
Inference for Cluster Randomized Experiments

with Non-ignorable Cluster Sizes∗

Federico Bugni

Department of Economics

Northwestern University

federico.bugni@northwestern.edu

Ivan A. Canay

Department of Economics

Northwestern University

iacanay@northwestern.edu

Azeem M. Shaikh

Department of Economics

University of Chicago

amshaikh@uchicago.edu

Max Tabord-Meehan

Department of Economics

University of Chicago

maxtm@uchicago.edu

April 19, 2022

Abstract

This paper considers the problem of inference in cluster randomized experiments when cluster sizes are

non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned

at the level of the cluster; by non-ignorable cluster sizes we mean that “large” clusters and “small”

clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters

of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which

cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster

randomized experiments in which cluster sizes are treated as non-random. We distinguish between two

different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-

weighted cluster-level average treatment effect. For each parameter, we provide methods for inference

in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned

using simple random sampling. We additionally permit the experimenter to sample only a subset of

the units within each cluster rather than the entire cluster and demonstrate the implications of such

sampling for some commonly used estimators. A small simulation study shows the practical relevance of

our theoretical results.
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1 Introduction

Cluster randomized experiments, in which treatment is assigned at the level of the cluster rather than

at the level of the unit within a cluster, are widely used throughout economics and the social sciences

more generally for the purpose of evaluating treatments or programs. Duflo et al. (2007) survey a variety of

examples from development economics, in which clusters are villages and units within a cluster are households

or individuals. Numerous other examples can be found in, for instance, research on the effectiveness of

educational interventions (see, e.g., Raudenbush, 1997; Schochet, 2013; Raudenbush and Schwartz, 2020;

Schochet et al., 2021) and research on the effectiveness of public health interventions (see, e.g., Turner et al.,

2017; Donner and Klar, 2000). In this paper, we consider the problem of inference about the effect of a binary

treatment on an outcome of interest in such experiments when cluster sizes are non-ignorable, meaning that

“large” clusters and “small” clusters may be heterogeneous, and, in particular, the effects of the treatment

may vary across clusters of differing sizes.

In order to accommodate this sort of flexibility, we develop a sampling framework in which cluster sizes

themselves are permitted to be random. More specifically, in the spirit of the survey sampling literature

(see, e.g., Lohr, 2021), we adopt a two-stage sampling design, in which a set of clusters is first sampled

from the population of clusters and then a set of units is sampled from the population of units within each

cluster. Importantly, in the first stage of the sampling process, each cluster may differ in terms of observed

characteristics, including its size, and these characteristics may be used subsequently in the second stage of

the sampling process to determine the number of units to sample from the cluster, including the possibility

that all units in the cluster are sampled. We emphasize, however, that we make no restrictions on the de-

pendence across units within clusters. In the context of this framework, we distinguish between two different

parameters of interest: the equally-weighted cluster-level average treatment effect, which corresponds to the

average treatment effect for the average outcome within clusters, and the size-weighted cluster-level aver-

age treatment effect, which corresponds to the average treatment effect for the aggregate outcome within

clusters. In general, when treatment effects are heterogeneous and cluster sizes are non-ignorable, these

two parameters differ, but we highlight conditions under which they are equal to one another: for instance,

when cluster size is in fact ignorable and treatment effects are suitably homogeneous. Further discussion is

provided in Remark 2.2 below.

Our first result establishes that the standard difference-in-means estimator is not generally consistent

for either the equally-weighted or size-weighted cluster-level average treatment effects in our framework.

As a consequence, for each of these two parameters, we propose an estimator and develop the requisite

distributional approximations to permit its use for inference about the parameter of interest when treatment

is assigned using simple random sampling. In the case of the equally-weighted cluster-level average treatment

effect, the estimator we propose takes the form of a difference-in-“average of averages,” i.e., a difference

between the average (over clusters) of the average outcome (within clusters) for the treated clusters and the

average (over clusters) of the average outcome (within clusters) for the untreated clusters. This estimator

may be equivalently be described as the ordinary least squares estimator of the coefficient on treatment

in a regression of the average outcome (within clusters) on a constant and treatment. In the case of the
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size-weighted cluster-level average treatment effect, the estimator we propose takes the form of a difference-

in-“weighted average of averages,” where the weights are proportional to cluster size. This estimator may

equivalently be described as the weighted least squares estimator of the coefficient on treatment in a regression

of the individual-level outcomes on a constant and treatment with weights proportional to cluster size.

By virtue of its sampling framework, our paper is distinct from a closely related and complimentary

literature that has analyzed cluster randomized experiments from a finite-population perspective. Important

contributions to this literature include Middleton and Aronow (2015), Athey and Imbens (2017), Abadie et al.

(2017), Hayes and Moulton (2017), de Chaisemartin and Ramirez-Cuellar (2020), Schochet et al. (2021), and

Su and Ding (2021). The primary source of uncertainty in this literature is “design-based” uncertainty

stemming from the randomness in treatment assignment, though parts of the literature additionally permit

up to two additional sources of uncertainty: the randomness from sampling clusters from a finite population

of clusters and the randomness from sampling only a subset of the finite number of units in each cluster. In

the context of such a sampling framework, the literature has defined finite-population counterparts to both

our equally-weighted and size-weighted cluster-level average treatment effects. See, in particular, Athey and

Imbens (2017, Chapter 8) and Su and Ding (2021, Section 4). These authors additionally provide estimators

and methods for inference about each quantity. In this way, our results may be viewed as developing

complementary results in a suitably defined “super-population” sampling framework.

Our paper is also related to a large literature on the analysis of clustered data (not necessarily from

experiments) in econometrics and statistics. Prominent contributions to this literature include Liang and

Zeger (1986), Hansen (2007) and Hansen and Lee (2019). Additional references can be found in the surveys

Cameron and Miller (2015) and MacKinnon and Webb (2019). These papers are designed as methods for

inference for parameters defined via linear models or estimating equations, rather than parameters like our

equally-weighted or size-weighed cluster-level average treatment effects that are defined explicitly in terms of

potential outcomes. Importantly, in almost all of these papers, the sampling framework treats cluster sizes

as non-random, though we note that in some cases the results are rich enough to permit the distribution of

the data to vary across clusters. In fact, the literature has noted that the method described in Liang and

Zeger (1986) may fail when cluster sizes are non-ignorable. See, in particular, Benhin et al. (Example 1,

2005). In addition, to our knowledge none of these papers consider the additional complications stemming

from sampling only a subset of the units within each cluster.

The remainder of our paper is organized as follows. Section 2 describes our setup and notation, including

a formal description of our sampling framework and two parameters of interest. We then propose in Section

3 estimators for each of these two quantities and develop the requisite distributional approximations to use

them for inference about each quantity. Finally, in Section 4, we demonstrate the practical relevance of our

theoretical results with a small simulation study.
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2 Setup and Notation

2.1 Notation and Sampling Framework

Let Yi,g denote the (observed) outcome of the ith unit in the gth cluster, Ag denote an indicator for whether

the gth cluster is treated or not, Zg denote observed baseline covariates for the gth cluster, and Ng the

size of the gth cluster. Further denote by Yi,g(1) the potential outcome of the ith unit in the gth cluster if

treated and by Yi,g(0) the potential outcome of the ith unit in the gth cluster if not treated. As usual, the

(observed) outcome and potential outcomes are related to treatment assignment by the relationship

Yi,g = Yi,g(1)Ag + Yi,g(0)(1−Ag) . (1)

In addition, define Sg to be the (possibly random) subset of {1, . . . , Ng} corresponding to the observations

within the gth cluster that are sampled by the researcher. We emphasize that a realization of Sg is a set

whose cardinality we denote by |Sg|, whereas a realization of Ng is a positive integer. For example, in the

event that all observations in a cluster are sampled, Sg = {1, . . . , Ng} and |Sg| = Ng. Denote by PG the

distribution of the observed data

X(G) := (((Yi,g : i ∈ Sg), Ag, Zg, Ng) : 1 ≤ g ≤ G)

and by QG the distribution of

W (G) := (((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng), Sg, Zg, Ng) : 1 ≤ g ≤ G) .

