,
 D

B
P

, [
2]

E
xe

rc
is

e,
 D

B
P

, [
3]

E
xe

rc
is

e,
 G

lu
co

se
, [

2]
E

xe
rc

is
e,

 G
lu

co
se

, [
4]

E
xe

rc
is

e,
 H

D
L,

 [1
]

E
xe

rc
is

e,
 H

D
L,

 [2
]

E
xe

rc
is

e,
 H

D
L,

 [3
]

E
xe

rc
is

e,
 S

B
P

, [
2]

E
xe

rc
is

e,
 S

B
P

, [
3]

E
xe

rc
is

e,
 T

rig
ly

c.
, [

1]
E

xe
rc

is
e,

 T
rig

ly
c.

, [
2]

E
xe

rc
is

e,
 T

rig
ly

c.
, [

3]
E

xe
rc

is
e,

 W
t(

K
g)

, [
1]

E
xe

rc
is

e,
 W

t(
K

g)
, [

2]

−
10

−
5

0
5

E
st

im
at

es
 (

S
ca

le
d)

(b
)

W
it

h
B

ia
s

A
d

ju
st

m
en

t

B
re

as
tfe

ed
, B

M
I

B
re

as
tfe

ed
, H

ei
gh

t
C

aD
, C

ho
le

st
.

C
aD

, D
B

P
C

aD
, E

xe
rc

is
e

C
aD

, F
em

ur
 B

M
D

C
aD

, G
lu

co
se

C
aD

, H
D

L
C

aD
, I

nt
ro

. B
M

D
C

aD
, S

B
P

C
aD

, T
rig

ly
c.

C
aD

, W
t(

K
g)

E
xe

rc
is

e,
 B

M
I, 

[3
]

E
xe

rc
is

e,
 B

M
I, 

[4
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[1
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[2
]

E
xe

rc
is

e,
 C

ho
le

st
., 

[3
]

E
xe

rc
is

e,
 D

B
P

, [
2]

E
xe

rc
is

e,
 D

B
P

, [
3]

E
xe

rc
is

e,
 G

lu
co

se
, [

2]
E

xe
rc

is
e,

 G
lu

co
se

, [
4]

E
xe

rc
is

e,
 H

D
L,

 [1
]

E
xe

rc
is

e,
 H

D
L,

 [2
]

E
xe

rc
is

e,
 H

D
L,

 [3
]

E
xe

rc
is

e,
 S

B
P

, [
2]

E
xe

rc
is

e,
 S

B
P

, [
3]

E
xe

rc
is

e,
 T

rig
ly

c.
, [

1]
E

xe
rc

is
e,

 T
rig

ly
c.

, [
2]

E
xe

rc
is

e,
 T

rig
ly

c.
, [

3]
E

xe
rc

is
e,

 W
t(

K
g)

, [
1]

E
xe

rc
is

e,
 W

t(
K

g)
, [

2]

0
.5

1
E

st
im

at
es

 (
S

ca
le

d)

N
o
te

s
:

T
h
e
se

g
ra

p
h
s

sh
o
w

th
e

ra
n
d
o
m

iz
e
d

e
ff

e
c
t

si
z
e
s

a
lo

n
g

w
it

h
(i

n
S
u
b
-F

ig
u
re

a
)

th
e

e
ff

e
c
ts

e
st

im
a
te

d
in

c
o
n
tr

o
ll
e
d

re
g
re

ss
io

n
s

a
n
d

(i
n

S
u
b
-F

ig
u
re

b
)

th
e

b
ia

s-
a
d
ju

st
e
d

c
o
e
ffi

c
ie

n
ts

u
si

n
g

th
e

b
e
st

-fi
t

a
d
ju

st
m

e
n
t

v
a
lu

e
o
f
ψ

=
1
.0

1
8
.

E
v
e
ry

o
u
tc

o
m

e
is

sc
a
le

d
so

th
e

to
p

a
n
d

b
o
tt

o
m

o
f

th
e

9
5
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
l

in
th

e
ra

n
d
o
m

iz
e
d

tr
ia

l
ta

k
e

v
a
lu

e
s

o
f

0
a
n
d

1
re

sp
e
c
ti

v
e
ly

.
T

h
e

m
e
a
n

ra
n
d
o
m

iz
e
d

tr
ia

l
v
a
lu

e
is

ty
p
ic

a
ll
y

0
.5

,
a
lt

h
o
u
g
h

in
so

m
e

c
a
se

s
it

is
sl

ig
h
tl

y
m

o
re

o
r

le
ss

w
h
e
n

th
e

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

a
re

n
o
t

sy
m

m
e
tr

ic
.

