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Abstract

Algorithms are increasingly used to guide consequential decisions, such as who
should be granted bail or be approved for a loan. Motivated by growing empirical
evidence, regulators are concerned about the possibility that the errors of these al-
gorithms differ sharply across subgroups of the population. What are the tradeoffs
between accuracy and fairness, and how do these tradeoffs depend on the inputs to
the algorithm? We propose a model in which a designer chooses an algorithm that
maps observed inputs into decisions, and introduce a fairness-accuracy Pareto fron-
tier. We identify how the algorithm’s inputs govern the shape of this frontier, showing
(for example) that access to group identity reduces the error for the worse-off group
everywhere along the frontier. We then apply these results to study an “input-design”
problem where the designer controls the algorithm’s inputs (for example, by legally
banning an input), but the algorithm itself is chosen by another agent. We show that:
(1) all designers strictly prefer to allow group identity if and only if the algorithm’s
other inputs satisfy a condition we call group-balance; (2) all designers strictly prefer
to allow any input (including potentially biased inputs such as test scores) so long as
group identity is permitted as an input, but may prefer to ban it when group identity
is not.

∗We thank Nageeb Ali, Simon Board, Krishna Dasaratha, Will Dobbie, Sergiu Hart, Peter Hull, Navin
Kartik, Yair Livne, and Sendhil Mullainathan for helpful comments, and National Science Foundation Grant
SES-1851629 for financial support. We also thank Andrei Iakovlev for valuable research assistance on this
project.
†Northwestern University
‡UCLA
§Princeton University

1



1 Introduction

In 2016, an algorithm used to guide decisions about who should receive bail was revealed

to have a false positive rate (i.e., incorrectly classifying a criminal defendant as high-risk

of future offense) that was twice as high for non-white defendants as for white defendants

(Angwin and Larson, 2016). As algorithms are increasingly used to guide important deci-

sions, policymakers have become concerned with the possibility that algorithms are unfair, in

the sense that their errors differ sharply across subgroups of the population. These concerns

are supported by a growing body of empirical research on algorithmic predictions for need

of medical treatment (Obermeyer et al., 2019), criminal reoffense (Arnold et al., 2021), and

mortgage default (Fuster et al., 2021).

Fairness, however, is not the only criterion that matters—algorithm designers also care

about the algorithm’s accuracy. This paper seeks to understand how the tradeoff between

these objectives changes based on the inputs available to the algorithm. Besides our basic

theoretical interest in this problem, we are motivated by practical challenges regarding algo-

rithm design and regulation. For example, what are the consequences for either group when

the algorithm is permitted access to group identity? If an input is biased against a particular

group (in the sense of being systematically less informative for that group), will sufficiently

fairness-minded designers prefer to ban this input?

To answer these questions, we propose a framework in which a designer chooses an

algorithm that takes observed covariates as inputs (e.g., criminal background, psychological

evaluations, social network data) and outputs an action (e.g., whether or not to recommend

bail). The algorithm’s consequences for any given individual are measured using a loss

function, which can be interpreted either as a measure of the inaccuracy of the algorithm’s

output decision (our leading interpretation) or as the disutility received by the individual.

We then aggregate losses within two pre-defined groups, group r (red) and group b (blue).

Each group’s error is the expected loss for individuals of that group. An algorithm is more

accurate if it implies lower errors for both groups, and more fair if it implies a smaller

difference between the two groups’ errors.

We do not commit to a single “right” way of trading off these goals. Instead, we study

the class of fairness-accuracy preferences that are consistent with the following order: one

pair of group errors Pareto-dominates another if the former involves smaller errors for both

groups (greater accuracy) and also a smaller difference between group errors (greater fair-

ness).1 This weak criterion accommodates a broad range of designer preferences, including

for example Utilitarian designers (who minimize the aggregate error in the population),

1We do not take a stance on the normative desirability of these preferences, instead interpreting our class
as encompassing the broad range of designer preferences that could be relevant in practice.
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Rawlsian designers (who minimize the greater of the two group errors), and Egalitarian de-

signers (who minimize the difference between group errors). The fairness-accuracy Pareto

frontier is the set of all feasible group error pairs (given the inputs to the algorithm) that

are Pareto-undominated.

Our results identify a simple property of the algorithm’s inputs that is critical to the

shape of the fairness-accuracy Pareto frontier. For each group, consider the algorithm that

minimizes that group’s error (without regard for the other group’s error). If each group’s

optimal algorithm leads to a lower error for itself than the other group, then we say that the

covariates are group-balanced. Otherwise, we say the covariates are group-skewed. Roughly

speaking, covariates can be group-skewed if they are systematically more informative about

one group than another. For example, if individuals belonging to a lower socioeconomic

(SES) class are less likely to go to the hospital in case of chronic illness, the covariate

corresponding to the number of past hospital visits may be more informative about need of

medical care for high SES individuals than for low SES individuals (Obermeyer et al., 2019).

The algorithm (based on this covariate alone) that is best for the low SES group may result

in a higher error for this group than for the high SES group.

Our first result says that depending on whether inputs are group-balanced or group-

skewed, the fairness-accuracy frontier takes either of two possible forms, as depicted in

Figure 1.
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Figure 1: The Fairness-Accuracy Pareto Frontier.

In both cases, the frontier is a part of the lower boundary of the feasible set, namely

the error pairs that are implementable using some algorithm. In the case of group-balanced

inputs, the frontier begins at the point that is best for group r (labeled R) and ends at the
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point that is best for group b (labeled B). Moving along the frontier increases one group’s

error while decreasing the other’s. In the case of group-skewed inputs, the frontier again

spans the lower boundary of the feasible set from the best point for group r to the best point

for group b. However, in this case the Pareto frontier also includes an additional segment

(from B to the fairness-maximizing point F ) along which both groups’ errors increase but

their gap decreases.

Can a policy proposal that increases errors for both groups, but reduces the gap between

group errors, be justified by fairness considerations? If the algorithm’s inputs are group-

balanced, then our characterization implies that the answer is no: Uniformly increasing

both groups’ errors necessarily moves off the Pareto frontier, and so cannot be optimal

for any designer, regardless of the designer’s preferences. Intuitively, group-balance means

that inputs do not favor any one particular group, so it is possible to increase fairness by

redistributing errors from one group to another. On the other hand, if inputs are group-

skewed (as in the healthcare example above), it may be that the only way to decrease the

gap in errors is to increase errors for both groups. A designer who places sufficient weight

on fairness relative to accuracy may prefer to do this.

We next apply this characterization to derive more specific results for the important

special case where covariates reveal group identity. When group identity is known to the al-

gorithm, then everywhere along the Pareto frontier, the disadvantaged group (i.e., the group

with the higher error) receives its minimal feasible error. Indeed, we show that access to

group identity must reduce the disadvantaged group’s error, regardless of how the designer

prefers to trade off fairness and accuracy. Intuitively, access to group-identity permits sepa-

ration of the rules used for each group, so it possible to reduce either group’s error without

changing the error for the other group. All else equal, reducing the error of the disadvan-

taged group not only weakly improves accuracy, but also improves fairness, and thus must

be preferred by all designers with preferences satisfying our Pareto dominance criterion. In

contrast, depending on the designer’s preferences, access to group identity may lead to a

new outcome that increases the error for the advantaged group.