Note that PG is determined jointly by (1) together with the distribution of A(G) := (Ag : 1 ≤ g ≤ G) and

QG, so we will state our assumptions below in terms of these two quantities.

We begin by describing our assumptions on the distribution of A(G). In short, we assume that treatment

is assigned using cluster-level simple random sampling. Formally, we impose the following assumption:

Assumption 2.1. The treatment assignment mechanism satisfies

(a) A(G) ⊥⊥W (G)

(b) A(G) ∼ Binomial(G, π), where 0 < π < 1.

Despite its simplicity, this treatment assignment scheme remains widely used. This assumption, however,

precludes many other popular treatment assignment schemes, including “matched pairs” (see, e.g., Banerjee

et al., 2015; Crépon et al., 2015), and stratified block randomization (see, e.g. Attanasio et al., 2015; An-

gelucci et al., 2015). The analysis of these more complicated treatment assignment schemes can be found in

companion papers Bugni et al. (2022) and Bai et al. (2022).

We now describe our assumptions on QG. In order to do so, it is useful to introduce some further notation.
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To this end, for a ∈ {0, 1}, define

Ȳg(a) :=
1

|Sg|
∑
i∈Sg

Yi,g(a) .

Further define RG(S(G), Z(G), N (G)) to be the distribution of

{(Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng) : 1 ≤ g ≤ G}
∣∣ S(G), Z(G), N (G) ,

where S(G) := (Sg : 1 ≤ g ≤ G), Z(G) := (Zg : 1 ≤ g ≤ G) and N (G) := (Ng : 1 ≤ g ≤ G). Note that QG

is completely determined by RG(S(G), Z(G), N (G)) and the distribution of (S(G), Z(G), N (G)). The following

assumption states our requirements on QG using this notation.

Assumption 2.2. The distribution QG is such that

(a) {(Sg, Zg, Ng), 1 ≤ g ≤ G} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(s, z, n) : (s, z, n) ∈ supp(Sg, Zg, Ng)},

RG(S(G), Z(G), N (G)) =
∏

1≤g≤G

R(Sg, Zg, Ng) .

(c) P{Ng ≥ 1} = 1 and E[N2
g ] <∞.

(d) For some C <∞, P{E[Y 2
i,g(a)|Ng, Zg] ≤ C for all 1 ≤ i ≤ Ng} = 1 for all a ∈ {0, 1} and 1 ≤ g ≤ G.

(e) Sg ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)
∣∣ Zg, Ng for all 1 ≤ g ≤ G.

(f) For a ∈ {0, 1} and 1 ≤ g ≤ G,

E[Ȳg(a)|Ng] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(a)
∣∣∣Ng

 w.p.1 .

Assumptions 2.2.(a)–(b) formalize the idea that our data consist of an i.i.d. sample of clusters, where the

cluster sizes are themselves random and possibly related to potential outcomes. An important implication

of these two assumptions for our purposes is that

{
(Ȳg(1), Ȳg(0), |Sg|, Zg, Ng

)
, 1 ≤ g ≤ G} (2)

is an i.i.d. sequence of random variables, as established by Lemma 5.1 in the Appendix.

Assumptions 2.2.(c)–(d) impose some mild regularity on the (conditional) moments of the distribution

of cluster sizes and potential outcomes, in order to permit the application of relevant laws of large numbers

and central limit theorems. Note that Assumption 2.2.(c) does not rule out the possibility of observing

arbitrarily large clusters, but does place restrictions on the heterogeneity of cluster sizes. For instance, two
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consequences of Assumptions 2.2.(a) and (c) are that1

∑
1≤g≤GN

2
g∑

1≤g≤GNg
= OP (1) ,

and
max1≤g≤GN

2
g∑

1≤g≤GNg

P−→ 0 ,

which mirror heterogeneity restrictions imposed in the analysis of clustered data when cluster sizes are

modeled as non-random (see for example Assumption 2 in Hansen and Lee, 2019).

Assumptions 2.1.(e)–(f) impose high-level restrictions on the two-stage sampling procedure. Assumption

2.1.(e) allows the subset of observations sampled by the experimenter to depend on Zg and Ng, but rules out

dependence on the potential outcomes within the cluster itself. Assumption 2.2.(f) is a high-level assumption

which guarantees that we can extrapolate from the observations that are sampled to the observations that

are not sampled. Note that Assumptions 2.2.(e)–(f) are trivially satisfied whenever Sg = {1, . . . , Ng} for all

1 ≤ g ≤ G with probability one, i.e., whenever all observations within each cluster are always sampled. As-

sumption 2.2.(f) is also satisfied whenever Assumption 2.2.(e) holds and there is sufficient homogeneity across

the observations within each cluster in the sense that P{E[Yi,g(a)|Ng, Zg] = E[Yj,g(a)|Ng, Zg] for all 1 ≤
i, j ≤ Ng} = 1 for a ∈ {0, 1}. Finally, we show in Lemma 2.1 below that if Sg is drawn as a random

sample without replacement from {1, 2, . . . , Ng} in an appropriate sense, then Assumptions 2.2.(e)–(f) are

also satisfied.

Lemma 2.1. Suppose that |Sg| ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)
∣∣ Zg, Ng for all 1 ≤ g ≤ G, and that,

conditionally on (Zg, Ng, |Sg|), Sg is drawn uniformly at random from all possible subsets of size |Sg| from

{1, 2, . . . .Ng}. Then, Assumptions 2.2.(e)–(f) are satisfied.

Remark 2.1. We could in principle modify our framework so that the distribution of cluster sizes is allowed

to depend on the number of clusters G. By doing so, we would be able to weaken Assumption 2.2.(c) at the

cost of strengthening Assumption 2.2.(d) to require, for example, uniformly bounded 2+δ moments for some

δ > 0. Such a modification, however, would complicate the exposition and the resulting procedures would

ultimately be the same. We therefore see no apparent benefit and do not pursue it further in this paper.

2.2 Parameters of Interest

In the context of the sampling framework described above, we consider two different parameters of interest.

The parameters of interest can both be written in the form

E

 ∑
1≤g≤G

ωg

 1

Ng

∑
1≤i≤Ng

Yi,g(1)− Yi,g(0)


1The first is an immediate consequence of the law of large numbers and the Continuous Mapping Theorem. The second

follows from Lemma S.1.1 in Bai et al. (2021).
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for different choices of (possibly random) weights ωg, 1 ≤ g ≤ G satisfying E[ωg] = 1. The first parameter

of interest corresponds to the choice of ωg = 1, thus weighting the average effect of the treatment across

clusters equally:

θ1(QG) := E

 1

Ng

∑
1≤i≤Ng

Yi,g(1)− Yi,g(0)

 . (3)

We refer to this quantity as the equally-weighted cluster-level average treatment effect. θ1(QG) can be

thought of as the average treatment effect where the clusters themselves are the units of interest. The

second parameter of interest corresponds to the choice of ωg = Ng/E[Ng], thus weighting the average effect

of the treatment across clusters in proportion to their size:

θ2(QG) := E

 1

E[Ng]

∑
1≤i≤Ng

Yi,g(1)− Yi,g(0)

 . (4)

We refer to this quantity as the size-weighted cluster-level average treatment effect. θ2(QG) can be thought

of as the average treatment effect where individuals are the units of interest. Note that Assumptions 2.2.(a)–

(b) imply that we may express both θ1(QG) and θ2(QG) as a function of R and the common distribution

of (Sg, Zg, Ng). In particular, neither quantity depends on g or G. Accordingly, in what follows we simply

denote θ1 = θ1(QG), θ2 = θ2(QG).