26



Table 1: Summary Statistics: Early Life and Child IQ

Outcome Mean Standard Deviation Sample Size

IQ (PIAT Score) 89.1 20.5 7531

Breastfeeding Months 2.26 4.45 7018

Mom Drink in Pregnancy 0.325 0.468 7039

Low Birth Weight (<2500 g) 0.083 0.276 6978

Mom Overweight before Pregnancy 0.172 0.377 7488

Age 5.96 1.68 7531

Female 0.494 0.499 7531

Black 0.288 0.453 7531

Mother Age 24.8 5.35 7531

Mother Education 12.3 3.1 7531

Mother Income $39,622 $79,904 7531

Mother Married 0.644 0.478 7531

Mother AFQT 36.2 27.3 7345

Notes: This table shows summary statistics for the data used in the IQ analysis in Section 3. Data comes from the NLSY and is limited

to children aged 5 to 9.
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Table 2: Early Life Behaviors and Child IQ

Panel A: Baseline Controls (Education, Income, Marital Status, Maternal Age, Race)

Treatment Variable Baseline Effect Baseline Effect with Controls Maximum Bias-Adjusted

R2 Full Controls R2 R-Squared Coefficient

Breastfeeding (Months) 0.925∗∗∗ (.062) .047 0.308∗∗∗(.058) .263 0.385 -0.037 (.082)

Drinking in Pregnancy 4.368∗∗∗(.593) .019 1.891∗∗∗(.524) .261 0.385 0.623 (.581)

Low Birth Weight -6.23∗∗∗(1.01) .016 -3.72∗∗∗(.876) .265 0.385 -2.52∗∗∗(.95)

Overweight Before Pregnancy -5.37∗∗∗(.706) .035 -1.85∗∗∗(.621) .258 0.385 0.004 (.63)

Panel B: More Controls (Add Maternal AFQT Score)

Treatment Variable Baseline Effect Baseline Effect with Controls Maximum Bias-Adjusted

R2 Full Controls R2 R-Squared Coefficient

Breastfeeding (Months) 0.925∗∗∗ (.062) .052 0.167∗∗∗(.058) .294 0.385 -0.108 (.084)

Drinking in Pregnancy 4.368∗∗∗(.593) .012 0.871∗ (.514) .299 0.385 -0.189 (.55)

Low Birth Weight -6.23∗∗∗(1.01) .016 -2.89∗∗∗(.854) .304 0.385 -1.95∗∗(.96)

Overweight Before Pregnancy -5.37∗∗∗(.706) .035 -1.55∗∗∗(.60) .296 0.385 -0.34 (.61)

Panel B: Fewer Controls (No Income Control)

Treatment Variable Baseline Effect Baseline Effect with Controls Maximum Bias-Adjusted

R2 Full Controls R2 R-Squared Coefficient

Breastfeeding (Months) 0.925∗∗∗ (.062) .052 0.406∗∗∗(.059) .226 0.385 -0.050 (.084)

Drinking in Pregnancy 4.368∗∗∗(.593) .012 2.108∗∗∗(.536) .226 0.385 0.382 (.591)

Low Birth Weight -6.23∗∗∗(1.01) .016 -3.91∗∗∗(.898) .227 0.385 -2.19∗∗(1.06)

Overweight Before Pregnancy -5.37∗∗∗(.706) .035 -2.61∗∗∗(.63) .223 0.385 -0.45 (.68)

Notes: This table shows the validation results for the analysis of the impact of early life and prenatal behaviors on child IQ. Baseline effects

include only controls for child age (dummies) and sex. Full control effects include the listed controls. The bias-adjusted effect is generated

using the formula derived in Section 2: β = Λ − (Rmax−R2)

(R2−R1)
(ξ − Λ). Standard errors are estimated using a bootstrap over individuals. ∗

significant at 10% level, ∗∗ significant at 5% level, ∗∗∗ significant at 1% level.
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Table 3: Summary Statistics: Exercise, Vitamins and Breastfeeding

Panel A: Exercise [NHANES-III]

Mean Standard Deviation Sample Size

Jogging 3+ Times/Wk .033 .179 9268

BMI 28.0 6.08 9251

Weight (kg) 78.2 18.4 9252

Diastolic Blood Pressure 76.8 10.3 9197

Systolic Blood Pressure 123.9 17.5 9198

Serum Glucose (mmol/l) 5.61 2.17 8712

Triglycerides (mmol/l) 1.71 1.44 8791

Cholesterol (mmol/l) 5.39 1.13 8811

HDL (mmol/l) 1.31 .41 8740

Panel B: Vitamin D and Calcium Supplements [NHANES-III]