In the second half of the paper, we investigate what happens if the designer does not

choose the algorithm, but instead controls the inputs of the algorithm. This question of

input design is motivated by settings in which a designer has fairness concerns, but the

agent setting the algorithm does not. For example, a judge (agent) determining sentencing

may seek to maximize the number of correct verdicts, while a policymaker (designer) may

additionally prefer that the accuracy of the judge’s verdicts is equitable across certain social

groups. In these cases, the policymaker can pass regulation that restricts the inputs available

to the algorithm, for example, by excluding the use of a specific input.
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Figure 2: Depiction of the Pareto frontier in the case where X reveals G.

We model this input design problem by supposing that the designer chooses a garbling of

the available inputs, and an agent chooses an algorithm (based on the garbling) to maximize

accuracy. We show that under weak conditions, it is without loss for the designer to only

control the algorithm’s inputs. That is, any error pair that a designer would choose to

implement given full control of the algorithm can also be achieved under input design.

We next consider whether the designer might choose to exclude a covariate entirely from

use by the agent in the algorithm. First, we consider the important case of excluding group

identity as an algorithmic input. We show that if and only if the remaining covariates are

group-balanced, then excluding group identity is not optimal for any designer, including

the Egalitarian designer who minimizes the difference in group errors. These results show

that although conditioning on group identity is unfair in terms of disparate treatment (i.e.,

whether the policy discriminates based on group identity), it may be necessary to ensure

fairness in terms of disparate impact (i.e., whether the adverse effects of the policy are

disproportionately borne by a specific group).

Next, we consider the consequences of excluding covariates other than group identity

(e.g., excluding test scores as an input into college admissions decisions). We show that when

group identity is also permitted, completely excluding any covariate makes every designer

strictly worse off, so long as that covariate satisfies a minimally informative condition we call

“decision-relevance.” Decision-relevance does not depend on whether the covariate is biased

towards either group. Our result thus suggests the following: So long as group identities

are permissible inputs for college admission decisions (as is the case in most states in the

US), then excluding test scores is welfare-reducing for all designers—regardless of how biased

the score may be. On the other hand, if group identity is not permitted as an input into
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college admissions decisions (as is the case in the state of California2), we provide an example

demonstrating that the optimal garbling of covariates (for some designer preference) may

indeed involve completely excluding that covariate.

1.1 Related Literature

Our work builds on a recent literature in computer science on algorithmic fairness (see Klein-

berg et al. (2018) and Roth and Kearns (2019) for overviews). Kleinberg et al. (2017) and

Chouldechova (2017) demonstrated that certain notions of fairness (equal false positive rates,

equal false negative rates, calibration) cannot be simultaneously satisfied. This important

work pointed not only to the necessity of tradeoffs between fairness and traditional goals

such as accuracy, but also to potentially different definitions of fairness. A large literature

has explored alternative notions of fairness—for example, fairness defined over individuals

rather than groups (Dwork et al., 2012; Kearns et al., 2019), fairness that takes into account

the endogenous decisions of agents (Jung et al., 2020), and fairness for when the algorithm

does not directly output a decision, but instead guides a human decision-maker (Rambachan

et al., 2021; Gillis et al., 2021). Concurrently, a separate branch of the literature has focused

on developing novel algorithms that optimize for a more traditional goal (e.g, efficiency or

profit) subject to a constraint on fairness (Hardt et al., 2016; Diana et al., 2021).

Our work differs from the previous literature in the following important ways. First,

rather than developing an optimal algorithm subject to a fairness constraint (e.g., requiring

approximately equal group errors), we solve for the Pareto frontier between fairness and

accuracy. Several authors have pointed to such a frontier as a useful conceptual tool (Roth

and Kearns, 2019), and others have estimated this frontier for specific data sets (Wei and

Niethammer, 2020) or provided computationally efficient approaches for deriving this frontier

Chohlas-Wood et al. (2021). Our work provides theoretical results for how this frontier will

look depending on statistical properties of the algorithm’s inputs.

Second, we use a general definition of group error, which nests several of the popular

fairness metrics in the literature, but can also be interpreted more broadly as (negative)

group utility.3 This more general formulation facilitates comparison between our framework

and the literature in philosophy and economics, which considers the question of how to choose

between different distributions of outcomes (broadly construed) across individuals within a

society. Several classical perspectives have natural analogues in our problem. The familiar

2Proposition 209 (1996) states that “the government and public institutions cannot discriminate against
or grant preferential treatment to persons on the basis of race, sex, color, ethnicity, or national origin in
public employment, public education, and public contracting.”

3See Corbett-Davies and Goel (2018) for a critical review of several of the popular error metrics.
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utilitarian perspective (Harsanyi, 1953, 1955) translates in our framework to a preference that

minimizes the algorithm’s average error across all individuals, without regard for how the

algorithm’s errors may differ across groups. At the other extreme, a pure egalitarian or luck

egalitarian4 seeks to eliminate inequality across groups (Parfit, 2002; Knight, 2013).5 Still

other approaches are intermediate; for example, the Rawlsian approach maximizes the payoff

for the most disadvantaged individuals. Our model also connects to the large literature on

social preferences, such as Fehr and Schmidt (1999)’s model of inequity aversion in games—

in which players place negative weight on the absolute difference between their payoffs—and

Grant et al. (2010)’s generalization of utilitarianism that allows for non-linear aggregation

of individual payoffs (to capture fairness considerations). Our Pareto frontier accommodates

these various perspectives, some of which we define and use as benchmarks throughout the

paper.

Third, in Section 5, we search over possible inputs from a large space of noisy transforma-

tions of the available covariates.6 Here, our (input design) approach follows the information

design literature (Kamenica and Gentzkow, 2011; Bergemann and Morris, 2019) with the ad-

ditional constraint that the information structure must be a garbling of a primitive covariate

vector. Relative to this literature, our analysis differs in considering the Pareto frontier with

respect to a class of Sender preferences, and our focus on fairness considerations introduces

non-linearities that complicate the Sender’s objective function.7 We view commitment to

the information policy in our setting as legally enforceable. (See for example Yang and Dob-

bie (2020), which summarizes the extant law and proposes new legal policies for mitigating

algorithmic bias.)

Finally, our framework relates to the literature on statistical discrimination (see Fang and

Moro (2011) for a survey). In particular, Chan and Eyster (2003) presents a model of college

admissions in which restricting ability to condition on race results in poorer student quality,

and Lundberg (1991) presents a model in which prohibiting firms to condition wages on

group identity reduces efficiency. Our results regarding the role of group identity as an input

(Section 4) and the consequences of banning group identity (Section 5.2.1) involve similar

forces, but we go beyond this by characterizing the full Pareto frontier (as preferences over

4Luck egalitarians ask that people are made equal “in the benefits and burdens that accrue to them via
brute luck” (namely, luck that falls on a person in ways beyond their control), but allows for inequities that
result from intentional choices. Most of the group identities that are relevant in our motivating applications
(see Section 2.1) are not chosen by individuals.

5Derek Parfit’s “Principle of Equality” asserts that “it is bad in of itself if some people are worse off than
others.”

6This distinguishes our approach from Rambachan et al. (2021), who formulate a screening model in
which a designer chooses which inputs are permissible, and another agent chooses the algorithm.