If treatment effects are heterogeneous and cluster sizes are non-ignorable, then θ1 and θ2 are indeed

distinct parameters. We illustrate this with a simple numerical exercise in Example 2.1 below.

Example 2.1. Suppose clusters represent classrooms, and that we have two types of classrooms: “big” with

Ng = 40 students and “small” with Ng = 10 students. Suppose that Yi,g (1)− Yi,g (0) = 1 for all individuals

in a “big” classroom and Yi,g (1)− Yi,g (0) = −2 for all individuals in a “small” classroom, so that

E

 1

Ng

∑
1≤i≤Ng

(Yi,g (1)− Yi,g (0))

∣∣∣∣∣ Ng = 40

 = 1

E

 1

Ng

∑
1≤i≤Ng

(Yi,g (1)− Yi,g (0))

∣∣∣∣∣ Ng = 10

 = −2 ,

and also

E

 ∑
1≤i≤Ng

(Yi,g (1)− Yi,g (0))

∣∣∣∣∣ Ng = 40

 = 40

E

 ∑
1≤i≤Ng

(Yi,g (1)− Yi,g (0))

∣∣∣∣∣ Ng = 10

 = −20 .

Suppose that both types of classrooms are equally likely, i.e.,

P {Ng = 40} = P {Ng = 10} = 1/2 .

6



Given these calculations, it is straightforward to show that the equally-weighted cluster-level average treat-

ment effect is given by θ1 = −1/2, whereas the size-weighted cluster-level average treatment effect is given

by θ2 = 2/5. In particular, we see in this example that the equally-weighted cluster-level average treatment

effect is negative while the size-weighted cluster-level average treatment effect is positive.

Remark 2.2. While we generally expect θ1 and θ2 to be distinct, they are equivalent in some special cases.

For example, if all clusters are of the same fixed size k, i.e., P{Ng = k} = 1, then it follows immediately

that θ1 = θ2. Alternatively, if treatment effects are constant, so that P{Yi,g(1) − Yi,g(0) = τ for all 1 ≤
i ≤ Ng} = 1, then θ1 = θ2. Generalizing these two extreme cases, we have that θ1 = θ2 if cluster sizes are

ignorable (i.e., R(s, z, n) does not depend on s and n) and treatment effects are sufficiently homogeneous in

the sense that P{E[Yi,g(1)− Yi,g(0)] = E[Yj,g(1)− Yj,g(0)] for all 1 ≤ i, j ≤ Ng} = 1.

3 Main Results

3.1 Asymptotic Behavior of the Difference-in-Means Estimator

Given its central role in the analysis of randomized experiments, we begin this section by studying the

asymptotic behavior of the difference-in-means estimator

θ̂alt
G :=

∑
1≤g≤G

∑
i∈Sg

Yi,gAg∑
1≤g≤G |Sg|Ag

−
∑

1≤g≤G
∑
i∈Sg

Yi,g(1−Ag)∑
1≤g≤G |Sg|(1−Ag)

. (5)

Note that θ̂alt
G may be obtained as the estimator of the coefficient on Ag in an ordinary least squares regression

of Yi,g on a constant and Ag. The following theorem derives the probability limit of this estimator:

Theorem 3.1. Under Assumptions 2.1 and 2.2,

θ̂alt
G

P→ E

 1

E[|Sg|]
∑
i∈Sg

Yi,g(1)− Yi,g(0)

 =: ϑ

as G→∞.

The quantity ϑ corresponds to a sample-weighted cluster-level average treatment effect. When treatment

effects are heterogeneous and cluster sizes are non-ignorable, ϑ need not equal either θ1 defined in (3) or θ2

defined in (4). We illustrate this in the context of our previous numerical example in Example 3.1 below. As a

result, unless the experimenter is interested in a distinct weighting of the cluster-level treatment effects which

differs from the population-level weightings proposed in Section 2.2, care must be taken when interpreting

θ̂alt
G . We note, however, that ϑ is in fact equal to either θ1 or θ2 for some sampling designs. Specifically, if

|Sg| = k for all 1 ≤ g ≤ G, then ϑ is equal to θ1; if Sg = {1, 2, . . . , Ng} for all 1 ≤ g ≤ G with probability

one, then ϑ is equal to θ2.

Example 3.1. Recall the setting of Example 2.1. Suppose further that the experimenter samples |Sg| = 5

students at random without replacement from each “small” classroom, and |Sg| = 10 students at random
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without replacement from each “big” classroom. It is now straightforward to show that ϑ = 0, which is not

equal to either of the parameters defined in Section 2.2.

Remark 3.1. Another sampling design for which ϑ is approximately equal to θ2 is when |Sg| = bγNgc for

some 0 < γ < 1 and Ng only takes on “large” values. To see this, note in this case it can be shown using

Assumption 2.2(f) and the law of iterated expectations that

ϑ =
E
[
bγNgc
Ng

E
[∑

1≤i≤Ng
Yi,g(1)− Yi,g(0)|Ng

]]
E
[
bγNgc
Ng

Ng

] ,

from which the desired conclusion follows immediately.

As a consequence of Theorem 3.1, in what follows we consider alternative estimators which are generally

consistent for θ1 and θ2 without imposing additional restrictions on the sampling procedure.

3.2 Equally-weighted Cluster-level Average Treatment Effect

In this section, we consider estimation of θ1 defined in (3). To this end, consider the following difference-in-

“average of averages” estimator:

θ̂1,G :=

∑
1≤g≤G ȲgAg∑

1≤g≤GAg
−
∑

1≤g≤G Ȳg(1−Ag)∑
1≤g≤G(1−Ag)

, (6)

where

Ȳg =
1

|Sg|
∑
i∈Sg

Yi,g. (7)

Note that θ̂1,G may be obtained as the estimator of the coefficient on Ag in an ordinary least squares regression

of Ȳg on a constant and Ag. The following theorem derives the asymptotic behavior of this estimator.

Theorem 3.2. Under Assumptions 2.1 and 2.2,

√
G(θ̂1,G − θ1)

d→ N(0, σ2
1)

as G→∞, where

σ2
1 :=

1

π
Var[Ȳg(1)] +

1

1− π
Var[Ȳg(0)] ,

with π defined as in Assumption 2.1.

To facilitate the use of Theorem 3.2 for inference about θ1, we now provide a consistent estimator of σ2
1 .

To this end, for a ∈ {0, 1}, define

V̂arG[Ȳg(a)] :=

∑
1≤g≤G Ȳ

2
g I{Ag = a}∑

1≤g≤G I{Ag = a}
−

(∑
1≤g≤G ȲgI{Ag = a}∑

1≤g≤G I{Ag = a}

)2

.

8



Using this notation, define

σ̂2
1,G :=

1

π
V̂arG[Ȳg(1)] +

1

1− π
V̂arG[Ȳg(0)] . (8)

The following theorem establishes the consistency of σ̂2
1,G for σ2

1 . In the statement of the theorem, we make

use of the following additional notation: for scalars a and b, we define [a± b] := [a− b, a+ b], and denote by

Φ(·) the standard normal c.d.f.

Theorem 3.3. Under Assumptions 2.1 and 2.2,

σ̂2
1,G

P→ σ2
1

as G→∞. Thus, for σ2
1 > 0 and for any α ∈ (0, 1),

P

{
θ1 ∈

[
θ̂1,G ±

σ̂1,G√
G

Φ−1
(

1− α

2

)]}
→ 1− α

as G→∞.

Remark 3.2. Theorem 3.3 remains true if σ̂2
1,G is replaced with

σ̃2
1,G :=

1
1
G

∑
1≤g≤GAg

V̂ar[Ȳg(1)] +
1

1
G

∑
1≤g≤G 1−Ag

V̂ar[Ȳg(0)] .

It is straightforward to show that σ̃2
1,G can be obtained as the usual heteroskedasticity-robust estimator of

the variance of the coefficient of Ag in an ordinary least squares regression of Ȳg on a constant and Ag.