Took VitD+Calcium .211 .408 3200

Weight (kg) 69.5 16.3 3180

Diastolic Blood Pressure 73.5 10.1 3003

Systolic Blood Pressure 140.2 20.9 3004

Serum Glucose (mg/dl) 111.9 50.5 2937

Triglycerides (mg/dl) 166.4 111.8 2983

Cholesterol (mg/dl) 232.3 45.6 2988

HDL (mg/dl) 55.7 16.9 2972

Exercise Intensity (METS/wk) 14.3 20.4 3196

Femur BMD .68 .13 2689

Introchanter BMD .94 .19 2689

Panel C: Breastfeeding [NLSY]

Outcome Mean Standard Deviation Sample Size

Breastfed >=3 months .280 .448 10,085

BMI 16.1 3.05 9917

Height (cm) 116.2 9.93 10,923

Notes: This table shows summary statistics for the data used in the validation exercise in the paper. NLSY = National Longitudinal Survey

of Youth; NHANES-III : National Longitudinal Health and Nutrition Survey, Wave III. For Exercise, the sampel restirctions in the analysis

differ slightly depending on which paper I am comparing to. For the summary statistics we consider the most inclusive definition.
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Table 4: Selection Adjustments and Randomized Results

Panel A: Exercise

Outcome Randomized Effect Uncontrolled Effect Controlled Effect Bias-Adjusted Effect

[Range if multiple] (Std. Error) (Std. Error) (Std. Error)

BMI [-0.6, -1.1]∗∗ -1.99∗∗ (.29) -1.55∗∗(.29) -1.10∗∗(.32)

Weight in Kg [-4.6, -1.15]∗∗ -5.60∗∗(.82) -4.55∗∗(.83) -3.49∗∗(.89)

Diastolic Blood Pressure [-3, -1.8]∗∗ -1.36∗∗(.58) -1.20∗∗(.58) -1.04∗(.60)

Systolic Blood Pressure [-4, 0.2] -0.98 (.84) -0.19 (.84) 0.74 (.90)

Serum Glucose [-0.19, -0.16]∗∗ -0.31∗∗(.062) -0.21∗∗(.065) -0.098 (.076)

Triglycerides [-0.2,-0.16]∗∗ -0.29∗∗(.062) -0.21∗∗(.066) -0.13∗(.071)

Cholesterol [-0.02,0.05] -0.026 (.063) -0.0004 (.062) 0.025 (.063)

HDL [0.03,0.13]∗∗ 0.13∗∗(.025) 0.11∗∗(.025) 0.092∗∗(.026)

Panel B: Vitamin D and Calcium Supplementation

Outcome Randomized Effect Uncontrolled Effect Controlled Effect Bias-Adjusted Effect

[Range if multiple] (Std. Error) (Std. Error) (Std. Error)

Weight in Kg -0.13∗∗ -2.79∗∗(.69) -1.44∗∗(.69) -0.06 (.78)

Diastolic Blood Pressure 0.11 -0.255 (.45) -0.152 (.46) -0.048 (.52)

Systolic Blood Pressure 0.22 -1.12 (.92) -0.52 (.94) 0.095 (1.05)

Serum Glucose -0.82 -6.92∗∗(2.11) -3.58∗(2.22) -0.19 (2.59)

Triglycerides 1.43 4.47 (5.16) 3.30 (5.39) 1.57 (6.20)

Cholesterol -1.67 0.199 (2.15) 0.156 (2.24) 0.112 (2.52)

HDL 0.050 1.28 (.86) 1.02 (.85) 0.75 (.96)

Exercise Intensity (METS/wk) 0.18 5.27∗∗(1.03) 2.88∗∗(1.06) 0.44 (1.20)

Femur BMD 0.007∗∗ -0.018∗∗(.006) -0.006 (.006) 0.007 (.007)

Introchanter BMD 0.0003 -0.020∗∗(.008) -0.008 (.008) 0.004 (.010)

Panel C: Breastfeeding

Outcome Randomized Effect Uncontrolled Effect Controlled Effect Bias-Adjusted Effect

[Range if multiple] (Std. Error) (Std. Error) (Std. Error)

BMI 0 -0.25∗∗ (.078) -0.18∗∗(.082) -0.11 (.094)

Height (in cm) 2.43 0.28 (.20) 0.32 (.21) 0.36 (.25)