7In particular, the Sender’s objective function is not posterior-separable and cannot be expressed as a
straightforward expectation of payoffs conditional on realized posteriors.
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how to trade off fairness and accuracy vary) when group identity is revealed, and link the

consequences of banning group identity to a simple statistical property of the inputs (group

balance).

2 Framework

2.1 Setup and Notation

Consider a population of individuals, each possessing a covariate vector X taking values in

the finite set X , a type Y taking values in the finite set Y ,8 and a group identity G taking

values r or b.9 Throughout we think of G,X, Y as random variables with joint distribution

P. For each group g ∈ {r, b}, we let pg ≡ P(G = g) > 0 denote the fraction of the overall

population that belongs to group g.

Each individual receives an action in A ≡ {0, 1} determined by an algorithm f : X →
∆(A) that maps covariates (inputs) into distributions over actions. The variables Y and G

are not directly observed by the designer and so cannot be used as inputs into the algorithm,

but may be correlated with X. (Section 4 considers the special case where X reveals G.)

Some motivating examples of types, group identities, covariates, and actions are given below:

Healthcare. Y is need of treatment, G is socioeconomic class (low SES or high SES), and

the action is whether the individual receives treatment. The covariate vector X includes

possible attributes such as image scans, number of past hospital visits, family history of

illness, and blood tests.

Credit scoring. Y is creditworthiness, G is gender, and the action is whether the bor-

rower’s loan request is approved. The covariate vector X includes possible attributes such

as purchase histories, social network data, income level, and past defaults.10

Bail. Y is whether an individual is high-risk or low-risk of criminal reoffense, G is

race (white or non-white), and the action is whether the individual is released on bail.

The covariate vector X includes possible attributes such as the individual’s past criminal

record, psychological evaluations, family criminal background, number of friends who are

8We make the finite assumption to simplify various notations in the exposition. All of our results generalize
to infinite covariate values and/or infinite types, with the exception of Proposition B.2 in the supplementary
appendix, where we make clear the use of the finite assumption.

9Throughout, we assume the definition of the relevant groups to be a primitive of the setting, determined
by sociopolitical precedent and outside the scope of our model.

10The Apple Card was investigated for gender discrimination when users noticed in cer-
tain cases that smaller lines of credit were offered to wives than to their husbands (but
subsequently cleared of these charges). See https://www.theverge.com/2021/3/23/22347127/

goldman-sachs-apple-card-no-gender-discrimination.
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gang members, frequency of moves, or drug use as a child.11

Job hiring. Y is whether a job applicant is high or low quality, G is citizenship (immigrant

or domestic applicants), and the action is whether the applicant is hired. The covariate X

includes possible attributes such as past work history, resume, and references.

The consequence of choosing action a for an individual whose true type is y is evaluated

using a loss function ` : A × Y → R. We further aggregate these losses across individuals

within each group:

Definition 1. For any algorithm f and group g ∈ {r, b}, the group g error is

eg(f) := E [`(f(X), Y ) | G = g] .

That is, the group g error is the average loss for members of group g. We will subsequently

say that an algorithm is more accurate if it implies lower group errors, and more fair if it

implies a smaller difference between the two groups’ errors.

Our leading interpretation of the loss function is a measure of inaccuracy of the algo-

rithm’s decision, and we refer to eg(f) as error throughout the paper. But since we impose

no restrictions on the loss function ` (in particular, we do not restrict its range to be pos-

itive), we can alternatively interpret `(a, y) as the disutility received by an individual with

type y and action a, and eg(f) as the average disutility for members of group g. These two

interpretations are contrasted below:

Example 1 (Measure of Inaccuracy). The type Y ∈ {0, 1} is whether the individual is high

or low ability, and the action a ∈ {0, 1} is whether the individual is hired for a job. The loss

function is

`(a, y) =

{
0 if a = y

1 if a 6= y
(1)

Then eg(f) is the probability of an inaccurate assessment of an individual from group g, and

the fairness of the algorithm f regards whether members of one group are more likely to be

wrongly evaluated than members of the other.

Example 2 (Measure of Disutility). Fix Y and a as in Example 1. The loss function is

`(a, y) =

{
0 if a = 1

1 if a = 0
(2)

11These example covariates are based on the survey used by the Northpointe COM-
PAS risk tool. See for reference: https://www.documentcloud.org/documents/

2702103-Sample-Risk-Assessment-COMPAS-CORE.html.
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and reflects individuals’ disutility from the outcome: Individuals prefer to be hired regardless

of type. Then, eg(f) is the fraction of individuals in group g who are not hired, and the

fairness of the algorithm f regards whether members of one group are more likely to be hired

than members of the other. If all members of group r are low ability, while all members of

group b are high ability, exclusive hiring of individuals from group b is fair using the loss

function in Example 1, but not fair using this loss function.

We view the choice of the right loss function as application-specific, and demonstrate results

that hold for arbitrary `.

2.2 Fairness-Accuracy Preferences

We suppose that the designer cares about both accuracy and fairness, preferring lower group

errors and also preferring for errors to differ less across groups.12 We do not privilege a

specific way of trading off between these two objectives and view the following partial order

as allowing for the largest set of plausible designer preferences.

Definition 2. Say that a pair of group errors (er, eb) Pareto-dominates another pair (e′r, e
′
b)

if er ≤ e′r, eb ≤ e′b, and |er − eb| ≤ |e′r − e′b|, with at least one of these inequalities strict.13

We subsequently consider the class of preferences respecting this Pareto-dominance order;

that is, whenever (er, eb) Pareto-dominates (e′r, e
′
b), then the designer strictly prefers (er, eb)

to (e′r, e
′
b).

14 Prominent examples in this class include:

Example 3 (Utilitarian). The designer evaluates errors e = (er, eb) according to the weighted

sum in the population. That is, let

wu(e) = −prer − pbeb

and let �u be the ordering represented by wu, i.e. e �u e′ if and only if wu(e) ≥ wu(e
′).

(Note that the minority population, which has a lower weight by definition, will be natu-

12As Kasy and Abebe (2021) point out, an algorithm that is fair in the narrow context of one decision
may perpetuate or exacerbate inequalities within a larger context. We consider a standalone and static
framework in the present paper, leaving to future work the interesting question of how these algorithmic
design decisions might impact outcomes in a larger dynamic game.

13It is straightforward to see that all of our results extend if |er−eb| is replaced with any strictly increasing
function of |er − eb|.