Remark 3.3. A sufficient condition under which σ2
1 > 0 holds is that Var[Ȳg(a)] > 0 for some a ∈ {0, 1}.

More generally, we expect σ2
1 > 0 except in pathological cases such as when the distribution of outcomes is

degenerate or in cases with perfect negative within-cluster correlation.

3.3 Size-weighted Cluster-level Average Treatment Effect

In this section, we consider estimation of θ2 defined in (4). To this end, consider the following difference-in-

“weighted average of averages” estimator:

θ̂2,G :=

∑
1≤g≤G ȲgNgAg∑

1≤g≤GNgAg
−
∑

1≤g≤G ȲgNg(1−Ag)∑
1≤g≤GNg(1−Ag)

, (9)

where Ȳg is defined as in (7). Note that θ̂2,G may be obtained as the estimator of the coefficient on Ag in a

weighted least squares regression of Yi,g on a constant and Ag with weights equal to
√
Ng/|Sg|. Note that,

in the special case where Sg = {1, 2, . . . , Ng} for all 1 ≤ g ≤ G with probability one, we have θ̂2,G = θ̂alt
G (i.e.

the weights collapse to 1). The following theorem derives the asymptotic behavior of this estimator.

Theorem 3.4. Under Assumptions 2.1 and 2.2,

√
G(θ̂2,G − θ2)

d→ N(0, σ2
2)

9



as G→∞, where

σ2
2 :=

1

E[Ng]2

E
[(

Ng

|Sg|

)2 (∑
i∈Sg

εi,g(1)
)2
]

π
+

E

[(
Ng

|Sg|

)2 (∑
i∈Sg

εi,g(0)
)2
]

1− π

 ,

with

εi,g(a) = Yi,g(a)− E[NgȲg(a)]

E[Ng]
.

Remark 3.4. It is interesting to compare σ2
2 to the variance of the difference-in-means estimator from

a finite-population analysis. For instance, in the special case where Sg = {1, 2, . . . , Ng}, it follows from

Theorem 1 of Su and Ding (2021) that the finite-population design-based variance is given by (in our

notation):

σ2
2,G,finpop :=

(
G

N

)2

 1

G

∑
1≤g≤G


(∑

1≤i≤Ng
ε̃i,g(1)

)2

π
+

(∑
1≤i≤Ng

ε̃i,g(0)
)2

1− π


− 1

G

∑
1≤g≤G

 ∑
1≤i≤Ng

(ε̃i,g(1)− ε̃i,g(0))

2
 ,

where

N :=
∑

1≤g≤G

Ng

ε̃i,g(a) := Yi,g(a)− 1

N

∑
1≤g≤G

∑
1≤i≤Ng

Yi,g(a) .

We emphasize that in the finite-population framework adopted by Su and Ding (2021), all of the above

quantities are non-random. From this we see that the comparison between σ2
2 and σ2

2,G,finpop exactly mimics

the comparison between the super-population and finite-population variance expressions for the difference-

in-means estimator in the non-clustered setting (see, for example, Ding et al., 2017). In particular, σ2
2,G,finpop

is made up of two terms: the first term corresponds to a finite-population analogue of σ2
2 , whereas the second

term, which enters negatively, can be interpreted as the gain in precision which results from observing the

entire population.

Remark 3.5. As discussed in Remark 2.2, θ1 = θ2 whenever Ng = k for all 1 ≤ g ≤ G. Furthermore, in

this case we have θ̂1,G = θ̂2,G and thus σ2
1 = σ2

2 as well.

In parallel with our development in the preceding section, we now provide a consistent estimator of σ2
2 .

To this end, define

σ̂2
2,G := σ̂2

2,G(1) + σ̂2
2,G(0) ,

10



where, for a ∈ {0, 1}, we define

σ̂2
2,G(a) :=

1(
1
G

∑
1≤g≤GNgI{Ag = a}

)2

1

G

∑
1≤g≤G

( Ng
|Sg|

)2

I{Ag = a}

∑
i∈Sg

ε̂i,g(a)

2
 , (10)

where

ε̂i,g(a) := Yi,g −
1∑

1≤g≤GNgI{Ag = a}
∑

1≤g≤G

NgȲgI{Ag = a} .

The following theorem establishes the consistency of σ̂2
2,G for σ2

2 . In the statement of the theorem, we again

make use of the notation introduced preceding Theorem 3.3.

Theorem 3.5. Under Assumptions 2.1 and 2.2,

σ̂2
2,G

P→ σ2
2

as G→∞. Thus, for σ2
2 > 0 and for any α ∈ (0, 1),

P

{
θ2 ∈

[
θ̂2,G ±

σ̂2,G√
G

Φ−1
(

1− α

2

)]}
→ 1− α

as G→∞.

Remark 3.6. In Lemma 5.2 in the Appendix we establish that σ̂2
2,G can be obtained as the cluster-robust

variance estimator of the variance of the coefficient of Ag in a weighted-least squares regression of Yig on a

constant and Ag, with weights equal to
√
Ng/|Sg|.

Remark 3.7. It can be shown that a sufficient condition under which σ2
2 holds is that Var[Ȳg(a)] > 0 for

some a ∈ {0, 1}. As in our discussion in Remark 3.3, we expect this to hold outside of pathological cases.

Remark 3.8. Note further that Ag is independent of Ng under Assumption 2.1.(a). This observation

motivates an alternative estimator

θ̂alt
2,G :=

1
G

∑
1≤g≤G ȲgNgAg

N̄GĀG
−

1
G

∑
1≤g≤G

∑
i∈Sg

ȲgNg(1−Ag)
N̄G(1− ĀG)

, (11)

where N̄G := 1
G

∑
1≤g≤GNg and ĀG := 1

G

∑
1≤g≤GAg. By arguing as in the proof of Theorem 3.4, it is

possible to derive the asymptotic behavior of this estimator as well, but we do not pursue this further in this

paper.

4 Simulations

In this section, we illustrate the results presented in Section 3 with a simulation study. In all cases, potential

outcomes are generated according to the equation:

Yi,g(a) := µg(a)η1,g + η2,g(a)Zg + Ui,g(a) , (12)

11



for a ∈ {0, 1}, where

• (η1,g, η2,g(a)) are i.i.d. with η1,g ∼ U [0, 1], η2,g(0) ∼ U [0, 1], and η2,g(1) ∼ U [0, 5].

• Ui,g(a) are i.i.d. with Ui,g(a) ∼ N(0, σ(a)) and σ(1) =
√

2 > σ(0) = 1.

• µg(a) are constants.

• The distribution of Zg varies by design as described below.

We consider four alternative specifications for the distribution of cluster sizes Ng. Let BB(a, b, nsupp) be

the Beta-Binomial distribution with parameters a and b and support on {0, . . . , nsupp}. The first three cases

are given by

Ng := 10(B + 1) where B ∼ BB(a, b, nsupp) ,

for the following values of (a, b) and Nmax := 10(nsupp + 1),

• (a, b) = (1, 1): results in a uniform probability mass function (p.m.f.) on {10, . . . , Nmax}.

• (a, b) = (0.4, 0.4): results in a “U-shaped” p.m.f. on {10, . . . , Nmax}.

• (a, b) = (10, 90): results in a “bell-shaped” p.m.f. with a long right tail on {10, . . . , Nmax}.

These three cases satisfy Assumption 2.2.(c). For the fourth and final case,

Ng = 10ζ where ζ ∼ zeta distribution with parameter s = 1.5 .

The last design is one where ζ has a finite mean (s > 1) but has infinite variance (s ≤ 2), thus violating

E[N2
g ] <∞ in Assumption 2.2.(c). Figure 1 shows the p.m.f. of Ng for each of these four designs.

For each of the four distributions of cluster sizes, Sg is drawn uniformly at random from {1, 2, . . . , Ng}
as in Lemma 2.1 with three alternative sample sizes |Sg|: (a) |Sg| = Ng, (b) |Sg| = 10, and (c) |Sg| =

max{10,min{γNg, 200}} with γ = 0.4.