Notes: This table displays the match between the results from observational data and randomized results. Citations for randomized data

nd observational sample restrictions are in Appendix Table A.1. Controls in Panels A and B include : dummies for age and sex (controlled

and uncontrolled regressions), dummies for income, dummies for education category, dummies for race, dummies for detailed marital status

(controlled regressions only). Controls in Panel C: dummies for age and sex (controlled and uncontrolled regressions), maternal age, dummies

for race, income, maternal education, maternal marital status (controlled regressions only). The bias-adjustment is preformed using a valeu

of ψ = 1.018. Standard errors are bootstrapped over individuals. ∗significant at the 10% level, ∗∗ significant at the 5% level.
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Table 5: Selection Adjustments, Out-of-Sample Outcomes

Panel A: Exercise

Outcome Randomized Effect Uncontrolled Effect Controlled Effect Bias-Adjusted Effect

[Possible Direction, Sig.] (Std. Error) (Std. Error) (Std. Error)

Ever Diabetes Negative, Not Significant -0.035∗∗(.009) -0.019∗∗ (.009) -0.003 (.010)

Mortality, with heart disease, Men Negative, Significant -0.132∗∗(.041) -0.115∗∗(.041) -0.098∗∗(.05)

Overall Bone Density, Women Positive, Not Significant -0.013 (.012) -0.0003 (.012) 0.013 (.014)

Panel B: Vitamin D and Calcium Supplementation

Outcome Randomized Effect Uncontrolled Effect Controlled Effect Bias-Adjusted Effect

[Possible Direction, Sig.] (Std. Error) (Std. Error) (Std. Error)

Ever Diabetes Negative, Not Significant -0.058∗∗(.017) -0.023 (.016) 0.002 (.018)

Mortality Negative, Not Significant -0.058∗∗(.019) -0.034∗(.020) -0.010 (.023)

Notes: Exercise treatment: total exercise times per month (in units of 100). Citation List: Exercise and (a) diabetes (Orozco et al, 2008);

(b) mortality (Heran et al, 2011); (c) bone density (Howe et al, 2011). Vitamin Supplementation and: (a) diabetes (de Boer et al, 2008);

(b) mortality (LaCroix et al, 2009); (c) cognitive (Rossom et al, 2012); (d) cancer (Brunner et al, 2011).
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Appendix Tables and Figures

Table A1: Citation for Randomized Outcomes

Outcome Citation Sample Restrictions (if any)

Exercise, BMI, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, BMI, [4] Anderssen et al, 1996 Age 30-50

Exercise, Wt(Kg), [1] Wood et al, 1988 Female, 30-59

Exercise, Wt(Kg), [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, DBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, DBP, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, SBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, SBP, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, Glucose, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Glucose, [4] Anderssen et al, 1996 Age 30-50

Exercise, Triglyc, [1] Wood et al, 1988 Female, 30-59

Exercise, Triglyc, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Triglyc, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, Cholest, [1] Wood et al, 1988 Female, 30-59

Exercise, Cholest, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Cholest, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, HDL, [1] Wood et al, 1988 Female, 30-59

Exercise, HDL, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, HDL, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

CaD, Wt(Kg) Caan et al, 2007 Women, 55-85

CaD, DBP Margolis et al, 2008 Women, 55-85

CaD, SBP Margolis et al, 2008 Women, 55-85

CaD, Glucose de Boer et al, 2008 Women, 55-85

CaD, Triglyc Rajpathak et al, 2010 Women, 55-85

CaD, Cholest Rajpathak et al, 2010 Women, 55-85

CaD, HDL Rajpathak et al, 2010 Women, 55-85

CaD, Exercise Brunner et al, 2008 Women, 55-85

CaD, Femur BMD Jackson et al, 2011 Women, 55-85

CaD, Intro. BMD Jackson et al, 2011 Women, 55-85

Breastfeed, BMI Kramer et al, 2009 Age 6.5

Breastfeed, Height Kramer et al, 2009 Age 6.5

Notes: This table shows the source of the randomized estimates. The text of the outcome matches the form of citation in Figure 2.
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Appendix Figure 1: Adjusted Coefficients on Controlled Coefficient Scale
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Notes: This table shows Figure 2b graphed on the same scale as Figure 2a.
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Appendix Figure 2: Bias-Adjusted Coefficients Assuming No Noise and Proportion (Not Equal)
Selection
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Notes: This figur shows the bias-adjuted coefficients with the best-fit value of δ, where δ is defined so δCwx = Czx
Vz

. We assume

that the maximum R-squared is equal to 1. The best-fit value of δ is 0.055.
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