14Our definitions for the Rawlsian and Egalitarian designers consider fairness over groups, rather than
fairness over individuals. We formulate their preferences in this way because of our motivating settings, but
we note also a conceptual challenge with the latter approach: Since individuals cannot be distinguished except
through their measured covariates, the “most disadvantaged person” corresponds to the most disadvantaged
realization of the measured covariates, which is endogenous to which covariates are measured. Our approach
of defining the group as the unit of person (with G pre-defined) avoids this complication.
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rally discounted as a group in this evaluation.) We say that a designer is Utilitarian if his

preference over error pairs is �u.
Example 4 (Rawlsian). The designer evaluates errors e = (er, eb) according to the greater

error. That is, let

wr(e) = −max {er, eb} .

and let �r be the corresponding ordering represented by wr. We say that a designer is

Rawlsian if his preference over error pairs is �r.
Example 5 (Egalitarian). The designer evaluates errors e = (er, eb) according to their differ-

ence. That is, let

we(e) = − |er − eb|

and let �e be the lexicographic order that first evaluates errors according to we and then

compares ties using the Utilitarian utility wu. We say that a designer is Egalitarian if his

preference over error pairs is �e.
The Utilitarian, Rawlsian and Egaliatarian designers have very different views on how

to trade off fairness and accuracy. We interpret this class of preferences as encompassing

the broad range of designer preferences that could be relevant in practice, and do not take

a stance on their normative desirability. Many of our subsequent results demonstrate a

statement that holds for all preferences in this set, and so imply analogous results if one

applies a more restrictive criterion for the set of permitted preferences.

We suppose that the designer can flexibly choose from the set FX of all mappings f :

X → ∆(A), so the feasible set of group error pairs are those that can be implemented by

some algorithm. The Pareto frontier corresponds to all group error pairs that are Pareto-

undominated in the feasible set.

Definition 3. The feasible set given covariate X is

E(X) ≡ {(er(f), eb(f)) : f ∈ FX}.

The Pareto frontier given X, denoted P(X), is the set of all pairs (er, eb) ∈ E(X) that are

Pareto-undominated, i.e. no other error pair (e′r, e
′
b) ∈ E(X) Pareto-dominates it.

In Appendix B.1, we provide three characterizations relating the Pareto frontier to the

class of designer preferences respecting the Pareto dominance relation in Definition 2: First,

we show that the Pareto frontier is the smallest set containing an optimal point for every

permitted designer preference, so our Pareto frontier is minimal in the sense that we cannot

exclude any points from it without hurting some designer. Second, we show that for every
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point in the Pareto frontier, there is some designer preference (respecting the Pareto domi-

nance relation) for whom that point is uniquely optimal. Third, we characterize the Pareto

frontier as the set of optimal points for a class of “simple” designer preferences, which are

linear in accuracy (group errors) and fairness (difference in group errors).

3 The Fairness-Accuracy Pareto Frontier

We now characterize the fairness-accuracy Pareto frontier. In Section 3.1, we introduce a

key statistical property of X, which governs the shape of P(X). In Section 3.2, we provide

a characterization of the Pareto frontier and highlight when tradeoffs between fairness and

accuracy are particularly stark.

3.1 Key Property: Group-Balance

We begin by defining the property of group-balance that will play a key role in several of

our results, including our characterization of the Pareto frontier. To define this property,

we first introduce certain extreme points of the feasible set. Since the feasible set E(X) is

closed and convex (see Lemma A.1), these points are well-defined.

Definition 4 (Group Optimal Points). For any covariate X, define

RX ≡ arg min
(er,eb)∈E(X)

er

to be the feasible point that minimizes group r’s error, and define

BX ≡ arg min
(er,eb)∈E(X)

eb

to be the feasible point that minimizes group b’s error. In both cases, if the minimizer is not

unique, we break ties by choosing the point that minimizes the other group’s error. We let

GX denote the group optimal point for group g.

Group optimal points can be easily derived from data. For instance, to calculate RX , set

the algorithm to choose the optimal action for group r for each realization of X (breaking

ties in favor of group b).15 RX is then the error pair resulting from this algorithm.

15Throughout, when we say “the optimal action for group g at realization x,” we mean any action a∗ ∈
arg mina∈A E[`(a, Y ) | X = x,G = g].

12



Definition 5 (Fairness Optimal Point). For any covariate X, define

FX ≡ arg min
(er,eb)∈E(X)

|er − eb|

to be the point that minimizes the absolute difference between group errors. If the minimizer

is not unique, we choose the point that further minimizes either group’s error.16

While RX and BX respectively denote the points that minimize group r and b’s errors,

the group whose error is minimized need not be the group with the lower error. For example,

suppose P(Y = 1 | G = r) = P(Y = 1 | G = b) = 1/2, and X is a binary score with the

following conditional probabilities:

X = 0 X = 1

Y = 0 3/4 1/4

Y = 1 1/4 3/4

X = 0 X = 1

Y = 0 2/3 1/3

Y = 1 1/3 2/3

G = r G = b

Let the loss function ` be the misclassification rate as defined in (1). Then the b-optimal

point BX is achieved by the algorithm that maps X = 1 to a = 1 and X = 0 to a = 0, which

leads to a higher error of 1/3 for group b, compared to the error of 1/4 for group r. Thus,

using X to maximally reduce errors for group b results in an even greater reduction in error

for group r. The property of group-balance precisely rules this out.

Definition 6. Covariate X is:

• r-skewed if er < eb at RX and er ≤ eb at BX

• b-skewed if eb < er at BX and eb ≤ er at RX

• group-balanced otherwise

If X is g-skewed for either group g, then we say it is group-skewed.

In words, X is r-skewed if group r’s error is smaller than group b’s error not only at the

r-optimal point RX , but also at the b-optimal point BX . Geometrically, this means that RX

and BX fall to the same side of the 45 degree line. In contrast, the covariate X is group-

balanced if at each group’s optimal point, its error is lower than that of the other group.

Geometrically, this means that RX and BX fall to opposite sides of the 45 degree line.

16It can be shown that this point is the same regardless of which group is used to break the tie.
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3.2 Characterization of the Frontier

Depending on whether the covariates X are group-balanced or group-skewed, the Pareto

frontier P(X) falls into either of two categories. Given two points on the boundary of a

compact set, we use lower boundary to mean the part of the boundary of the set between

the two points and below the line segment connecting the two.

Theorem 1. The Pareto set P(X) is the lower boundary of the feasible set E(X) between

(a) RX and BX if X is group-balanced

(b) GX and FX if X is g-skewed

These two cases are depicted in Figure 3. When X is group-balanced and RX and BX

are distinct, the two points fall on opposite sides of the 45-degree line (Panel (a)). The

Pareto frontier is that part of the lower boundary of the feasible set connecting these two

points. When X is r-skewed (Panel (b)), then both RX and BX fall on the same side of the

45-degree line, and the Pareto frontier is that part of the lower boundary of the feasible set

connecting RX to FX .17

45�

eb

er

eb

45�

BX

RX

RX

BX

er

E⇤(X)

E(X)

E(X)

(a) X is group-balanced (b) X is r-skewed

FX

FX

Figure 3: Example feasible set and Pareto frontier for (a) a group-balanced covariate vector X and (b) an
r-skewed covariate vector X.

Theorem 1 immediately implies an equivalence between group skewness and the existence

of a particularly strong kind of fairness-accuracy conflict along the Pareto frontier.

Definition 7. Say that (er, eb) and (e′r, e
′
b) exhibit a strong fairness-accuracy conflict if er ≤ e′r

and eb ≤ e′b, while |er − eb| > |e′r − e′b|.
17Note that when X is group-skewed, the fairness-optimal point FX may not lie on the 45 degree line.
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A strong fairness-accuracy conflict means that the tradeoff between fairness and accuracy

is especially stark: one designer’s optimal point may involve higher errors for both groups

relative to another designer’s optimal point. Both the Utilitarian and Rawlsian designers

consider uniform increases across group errors to be welfare-reducing, but a designer who

places sufficient weight on fairness (e.g., the Egalitarian designer) might prefer to increase

both groups’ errors in order to reduces the difference between them. Our next corollary

states that such disagreements are relevant only when X is group-skewed.