The combination of the four distributions of Ng and three sample sizes |Sg| leads to 12 alternative

specifications. For each of these specifications, we consider in addition two designs for Zg:

• Design 1: Zg ⊥⊥ Ng where Zg ∈ {−1, 1} i.i.d. with P{Zg = 1} = 1/2.

• Design 2: Zg = Zg,bigI{Ng ≥ E[Ng]}+Zg,smallI{Ng < E[Ng]} where Zg,big ∈ {−1, 1} with P{Zg,big =

1} = 3/4 and, independently, Zg,small ∈ {−1, 1} i.i.d. with P{Zg,small = 1} = 1/4.

Finally, in all cases µg(0) = µg(1) = 0 and treatment assignment Ag is i.i.d. Bernoulli with probability 1/2

of success.

We note that for these designs we obtain that

E[Yi,g(1)− Yi,g(0)|Ng] =
1

2
(µg(1)− µg(0)) + 2E[Zg|Ng] .

12



Figure 1: Four probability mass functions of Ng when Nmax = 1000

In Design 1, it follows that θ1 = θ2 = 0. In Design 2, on the other hand, it follows that

E[Zg|Ng] =

{
E[Zg,big] = 1/2 if Ng ≥ E[Ng]

E[Zg,small] = −1/2 if Ng < E[Ng]
,

and so

θ1 = P{Ng ≥ E[Ng]} − (1− P{Ng ≥ E[Ng]})

θ2 = E

[
Ng

E[Ng]
| Ng ≥ E[Ng]

]
P{Ng ≥ E[Ng]} − E

[
Ng

E[Ng]
| Ng < E[Ng]

]
P{Ng < E[Ng]} .

For each of the above 12 specifications and for each design of Zg, we report the true values of (θ1, θ2)

defined in (3) and (4), the average across simulations of the estimated values (θ̂1,G, θ̂2,G) defined in (6) and

(9), the average across simulations of the estimated standard errors (σ̂1,G, σ̂2,G) defined in (8) and (10), and

the empirical coverage of the 95% confidence intervals defined in Theorems 3.3 and 3.5. The results of our

simulations are presented in Tables 2 to 6, where in all cases we conducted 5, 000 replications. Table 7, in

turn, reports summary statistics for the maximum value of Ng across simulations when Ng = 10ζ, and Table

8 reports coverage probabilities for different values of G for Design 2 when Nmax = 500.

Tables 1 and 2 present results for Design 1, where Zg ⊥⊥ Ng, for Nmax = 500 and Nmax = 1000. Despite

the increased heterogeneity in cluster sizes that are allowed in Table 2 due to the larger vale of Nmax, coverage

probabilities are mostly unaffected and close to the nominal levels when Assumption 2.2.(c) is satisfied. When

Ng = 10ζ so that Assumption 2.2.(c) is violated, the confidence interval for θ1 is not affected while the one

for θ2 undercovers in all cases.
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Tables 3 and 4 present the same comparison for Design 2, where Zg 6⊥⊥ Ng. In this design, coverage

mildly deteriorates moving from Nmax = 500 and Nmax = 1000, but still remains close to the nominal levels.

Comparing the results from the previous tables with those in Tables 5 and 6, where G = 5, 000 as opposed to

G = 100, we see that the coverage of the confidence intervals in all cases where Assumption 2.2.(c) is satisfied

improves, whereas the coverage of the confidence intervals when Assumption 2.2.(c) fails, either remaining

at similar levels below the nominal levels (as is the case for θ2) or deteriorating (as is the case for θ1). A

further inspection of this case shows that larger values of G increase the chances of getting unreasonably

large numbers for Ng in the case where Ng = 10ζ. Table 7 illustrates this, where we can see that in Table 1

the largest draw of Ng was 103, 200, while the largest draw in Table 5 was 2, 853, 880. Since when Ng = 10ζ

most of the clusters have size Ng = 10, this distribution creates situations where the largest cluster is around

200, 000 times larger than the “modal” cluster and at that point our asymptotic approximations may not

provide an accurate representation of the finite-sample properties.

Finally, Table 8 compares coverage probabilities of the confidence intervals for θ1 and θ2 in the case of

Design 2 with Nmax = 500, as G increases from 100 to 5, 000. We are particularly interested in the case

where Ng = 10(B + 1) and (a, b) = (10, 90), since in this case the p.m.f. of Ng exhibits a long right tail

as illustrated in Figure 1. This feature again creates a situation where there are a few clusters that are

much larger than most other clusters. The results show that the empirical coverage deteriorates going from

G = 100 to G = 500, but that eventually all empirical coverage probabilities approach their nominal levels.
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Design 1 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) 0.0000 0.0000 0.0009 0.0041 4.1806 4.7330 0.9444 0.9384
BB(0.4, 0.4) 0.0000 0.0000 -0.0052 0.0013 4.1888 5.0641 0.9450 0.9346
BB(10, 90) 0.0000 0.0000 -0.0025 -0.0006 4.1962 4.5060 0.9472 0.9434
zeta(1.5) 0.0000 0.0000 0.0087 0.0011 4.2200 5.8472 0.9512 0.8816

10 BB(1, 1) 0.0000 0.0000 0.0072 0.0071 4.2349 4.7956 0.9424 0.9362
BB(0.4, 0.4) 0.0000 0.0000 0.0051 0.0086 4.2458 5.1546 0.9480 0.9344
BB(10, 90) 0.0000 0.0000 0.0062 0.0031 4.2393 4.5552 0.9474 0.9408
zeta(1.5) 0.0000 0.0000 -0.0004 -0.0064 4.2390 5.8859 0.9462 0.8852

γNg BB(1, 1) 0.0000 0.0000 -0.0043 -0.0040 4.1889 4.7375 0.9432 0.9382
BB(0.4, 0.4) 0.0000 0.0000 0.0021 0.0020 4.1914 5.0687 0.9460 0.9344
BB(10, 90) 0.0000 0.0000 -0.0034 -0.0058 4.1991 4.5108 0.9480 0.9396
zeta(1.5) 0.0000 0.0000 -0.0022 0.0011 4.2359 5.7975 0.9450 0.8816

Table 1: Results for the simulation design in (12) for G = 100, Nmax = 500, and Zg ⊥⊥ Ng

Design 1 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) 0.0000 0.0000 0.0011 0.0010 4.1674 4.7913 0.9462 0.9448
BB(0.4, 0.4) 0.0000 0.0000 -0.0026 -0.0037 4.1753 5.1591 0.9524 0.9490
BB(10, 90) 0.0000 0.0000 -0.0003 -0.0009 4.1735 4.4638 0.9508 0.9542
zeta(1.5) 0.0000 0.0000 -0.0002 0.0010 4.2236 9.4473 0.9562 0.9234

10 BB(1, 1) 0.0000 0.0000 -0.0016 -0.0025 4.2338 4.8668 0.9536 0.9492
BB(0.4, 0.4) 0.0000 0.0000 0.0026 0.0010 4.2345 5.2418 0.9462 0.9464
BB(10, 90) 0.0000 0.0000 -0.0015 -0.0027 4.2371 4.5345 0.9498 0.9502
zeta(1.5) 0.0000 0.0000 -0.0001 -0.0113 4.2351 9.5222 0.9534 0.9284

γNg BB(1, 1) 0.0000 0.0000 0.0000 0.0001 4.1728 4.7930 0.9546 0.9546
BB(0.4, 0.4) 0.0000 0.0000 0.0004 -0.0016 4.1806 5.1624 0.9532 0.9542
BB(10, 90) 0.0000 0.0000 -0.0004 -0.0010 4.1841 4.4730 0.9520 0.9552
zeta(1.5) 0.0000 0.0000 0.0011 0.0008 4.2262 9.4149 0.9456 0.9170

Table 2: Results for the simulation design in (12) for G = 100, Nmax = 1000, and Zg ⊥⊥ Ng
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Design 2 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) 0.0002 0.4902 0.0034 0.4941 4.1905 4.5179 0.9492 0.9384
BB(0.4, 0.4) 0.0003 0.6582 -0.0073 0.6484 4.1855 4.7295 0.9486 0.9418
BB(10, 90) 0.0420 0.3841 -0.0826 0.2545 4.1834 4.4077 0.9320 0.9312
zeta(1.5) -0.4905 0.2353 -0.5786 0.0562 4.1042 5.8882 0.9258 0.8510

10 BB(1, 1) 0.0002 0.4902 0.0106 0.4946 4.2459 4.5969 0.9474 0.9416
BB(0.4, 0.4) 0.0003 0.6582 0.0009 0.6409 4.2470 4.8158 0.9522 0.9382
BB(10, 90) 0.0420 0.3841 -0.0566 0.2837 4.2420 4.4707 0.9332 0.9264
zeta(1.5) -0.4905 0.2353 -0.5556 0.0800 4.1169 5.9297 0.9334 0.8640

γNg BB(1, 1) 0.0002 0.4902 -0.0012 0.4846 4.1968 4.5290 0.9526 0.9390
BB(0.4, 0.4) 0.0003 0.6582 -0.0001 0.6529 4.1990 4.7378 0.9486 0.9388
BB(10, 90) 0.0420 0.3841 -0.0676 0.2725 4.1912 4.4071 0.9358 0.9342
zeta(1.5) -0.4905 0.2353 -0.5549 0.0736 4.1086 5.8543 0.9296 0.8608

Table 3: Results for the simulation design in (12) for G = 100, Nmax = 500, and Zg 6⊥⊥ Ng

Design 2 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) -0.0001 0.4948 -0.0001 0.4942 4.1718 4.5694 0.9588 0.9516
BB(0.4, 0.4) 0.0003 0.6690 0.0010 0.6676 4.1765 4.8015 0.9464 0.9474
BB(10, 90) 0.0003 0.3047 -0.0403 0.2645 4.1702 4.3745 0.9134 0.9160
zeta(1.5) -0.4909 0.2308 -0.5581 0.1420 4.0984 9.3269 0.8330 0.8808

10 BB(1, 1) -0.0001 0.4948 -0.0021 0.4930 4.2357 4.6502 0.9474 0.9442
BB(0.4, 0.4) 0.0003 0.6690 -0.0036 0.6650 4.2339 4.8905 0.9474 0.9468
BB(10, 90) 0.0003 0.3047 -0.0406 0.2643 4.2363 4.4510 0.9146 0.9182
zeta(1.5) -0.4909 0.2308 -0.5533 0.1459 4.1100 9.3977 0.8284 0.8790

γNg BB(1, 1) -0.0001 0.4948 -0.0012 0.4934 4.1730 4.5699 0.9518 0.9436
BB(0.4, 0.4) 0.0003 0.6690 -0.0003 0.6700 4.1804 4.8040 0.9476 0.9460
BB(10, 90) 0.0003 0.3047 -0.0404 0.2649 4.1830 4.3858 0.9146 0.9172
zeta(1.5) -0.4909 0.2308 -0.5577 0.1486 4.1009 9.3446 0.8332 0.8826

Table 4: Results for the simulation design in (12) for G = 100, Nmax = 1000, and Zg 6⊥⊥ Ng
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Design 1 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) 0.0000 0.0000 0.0033 0.0038 4.1718 4.7753 0.9518 0.9480
BB(0.4, 0.4) 0.0000 0.0000 0.0000 -0.0005 4.1818 5.1298 0.9516 0.9432
BB(10, 90) 0.0000 0.0000 0.0017 0.0018 4.1777 4.5343 0.9520 0.9526
zeta(1.5) 0.0000 0.0000 0.0015 -0.0017 4.2253 8.0718 0.9508 0.9198

10 BB(1, 1) 0.0000 0.0000 0.0045 0.0063 4.2393 4.8619 0.9490 0.9522
BB(0.4, 0.4) 0.0000 0.0000 -0.0015 -0.0012 4.2361 5.2108 0.9464 0.9458
BB(10, 90) 0.0000 0.0000 0.0034 0.0037 4.2384 4.6089 0.9490 0.9504
zeta(1.5) 0.0000 0.0000 0.0050 0.0089 4.2376 8.1965 0.9486 0.9108

γNg BB(1, 1) 0.0000 0.0000 0.0003 0.0006 4.1786 4.7806 0.9478 0.9432
BB(0.4, 0.4) 0.0000 0.0000 -0.0043 -0.0061 4.1815 5.1248 0.9438 0.9456
BB(10, 90) 0.0000 0.0000 0.0033 0.0038 4.1941 4.5515 0.9478 0.9508
zeta(1.5) 0.0000 0.0000 -0.0003 0.0015 4.2298 8.0831 0.9440 0.9142

Table 5: Results for the simulation design in (12) for G = 5000, Nmax = 500, and Zg ⊥⊥ Ng

Design 2 True values Estimated Stand. errors Cov. Prob.

|Sg| Ng θ1 θ2 θ̂1,G θ̂2,G σ̂1,G σ̂2,G CS1,G CS2,G

Ng BB(1, 1) 0.0002 0.4902 0.0001 0.4890 4.1759 4.5597 0.9502 0.9502
BB(0.4, 0.4) 0.0003 0.6582 -0.0017 0.6538 4.1768 4.7740 0.9500 0.9484
BB(10, 90) 0.0420 0.3841 -0.0101 0.3317 4.1776 4.4148 0.9068 0.9136
zeta(1.5) -0.4905 0.2353 -0.5591 0.1205 4.0987 8.0310 0.8816 0.8738

10 BB(1, 1) 0.0002 0.4902 0.0035 0.4921 4.2384 4.6345 0.9528 0.9524
BB(0.4, 0.4) 0.0003 0.6582 0.0027 0.6558 4.2346 4.8630 0.9532 0.9480
BB(10, 90) 0.0420 0.3841 -0.0124 0.3296 4.2319 4.4802 0.9098 0.9188
zeta(1.5) -0.4905 0.2353 -0.5521 0.1365 4.1138 8.0774 0.8786 0.8718

γNg BB(1, 1) 0.0002 0.4902 -0.0029 0.4837 4.1775 4.5581 0.9470 0.9440
BB(0.4, 0.4) 0.0003 0.6582 0.0019 0.6619 4.1840 4.7747 0.9608 0.9480
BB(10, 90) 0.0420 0.3841 -0.0134 0.3293 4.1925 4.4311 0.9120 0.9176
zeta(1.5) -0.4905 0.2353 -0.5538 0.1217 4.0995 7.9542 0.8858 0.8778

Table 6: Results for the simulation design in (12) for G = 5000, Nmax = 500, and Zg 6⊥⊥ Ng

Table Min. 1st Qu. Median Mean 3rd Qu. Max.