Corollary 1. Suppose FX is distinct from RX and BX . Then there are points in P(X) that

exhibit a strong fairness-accuracy conflict if and only if X is group-skewed.

This corollary is evident from Figure 3. When X is group-balanced (Panel (a)), the

Pareto frontier consists exclusively of negatively-sloped line segments, so moving along the

frontier necessarily lowers one group’s error while raising another’s. In contrast, when X is

r-skewed (Panel (b)), then that part of the frontier connecting BX to FX has a positive slope.

Moving along this part of the frontier thus increases errors for both groups, but decreases

the difference between these errors. A symmetric observation holds in the case where X is

b-skewed.

Can a policy proposal that increases errors for both groups, but reduces the gap between

group errors, be justified by fairness considerations? If the algorithm’s inputs are group-

balanced, then our characterization implies that the answer is no: Uniformly increasing

both groups’ errors necessarily moves off the Pareto frontier, and so cannot be optimal for

any designer, regardless of the designer’s preferences. On the other hand, if inputs are

group-skewed, it may be that the only way to decrease the gap in errors is to increase

errors for both groups. In practice, the kind of covariates that are likely to be group-

skewed (and hence, create strong fairness-accuracy conflicts) are those that are systematically

more informative about one group than another. In the healthcare example for instance,

if individuals belonging to a lower socioeconomic class are less likely to go to the hospital

in case of a chronic sickness, the number of past hospital visits (as a covariate) may be

more informative about need of medical care for wealthier than less wealthy individuals

(Obermeyer et al., 2019). Conditioning on this covariate would reduce errors for both groups

but reduces errors for wealthy individuals by more. A sufficiently fairness-minded designer

may prefer to condition less on this covariate (and move closer to the fairness-optimal FX

on the Pareto frontier) if the error is initially higher for the lower socioeconomic class.

If we interpret P as a prior informed by historical data, then a similar asymmetry can

emerge when there is substantially less historical data on the relationship between observed

covariates X and type Y for one of the groups. For example, if medical data is drawn

from experiments that predominantly involved men, then beliefs about need-for-treatment
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for women may be less accurate than for men at every symptom profile. Again, this would

mean that a way to increase fairness is to condition less on the available information, which

reduces accuracy for both groups but decreases the gap in errors. Whether this change is an

improvement depends on the designer’s fairness-accuracy preference.

4 Group Identity as an Input

We now study the important case where group identity is an algorithmic input. This could

be because group identity is an input in the covariate vector X, or because group identity is

perfectly correlated with other inputs that are available to the algorithm.18

Definition 8. Say that X reveals G if the conditional distribution G | X = x is degenerate

for every realization x of X.

Proposition 1. Suppose X reveals G. Then the feasible set E(X) is a rectangle whose sides

are parallel to the axes, and P(X) is the line segment from RX = BX to FX .

er

eb

45�

E(X)

RX = BX FX

Figure 4: Example feasible set and Pareto frontier when X reveals G.

An example feasible set and Pareto frontier are depicted in Figure 4. One endpoint, the

Utilitarian-optimal point labeled RX = BX , gives both groups their minimal feasible error.

The other endpoint, the Egalitarian-optimal FX , maximizes fairness. Everywhere along the

Pareto frontier, the worse-off group receives its minimal feasible error, and so:

Corollary 2. If X reveals G, then every point on the Pareto frontier P(X) is optimal for a

Rawlsian designer.

18In Section B.3, we generalize our results to the case when X satisfies a weaker conditional independence
condition).
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To understand this result, consider a simple example where x is the outcome of a lab

test. Suppose that a group b individual needs treatment if and only if x > xb, while a

group r individual needs treatment if and only if x > xr, where xr 6= xb. Without access

to group identity, the algorithm must assign each realization of x to the same action for

individuals in both groups. This links the group errors and limits the feasible error pairs

that the designer can achieve given X alone. If in contrast the algorithm is given access

to group identity, then the designer can set a separate rule for each group—for example,

treating individuals in group r if x > xr and treating individuals in group b if x > xb. By

adjusting either group’s rule, the designer can change one group’s error without affecting the

other. Marginally reducing the larger of the group errors not only weakly improves accuracy,

but also improves fairness, and thus must be preferred by all designers with preferences in

our class. We generalize this insight below, where we show that access to information about

group-identity must improve the error for the worse-off group.

Given a covariate X, say that group g is disadvantaged if the group g error at GX is larger

than the group g′ error at G′X ; that is, the minimal achievable error for group g (given X) is

larger than that for the other group. (In the case of a group-skewed X, the disadvantaged

group receives the higher error at every point on the Pareto frontier.)

Definition 9. Say that w : R2 → R is a valid designer preference if w respects the Pareto

dominance order in Definition 2, and moreover w achieves a maximum on every compact set.

Corollary 3. Suppose group g is disadvantaged given X. Fix any valid designer preference

w. Then for any optimal point given X,

(e∗r, e
∗
b) ∈ arg min

(er,eb)∈E(X)

w(er, eb),

there exists an optimal point given (X,G),

(e∗∗r , e
∗∗
b ) ∈ arg min

(er,eb)∈E(X,G)

w(er, eb),

such that e∗∗g ≤ e∗g.

This result says that for any designer preference, the disadvantaged group’s error at the

designer’s optimal point given (X,G) must be weakly smaller than its error at the designer’s

optimal point given only X. The corresponding statement for the advantaged group is not

true. For example, when X is r-skewed, the Egalitarian designer may choose to increase

group r’s error when given more information about G (see for example Panel (b) of Figure

6 below). Thus, more information about group identity must weakly decrease the error for
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the disadvantaged group, but may increase the error for the advantaged group.19

5 Control of Algorithmic Inputs

We have so far assumed that the designer directly chooses the best algorithm according to

his preferences over both fairness and accuracy. This is a good description of some settings—

for example, a company may internalize fairness concerns in its hiring algorithm. In other

settings, the algorithm is set by an agent who does not intrinsically care about fairness

across groups, but the inputs used by the algorithm are constrained by a designer who does.

For example, a judge (agent) determining sentencing may seek to maximize the number of

correct verdicts, while a policymaker (designer) may additionally prefer that the accuracy

of the judge’s verdicts is equitable across certain social groups. Or, a bank (agent) may

seek to maximize profit from loan issuance, while a regulator (designer) may prefer that no

subpopulation is shut out from the possibility of obtaining a loan. In these settings, the

designer can often influence the algorithm indirectly by passing regulation that constrains

the algorithm’s inputs, for example by excluding the use of specific covariates available to

the algorithm.

In Section 5.1, we model this interaction by allowing the designer to constrain the inputs

of the algorithm, while the algorithm itself is chosen by another agent. In Section 5.2, we

ask when the designer prefers to completely exclude a given input (e.g., group identity) by

making any information about this input unavailable to the algorithm.