1 (G = 100, Nmax = 500) 40 110 170 407 300 103,200
4 (G = 100, Nmax = 1000) 30 110 170 2000 310 7,969,670
5 (G = 1000, Nmax = 500) 430 1470 2360 4590 4332 286,130
6 (G = 5000, Nmax = 1000) 440 1460 2290 5267 4062 2,853,880

Table 7: Summary statistics for the maximum of Ng across simulation draws when Ng ∼ zeta(1.5)
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Design 2 G = 100 G = 500 G = 1000 G = 5000

|Sg| Ng CS1,G CS2,G CS1,G CS2,G CS1,G CS2,G CS1,G CS2,G

Ng BB(1, 1) 0.9492 0.9384 0.9502 0.9502 0.9574 0.9532 0.9488 0.9530
BB(0.4, 0.4) 0.9486 0.9418 0.9500 0.9484 0.9516 0.9482 0.9492 0.9482
BB(10, 90) 0.9320 0.9312 0.9068 0.9136 0.9018 0.9072 0.9496 0.9492
zeta(1.5) 0.9258 0.8510 0.8816 0.8738 0.8348 0.8918 0.7564 0.8722

10 BB(1, 1) 0.9474 0.9416 0.9528 0.9524 0.9532 0.9472 0.9488 0.9526
BB(0.4, 0.4) 0.9522 0.9382 0.9532 0.9480 0.9476 0.9494 0.9520 0.9490
BB(10, 90) 0.9332 0.9264 0.9098 0.9188 0.9026 0.9098 0.9476 0.9434
zeta(1.5) 0.9334 0.8640 0.8786 0.8718 0.8496 0.8846 0.7562 0.8784

γNg BB(1, 1) 0.9526 0.9390 0.9470 0.9440 0.9568 0.9510 0.9568 0.9556
BB(0.4, 0.4) 0.9486 0.9388 0.9608 0.9480 0.9536 0.9484 0.9512 0.9502
BB(10, 90) 0.9358 0.9342 0.9120 0.9176 0.8994 0.9070 0.9426 0.9478
zeta(1.5) 0.9296 0.8608 0.8858 0.8778 0.8340 0.8844 0.7570 0.8764

Table 8: Coverage probabilities across G for Nmax = 500 and Zg 6⊥⊥ Ng
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5 Appendix

5.1 Auxiliary Results

Lemma 5.1. Under Assumptions 2.2(a)-(b),

{
(
Ȳg(1), Ȳg(0), |Sg|, Zg, Ng

)
, 1 ≤ g ≤ G} ,

is an i.i.d sequence of random variables.

Proof. Let Ag = (Ȳg(1), Ȳg(0)), Bg = (|Sg|, Zg, Ng). Then our first goal is to show that for arbitrary vectors

a(G) and b(G),

P{A(G) ≤ a(G), B(G) ≤ b(G)} =
∏

1≤g≤G

P{Ag ≤ ag, Bg ≤ bg} ,

where the inequalities are to be interpreted component-wise. To that end, let Cg = (Yi,g(1), Yi,g(0) : 1 ≤ i ≤
Ng) and denote by Γ(ag, Ng, Sg) the (random) set such that Cg ∈ Γ(ag, Ng, Sg) if and only if Ag ≤ ag. Let

Γ(G) denote the Cartesian product of Γ(ag, Ng, Sg) for all 1 ≤ g ≤ G. Then we have that

P{A(G) ≤ a(G), B(G) ≤ b(G)} = P{C(G) ∈ Γ(G), B(G) ≤ b(G)}

= E
[
E
[
I{C(G) ∈ Γ(G)}|S(G), Z(G), N (G)

]
I{B(G) ≤ b(G)}

]
= E

 ∏
1≤g≤G

E [Cg ∈ Γ(ag, Ng, Sg)|Sg, Zg, Ng] I{Bg ≤ bg}


= E

 ∏
1≤g≤G

E [I{Cg ∈ Γ(ag, Ng, Sg)}I{Bg ≤ bg}|Sg, Zg, Ng]


=

∏
1≤g≤G

E [I{Cg ∈ Γ(ag, Ng, Sg)}I{Bg ≤ bg}]

=
∏

1≤g≤G

P{Ag ≤ ag, Bg ≤ bg} ,

where the first equality follows from the definition of Γ, the second equality follows from the law of iterated

expectations, the third equality follows from Assumption 2.2.(b), the fourth equality follows from standard

properties of conditional expectations, the fifth equality follows from Assumption 2.2.(a), and the sixth

equality follows from the definition of Γ. Next, we show that for arbitrary vectors a and b

P{Ag ≤ a,Bg ≤ b} = P{Ag′ ≤ a,Bg′ ≤ b} ,

for any 1 ≤ g, g′ ≤ G. To that end,

P{Ag ≤ a,Bg ≤ b} = P{Cg ∈ Γ(a,Ng, Sg), Bg ≤ b}

= E [E [I{Cg ∈ Γ(a,Ng, Sg)}|Sg, Zg, Ng] I{Bg ≤ b}]

= E [E [I{Cg′ ∈ Γ(a,Ng′ , Sg′)}|Sg′ , Zg′ , Ng′ ] I{Bg′ ≤ b}]
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= P{Ag′ ≤ a,Bg′ ≤ b} ,

where the first inequality follows from the definition of Γ, the second from the law of iterated expectations, the

third from Assumptions 2.2.(a)–(b), and the fourth from the law of iterated expectations and the definition

of Γ.

Lemma 5.2. σ̂2
2,G can be obtained as the cluster-robust variance estimator of the variance of the coefficient

of Ag in a weighted-least squares regression of Yi,g on a constant and Ag, with weights equal to
√
Ng/|Sg|.

Proof. Let 1K denote a column vector of ones of length K. The cluster-robust variance estimator can then

be written as:

G ·

 ∑
1≤g≤G

X ′gXg

−1 ( ∑
1≤g≤G

X ′g ε̂g ε̂
′
gXg

) ∑
1≤g≤G

X ′gXg

−1

,

where

Xg =
(

1|Sg| ·
√

Ng

|Sg| 1|Sg| ·
√

Ng

|Sg|Ag

)
and

ε̂g =

(
ε̂i,g(1)

√
Ng
|Sg|

Ag + ε̂i,g(0)

√
Ng
|Sg|

(1−Ag) : i ∈ Sg

)′
.

Expanding and simplifying gives us our result.

5.2 Proof of Lemma 2.1

Proof. First we show that Assumption 2.2.(e) is satisfied. By the assumptions of the proposition we have

|Sg| ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)|Zg, Ng and by our specification of the sampling procedure for Sg we

have that Sg ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)|Zg, Ng, |Sg|. Hence Sg ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)|Zg, Ng
by the properties of conditional expectations. Next we show that Assumption 2.2.(f) is satisfied. To that

end, note that by the law of iterated expectations

E[Ȳg(a)|Ng] = E

E
 1

|Sg|
∑
i∈Sg

Yi,g(a)

∣∣∣∣∣Zg, Ng, |Sg|, (Yi,g(a) : 1 ≤ i ≤ Ng)

 ∣∣∣∣∣Ng
 .

The inner expectation can be viewed as the expectation of a sample mean of size |Sg| drawn from the set

(Yi,g(a) : 1 ≤ i ≤ Ng) without replacement, hence by Theorem 2.1 of Cochran (2007),

E

 1

|Sg|
∑
i∈Sg

Yi,g(a)

∣∣∣∣∣Zg, Ng, |Sg|, (Yi,g(a) : 1 ≤ i ≤ Ng)

 =
1

Ng

∑
1≤i≤Ng

Yi,g(a) ,
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and hence it follows that

E[Ȳg(a)|Ng] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(a)

∣∣∣∣∣Ng
 ,

as desired.

5.3 Proof of Theorem 3.1

Proof. By Assumption 2.1 and Assumptions 2.2.(c)–(e),

E

∣∣∣∣∣∣
∑
i∈Sg

Yi,gI{Ag = a}

∣∣∣∣∣∣
 = E

∣∣∣∣∣∣
∑
i∈Sg

Yi,g(a)I{Ag = a}

∣∣∣∣∣∣


. E

∑
i∈Sg

E[|Yi,g(a)||Ng, Zg, Sg]


. E [|Sg|] ≤ E[Ng] <∞ ,

and a similar argument establishes that E[|Sg|I{Ag = a}] < ∞. It thus follows by Lemma 5.1, the law of

large numbers, and the continuous mapping theorem that

θ̂alt
G

P−→
E[Ag

∑
i∈Sg

Yi,g(1)]

E[|Sg|Ag]
−
E[(1−Ag)

∑
i∈Sg

Yi,g(0)]

E[|Sg|(1−Ag)]
.

The result then follows by Assumption 2.1.(a).