5.1 Input Design for Algorithms

Suppose a designer first determines what data can be legally used as inputs into the algo-

rithm, and then an agent (who cares only about accuracy) chooses an algorithm given the

permitted inputs. Following the information design literature (Kamenica and Gentzkow,

2011; Bergemann and Morris, 2019), we suppose that the designer chooses a garbling of the

covariate vector X, which is represented as a stochastic map T : X → ∆(T ) taking real-

izations of X into distributions over the possible realizations of T .20 Common examples of

garblings include:

19Corollary 3 does not necessarily imply that the disadvantaged group’s welfare increases when group
identity is used, since it could be that the designer cares about inaccuracies (e.g., measuring error using
the loss function (1)), while the individuals care about their outcomes (e.g., measuring welfare using loss
function (2)). See further discussion in Section 6.

20This corresponds to a constrained version of the information design problem, where the designer has
access to garblings of a given information structure X only.
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Example 6 (Banning an Input). X = (X1, X2, X3) and T (x1, x2, x3) = (x1, x2) with proba-

bility 1. In this case, X3 is excluded as an input.

Example 7 (Adding Noise). T (x) = x+ ε where ε is noise independent of X, Y,G.

Example 8 (Coarsening the Input). The space X is partitioned, and T (x) is (with probability

1) the partition element to which x belongs.

We view these garblings as information policies that the designer can potentially commit

to. For example, the “ban-the-box” campaign (Agan and Starr, 2018) restricted employers

from using criminal history as an input into hiring decisions (similar to Example 6), and

Chan and Eyster (2003) report a law school admission process that used only a coarsened

version of the candidates’ LSAT scores (similar to Example 8).21

Given the garbling chosen by the designer, the agent chooses an algorithm f : T → ∆ (A)

that minimizes

αr · er (f) + αb · eb (f)

where αr, αb ≥ 0. That is, the agent maximizes a utility function that is linear and decreasing

in the group errors (without a fairness component).22 Since the agent’s utility is linear in

group error, we can rewrite this utility as

αrer (f) + αbeb (f) =
∑
g

αgE [` (f (T ) , Y ) | G = g]

=
∑
t∈T

pt
∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (f(t), y) ,

where pt is the probability of T = t. Thus, the agent’s problem of minimizing ex-ante error

is equivalent to the following ex-post problem23

f (t) ∈ arg min
a∈A

∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (a, y) . (3)

The special case when αg = pg corresponds to a Utilitarian agent, since the objective function

in (3) reduces to E (` (a, Y ) | T = t). The agent’s utility may involve weights different from

21“Nor does [Boalt Hall, UC Berkeley’s law school] consider candidates’ exact LSAT scores; instead, LSAT
scores are partitioned into intervals, and the admissions committee only learns which interval contains the
candidate’s score” (Chan and Eyster, 2003).

22We view the most practically relevant settings as those where the agent cares about improving accuracy,
but prove additional results in Appendix B.2.1 for the case in which some coefficient αg is negative (so that
the agent’s payoffs are increasing in some group’s error). The case in which the agent additionally values
fairness introduces novel technical complications (see Section 6 for further discussion) and we leave it as an
open problem for future work.

23When the agent’s utility is non-linear in group errors, the ex-ante and ex-post problems are not equivalent
in general.
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the utilitarian weights if errors for the two groups are differentially costly for the agent. For

example, suppose the agent is a bank manager and group b is wealthier than group r. In this

case, loans for group b may be of higher value, so that incorrectly classifying creditworthy

individuals in group r is more costly. This corresponds to scaling the loss ` for group r by

αr/pr > 1.

Definition 10. The pair of group errors (er, eb) is implemented by T if there exists an algorithm

fT satisfying (3) such that (er, eb) = (er(fT ), eb(fT )).

Definition 11. The input-design feasible set given X includes all error pairs that the designer

can implement by choosing different garblings of X to make available to the agent:

E∗(X) ≡ {(er, eb) : (er, eb) is implemented by a garbling T of X}.

The input-design Pareto frontier P∗(X) includes those error pairs (er, eb) ∈ E∗(X) that are

Pareto-undominated in E∗(X).

We show that under relatively weak conditions, it is without loss to have control only

of the algorithm’s inputs: Any error pair that a designer would choose to implement in the

unconstrained problem can also be achieved under input design. To state the result, we

define

e0 = min
a∈A

(αr · E[`(a, Y ) | G = r] + αb · E[`(a, Y ) | G = b])

to be the best payoff that the agent can achieve given no information, and

H = {(er, eb) : αrer + αbeb ≤ e0}

to be the halfspace including all error pairs that improve the agent’s payoff relative to no

information.

Theorem 2 (When Input Design is Without Loss). The following hold:

(a) Suppose X is group-balanced. Then, P∗(X) = P(X) if and only if RX , BX ∈ H.

(b) Suppose X is g-skewed. Then, P∗(X) = P(X) if and only if GX , FX ∈ H.

This result follows from the subsequent lemma, which says that the input-design feasible

set is equal to the intersection of the unconstrained feasible set and H, with an analogous

statement relating the Pareto frontiers.

Lemma 1. For every covariate X, the input-design feasible set is E∗(X) = E(X) ∩H and

the input-design Pareto set is P∗(X) = P(X) ∩H.
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One direction of the lemma is straightforward: The agent’s payoff cannot be made worse

off than if the agent were given no information, so E∗(X) ⊆ E(X) ∩ H. We demonstrate

the converse: Every point in E(X) ∩ H can be implemented by some garbling of X. Our

proof is by construction and garbles X into recommendations of actions. We show that the

obedience constraints reduce precisely to the condition that the agent’s payoff is improved

relative to no information, so the lemma follows. Figure 5 provides an illustration of how

Theorem 2 is implied by Lemma 1.

Lemma 1 and Theorem 2 tell us that input design is always sufficient to recover part of

the original Pareto frontier. Moreover, so long as certain points (RX and BX in the case

of a group-balanced X, or GX and FX in the case of a g-skewed X) improve the agent’s

payoffs relative to no information, then although the designer does not have explicit control

over the algorithm set by the agent, he can induce the agent to choose the designer’s most

preferred outcome. Conversely, when these conditions do not hold, then input design is

indeed limiting; designers with certain preferences are unable to achieve their most preferred

outcomes.
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Figure 5: Depiction of an example input-design Pareto frontier for (a) a group-balanced covariate vector
X and (b) an r-skewed covariate vector X.

5.2 Excluding a Covariate

In practice, constraints on algorithmic inputs sometimes completely ban use of a given covari-

ate. For example, protected group identities such as race and religion are illegal inputs into

lending and hiring decisions,24 and the University of California university system recently

24For example, the Equal Opportunity Act forbids any creditor to discriminate on the basis of “race,
color, religion, national origin, sex or marital status, or age” (see https://files.consumerfinance.gov/f/
201306_cfpb_laws-and-regulations_ecoa-combined-june-2013.pdf), and Title VII of the Civil Rights
Act prohibits discrimination by employers on the basis of “race, color, religion, sex, or national origin” except
in cases where the protected trait is an occupational qualification.
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excluded consideration of standardized test scores in their admissions decisions.25

To study what happens when a covariate is excluded from use, we compare the input

design Pareto frontier when the designer chooses a garbling of (X,X ′) versus when the

designer chooses a garbling of X only. We consider two leading cases: In Section 5.2.1, we

suppose that X ′ is group identity, and in Section 5.2.2, we consider arbitrary X ′ (such as a

test score) under the assumption that X reveals group identity. Appendix B.2.2 reports an

additional result that does not require (X,X ′) to reveal G.