5.4 Proof of Theorem 3.2

Proof. By Assumption 2.2.(f),

θ̂1,G − θ1 =

∑
1≤g≤G Ȳg(1)Ag∑

1≤g≤GAg
−
∑

1≤g≤G Ȳg(0)(1−Ag)∑
1≤g≤G(1−Ag)

−
(
E[Ȳg(1)]− E[Ȳg(0)]

)
.

Re-grouping,
√
G(θ̂1,G − θ1) =

1
1
G

∑G
g=1Ag

L1,G −
1

1
G

∑G
g=1(1−Ag)

L0,G ,

where

L1,G =
1√
G

G∑
g=1

(
Ȳg(1)− E[Ȳg(1)]

)
Ag ,

L0,G =
1√
G

G∑
g=1

(
Ȳg(0)− E[Ȳg(0)]

)
(1−Ag) .

By Assumption 2.1 and Assumptions 2.2.(c)–(e),

E[(Ȳg(a)− E[Ȳg(a)])2I{Ag = a}] . E[Ȳg(a)2]
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≤ E

 1

|Sg|
∑
i∈Sg

Yi,g(a)2


= E

 1

|Sg|
∑
i∈Sg

E[Yi,g(a)2|Ng, Zg, Sg]


. E

[
|Sg|
|Sg|

]
<∞ ,

where the second inequality follows from Cauchy-Schwarz. It follows by Lemma 5.1 and the Lindeberg-Levy

CLT that (
L1,G

L0,G

)
d−→ N

(
02,

(
Var[Ȳg(1)]π 0

0 Var[Ȳg(0)](1− π)

))
,

where we have used Assumption 2.1 to simplify the expression for the covariance matrix. By Assumption

2.1.(b), the law of large numbers and Slutsky’s theorem,

√
G(θ̂2 − θ2)

d−→ N(0, σ2
1) ,

where

σ2
1 =

(
1
π − 1

1−π

)( Var[Ȳg(1)]π 0

0 Var[Ȳg(0)](1− π)

)(
1
π

− 1
1−π

)
.

Expanding and simplifying this expression gives us our result.

5.5 Proof of Theorem 3.3

Proof. Using Assumption 2.1 and Assumptions 2.2.(c)–(e), it can be shown using similar arguments to those

used in the proof of Theorem 3.2 that

E
[
Ȳ rg I{Ag = a}

]
= E

[
Ȳg(a)rI{Ag = a}

]
<∞ ,

for r ∈ {1, 2}. Hence by Lemma 5.1 and the law of large numbers,

1

G

G∑
g=1

Ȳ 2
g I{Ag = a} P−→ E[Ȳg(a)2I{Ag = a}] ,

1

G

G∑
g=1

ȲgI{Ag = a} P−→ E[Ȳg(a)I{Ag = a}] .

Then by the continuous mapping theorem and the law of large numbers,

V̂arG[Ȳg(1)]
P−→ E[Ȳg(1)2Ag]

π
−
(
E[Ȳg(1)Ag]

π

)2

= Var[Ȳg(1)] ,
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where the last equality follows from Assumption 2.1. Similarly,

V̂arG[Ȳg(0)]
P−→ Var[Ȳg(0)] .

By the continuous mapping theorem it then follows that

σ̂2
1,G

P−→ 1

π
Var

[
Ȳg (1)

]
+

1

1− π
Var

[
Ȳg (0)

]
= σ2

1 ,

as desired.

5.6 Proof of Theorem 3.4

Proof. By Assumption 2.2.(f),

θ̂2,G − θ2 =

∑
1≤g≤GNgȲg(1)Ag∑

1≤g≤GNgAg
−
∑

1≤g≤GNgȲg(0)(1−Ag)∑
1≤g≤GNg(1−Ag)

−
(
E[NgȲg(1)]

E[Ng]
− E[NgȲg(0)]

E[Ng]

)
.

Re-grouping,

√
G(θ̂2,G − θ2) =

1
1
G

∑
1≤g≤GNgAg

L1,G −
1

1
G

∑
1≤g≤GNg(1−Ag)

L0,G −
E[NgȲg(1)]

E[Ng]

E[NgAg]
1
G

∑
1≤g≤GNgAg

LN1,G

+
E[NgȲg(0)]

E[Ng]

E[Ng(1−Ag)]
1
G

∑
1≤g≤GNg(1−Ag)

LN0,G

where

L1,G :=
1√
G

∑
1≤g≤G

(
NgȲg(1)Ag − E[NgȲg(1)Ag]

)
L0,G :=

1√
G

∑
1≤g≤G

(
NgȲg(0)(1−Ag)− E[NgȲg(0)(1−Ag)]

)
LN1,G :=

1√
G

∑
1≤g≤G

(
NgAg

E[NgAg]
− 1

)

LN0,G :=
1√
G

∑
1≤g≤G

(
Ng(1−Ag)

E[Ng(1−Ag)]
− 1

)
.

Using Assumption 2.1 and Assumptions 2.2.(c)–(e), it can be shown using similar arguments to those used

in the proof of Theorem 3.2 that

E[
(
NgȲg(a)I{Ag = a})2

]
<∞ ,

E

[(
NgI{Ag = a}

E[NgI{Ag = a}]

)2
]
<∞ .

23



It thus follows from Lemma 5.1 and the Linderberg-Levy CLT that


L1,G

L0,G

LN1,G

LN0,G

 d−→ N

04,


σ2(1) ρ10 ρ1N1

ρ1N0

ρ10 σ2(0) ρ0N1
ρ0N0

ρ1N1
ρ0N1

σ2
N (1) ρN1N0

ρ1N0
ρ0N0

ρN1N0
σ2
N (0)


 ,

where

σ2(1) = Var(NgȲg(1)Ag), σ2(0) = Var(NgȲg(0)(1−Ag)),

σ2
N (1) = Var

(
NgAg

E[NgAg]

)
, σ2

N (0) = Var

(
Ng(1−Ag)

E[Ng(1−Ag)]

)
,

ρ10 = Cov(NgȲg(1)Ag, NgȲg(0)(1−Ag)), ρ0N1 = Cov

(
NgȲg(0)(1−Ag),

NgAg
E[NgAg]

)
ρ1N1 = Cov

(
NgȲg(1)Ag,

NgAg
E[NgAg]

)
, ρ0N0 = Cov

(
NgȲg(0)(1−Ag),

Ng(1−Ag)
E[Ng(1−Ag)]

)
,

ρ1N0
= Cov

(
NgȲg(1)Ag,

Ng(1−Ag)
E[Ng(1−Ag)]

)
, ρN1N0

= Cov

(
NgAg

E[NgAg]
,
Ng(1−Ag)

E[Ng(1−Ag)]

)
.

By Assumption 2.1, Lemma 5.1, the law of large numbers, and Slutsky’s theorem, we thus have that

√
G(θ̂2 − θ2)

d−→ N(0, V ) ,

where

V =
(

1
E[Ng]π − 1

E[Ng ](1−π) −E[NgȲg(1)]
E[Ng ]

E[NgȲg(0)]
E[Ng ]

)


σ2(1) ρ10 ρ1N1 ρ1N0

ρ10 σ2(0) ρ0N1
ρ0N0

ρ1N1 ρ0N1 σ2
N (1) ρN1N0

ρ1N0
ρ0N0

ρN1N0
σ2
N (0)




1
E[Ng]π

− 1
E[Ng](1−π)

−E[NgȲg(1)]
E[Ng ]

E[NgȲg(0)]
E[Ng ]

 .

Expanding and simplifying this expression gives us our result.

5.7 Proof of Theorem 3.5

Proof. Using Assumptions 2.1, 2.2, and Lemma 5.1, it can be shown by repeated applications of the law of

large numbers, the continuous mapping theorem, and a bit of algebra that

σ̂2
2,G(a)

P−→ 1

E[Ng]2P{Ag = a}
E

( Ng
|Sg|

)2
∑
i∈Sg

εi,g(a)

2
 .

The result then follows by the continuous mapping theorem.
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