Excluding a covariate can be strictly optimal for the designer, and we provide an example

at the end of Section 5.2.2 showing this—specifically, we construct a covariate X ′ and a

designer preference such that making any information about X ′ available to the agent strictly

reduces the designer’s payoffs. But in the settings of Sections 5.2.1 and 5.2.2, we show that

under weak conditions, the designer strictly benefits from providing some information about

X ′ regardless of his fairness-accuracy preference. Formally, we will demonstrate conditions

for the following:

Definition 12. Say that excluding covariate X ′ over X uniformly worsens the (input design)

frontier if every point in P∗(X) is Pareto-dominated by a point in P∗(X,X ′).
We note that this property does not imply a ranking between completely revealing (X,X ′)

versus completely revealing X. If the designer is constrained to these two choices, then he

may prefer to ban X ′ rather than to reveal it, even when excluding X ′ over X uniformly

worsens the frontier.

5.2.1 Excluding Group Identity

We first consider the consequences of excluding group identity. The property of group balance

(suitably strengthened) turns out to be critical:

Definition 13. Say that X is strictly group-balanced if er < eb at RX and eb < er at BX .

Relative to group-balance, strict group-balance rules out covariate vectors X for which RX =

BX = FX is on the 45 degree line.

Proposition 2. Suppose RX , BX ∈ H. Then, excluding G over X uniformly worsens the

frontier if and only if X is strictly group-balanced.

The assumption RX , BX ∈ H makes the above result easier to state as an if-and-only-if

condition. But it follows from our proof of Proposition 2 that even when this assumption

25See for reference: https://www.nytimes.com/2021/05/15/us/SAT-scores-uc-university-of-california.
html and Garg et al. (2021).
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fails, strict group-balance is a sufficient condition for the frontier to uniformly worsen when

excluding G.

The key observation towards this result is that the minimal (and maximal) feasible error

for both groups is the same given X and given (X,G). Geometrically, this means that

the feasible set given (X,G) is the smallest rectangle containing the feasible set given X.

Moreover, we know that when X is group-balanced, then P∗(X) is characterized by Part

(a) of Theorem 1 while P∗(X,G) is characterized by Proposition 1 (using the equivalence in

Theorem 2 for both cases). As depicted in Panel (a) of Figure 6, the Pareto frontier given

X does not intersect with the frontier given (X,G), so every point on the new frontier (after

excluding G) is dominated by a point on the original frontier. On the other hand, when X

is group-skewed, then the two frontiers necessarily overlap as depicted in Panel (b).
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Figure 6: (a) X is strictly group-balanced and excluding G over X uniformly worsens the
input-design frontier; (b) X is r-skewed and excluding G over X does not uniformly worsen
the input-design frontier.

Proposition 2 implies that for a large class of covariate vectors (any X that is strictly

group-balanced), every designer can strictly improve their payoffs by choosing a garbling

that additionally includes information about G.26 In our setting, conditioning on G allows

the designer to use garblings of X that potentially differ across groups. Traditionally, most

policies that restrict use of inputs—for example, the “ban the box” campaign—apply sym-

metrically across groups. Our result shows that even fairness-minded designers may strictly

prefer to implement noisy transformations that are asymmetric between the two groups.

Such policies may be unfair in terms of of disparate treatment (i.e., whether the policy dis-

criminates between individuals on the basis of group identity), but may be necessary to

impose fairness in terms of disparate impact (i.e., whether the adverse effects of the policy

26We show in Appendix B.2.1 that this result extends even if the agent is adversarial against one of the
groups (i.e., preferring to increase that group’s error) so long as the agent is not “too strongly” adversarial.
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are disproportionately borne by members of a specific group).27 Our analysis helps to for-

malize the tension between these goals, and further suggests how to implement such policies

in practice.

5.2.2 Excluding a Covariate When Group Identity is Known

In this section we consider the case of excluding an arbitrary covariate when group identity G

is a permitted input. First, we introduce a condition for when a covariate is decision-relevant

for a particular group. In the definition below, recall that an optimal action for group g at

realization x is any action a∗ ∈ arg mina∈A E[`(a, Y ) | X = x,G = g].

Definition 14. Say that X ′ is decision-relevant over X for group g if there are realizations

(x, x′) and (x, x̃′) of (X,X ′) that have strictly positive probability conditional on G = g,

where the optimal action for group g is uniquely equal to 1 at (x, x′) and 0 at (x, x̃′).

This is a weak condition requiring only that the additional information in X ′ may matter

for some individual in group g. For example, if X ′ is a test score, then X ′ is decision-relevant

for group g so long as there is one individual in group g for whom taking the test score into

consideration matters for the admission decision.

Proposition 3. Suppose X reveals G. For any X ′ we have the following:

(a) If X is g-skewed, then excluding X ′ over X uniformly worsens the frontier if and only

if X ′ is decision-relevant over X for group g′ 6= g.

(b) If X is group-balanced, then excluding X ′ over X uniformly worsens the frontier if and

only if X ′ is decision-relevant over X for both groups.

We prove this result by demonstrating a lemma that says that access to X ′ reduces the

minimal feasible error for group g if and only if X ′ is decision-relevant over X for group

g. Applying Proposition 1, both the Pareto frontier given X and the Pareto frontier given

(X,X ′) are single line segments. First, suppose X is group-skewed. When X ′ is decision-

relevant over X for the disadvantaged group, then the minimal feasible error for that group

is strictly reduced, pushing the Pareto frontier downwards (see Panel (a) of Figure 7). On

the other hand, when X ′ fails to be decision-relevant over X for the disadvantaged group,

then the new Pareto frontier must remain a line that overlaps with the previous frontier

(see Panel (b) of Figure 7), so there is some designer preference for which excluding X ′ is at

least weakly (and possibly strictly) worse. This yields part (a) of the result. Now, when X

27See https://www.justice.gov/crt/book/file/1364106/download for definitions of disparate treat-
ment and impact.
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reveals G, then X can be group balanced only if the minimal feasible error is the same for

both groups. This minimal feasible error is reduced only through access to X ′ only when X ′

is decision-relevant for both groups, yielding part (b) of the result.
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Figure 7: (a) Example in which X ′ is decision-relevant for group b, and excluding X ′ uni-
formly worsens the frontier; (b) Example in which X ′ is not decision-relevant for group b,
and excluding X ′ does not uniformly worsen the frontier.

There is currently an active policy debate concerning whether universities should permit

test scores as an input into admissions decisions. The condition of decision-relevance does not

depend on whether the covariate X ′ is “biased”—in the sense of being systematically lower-

valued or less informative for either group—so it is very likely that test scores are decision-

relevant in practice.28 Our result thus suggests the following: So long as group identities are

permissible inputs for college admission decisions (as is the case in most states in the US),

then excluding test scores is welfare-reducing for all designer preferences—regardless of how

biased the score may be. On the other hand, if group identity is not permitted as an input

into college admissions decisions (as is the case in the state of California), then it may be

that the optimal garbling of covariates for some designer would indeed involve completely

excluding that covariate. We conclude with a simple example to this effect.

Example 9. Suppose Y = {0, 1} and Y and G are independently and uniformly distributed,

i.e., P(Y = y,G = g) = 1/4 for any y ∈ {0, 1} and g ∈ {r, b}. Let X be a null signal;

that is, X = x0 with probability one. Further let X ′ be a binary signal with the following

28Rambachan et al. (2021) study a screening model and demonstrate that any informative covariate,
however biased, will be optimally used by a social planner with control of the algorithm. We show that this
insight extends when group identity is available even when the social planner chooses only the inputs of the
algorithm (while another agent chooses the algorithm), but can fail when group identity is not available.
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conditional probabilities P(X ′ | Y,G): 29

X ′ = 1 X ′ = 0

Y = 1 1 0

Y = 0 0 1

X ′ = 1 X ′ = 0

Y = 1 0.6 0.4

Y = 0 0.4 0.6

G = r G = b

Thus, X ′ is perfectly informative about the individuals in group r, and imperfectly infor-

mative about those in group b. Suppose the loss function ` is the misclassification rate, as

defined in (1), and the agent is Utilitarian (αr = pr = 1/2 and αb = pb = 1/2).

As we compute in Appendix 9, the input-design feasible set E∗(X,X ′) is the line seg-

ment connecting (0, 0.4) with (0.5, 0.5). This entire line segment is also the Pareto frontier

P∗(X,X ′), as illustrated in Figure 8:
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Figure 8: The input-design Pareto frontier given (X,X ′)

For an Egalitarian designer, sending the null signal X leads to the point (0.5, 0.5) which

yields a payoff of 0. But if the designer chooses any nontrivial garbling of (X,X ′), then

the agent will maximize his payoffs by selecting an algorithm that achieves a different point

on the Pareto frontier (with lower aggregate error). Since all other points on the frontier

involve a nonzero gap between group errors, the designer’s payoff must be negative. Thus, the

designer is strictly worse off when any information about X ′ is provided to the agent and so

strictly prefers to exclude X ′ as an input. Intuitively, any information the designer provides

will be used by the agent to maximize aggregate accuracy, but this information is inevitably

more informative about group r and increases the gap between the two group errors. While

we assume an Egalitarian designer here for simplicity of the example, a similar construction

is possible for any designer who places sufficient weight on fairness considerations.

29In this example, neither covariates X nor X ′ reveal group identity. Thus, this example falls outside of
the settings considered in the previous two subsections.
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6 Extensions

Group-dependent loss functions. We have defined our loss function to be a function

of the individual’s action and type. A natural extension is to consider loss functions that

are group-dependent. For example, in the healthcare example, if G is ethnic background,

then the same medical procedure may have different risk levels depending on group identity.

In the lending example, if G is socioeconomic background, then a bank manager may value

loans to the wealthier group more and attach greater costs to errors in the less wealthy

group. In these cases, the loss ` would depend on G. All of our main results, including

the characterizations of the Pareto set (Theorems 1 and 2) hold for group-dependent loss

functions.

Other agent preferences. Section 5 considers misaligned incentives between a designer

controlling inputs and an agent setting the algorithm. There, we assume that the agent

cares about accuracy and prefers for both group errors to be lower. In Appendix B.2.1, we

consider what happens when this misalignment is more extreme and the agent is adversarial

(i.e. negatively biased) towards one of the two groups, preferring for that groups’ errors to

be higher. We generalize several results from Section 5 and show that, perhaps surprisingly,

even if the agent is negatively biased (so long as the bias is not too extreme), it can still be

optimal for the designer to provide information about group identity.

Another potential generalization would be to permit the agent and designer to have

different loss functions. When the agent’s loss function is different from the designer’s, the

set of points that the agent prefers over the prior (what we defined to be H) is no longer

guaranteed to be a halfspace from the designer’s perspective. This introduces interesting

technical complications, and we leave the problem of different loss functions to future work.30

Finally, we have assumed that the agent only cares about accuracy and does not have

fairness concerns. This assumption is important, since fairness concerns introduce non-

linearities into the agent’s objective function. Under linearity, the agent’s ex-ante and ex-

post problems are the same. Without linearity, this equivalence can fail, so it becomes

relevant to decide whether the agent commits to the algorithm or chooses the action after

the realization of the garbling. We conjecture that the introduction of fairness concerns

in the agent’s preferences generally makes it harder for the designer to implement desired

outcomes.

30Our result does include the special case when the agent’s loss function `a = αg`d is just a group-specific
multiple of the designer’s loss function. This is mathematically equivalent to the setup in Section 5
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Capacity constraints. In our main model, we allow the designer unconstrained choice of

any algorithm. In a few of the applications of interest, there may be an additional capacity

constraint on the algorithm, e.g., in admissions decisions, only a fixed number of students

can be admitted. One way to formulate a capacity constraint is a restriction on the ex-ante

probability of assignment of action a = 1 (e.g., admit). In this case, the set of error pairs

satisfying the constraint can be shown to be a convex set, so the feasible set is simply the

intersection between the feasible set (as we have defined) and the convex set of error pairs

that satisfy this capacity constraint. Our Theorem 1 then applies for this new feasible set,

although the Pareto frontier as characterized in Proposition 1 may no longer be a horizontal

line.

More than two actions. We have assumed that there are two actions A = {0, 1}. All of

our results in Section 3 about the unconstrained problem directly extend for any finite A.

However, our proof of Lemma 1 (the relationship between the input-design Pareto frontier

and the unconstrained Pareto frontier) relies on the assumption of two actions. With more

than two actions, a characterization of the input design Pareto set may be more complicated,

and we leave its analysis for future work.

More than two groups. We have assumed that there are two groups G = {r, b}. Some

of our results, such as Theorem 2 and Lemma 1, can be shown to directly extend for any

finite G. However, in order to extend our other results, we would first have to specify a

definition of fairness for multiple groups. One possible generalization of the Pareto dominance

relationship is to say that a vector of group errors (eg)g∈G Pareto dominates another vector

(e′g)g∈G if eg ≤ e′g for every group g, and also |eg − 1
|G|
∑

g∈G eg| ≤ |e′g − 1
|G|
∑

g∈G e
′
g| for every

g ∈ G, with at least one inequality holding strictly. That is, fairness is improved if each

group’s error is closer to the average group error. In this case, Proposition 1 generalizes to

the feasible set being a hyperrectangle with sides parallel to the axes’ hyperplanes. Under

a suitable generalization of group-skew, one of the groups continues to receive its minimal

feasible error everywhere along this frontier.

A Proofs for Results in Main Text

A.1 Characterization of Feasible Set

Lemma A.1. The full-design feasible set E(X) is a closed and convex polygon.
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Proof. Given algorithm f , we slightly abuse notation to let f(x) denote the probability of

choosing action a = 1 at covariate x. We further let xy,g denote the conditional probability

that Y = y and G = g given X = x. Finally, let px denote the probability of X = x. Then

the group errors can be written as follows:

eg (f) = E [f (X) ` (1, Y ) + (1− f (X)) ` (0, Y ) | G = g]

=
∑
x

(
f (x)

∑
y

xy,g
pg

` (1, y) + (1− f (x))
∑
y

xy,g
pg

` (0, y)

)
· px,

where pg is the prior probability that G = g. The set of all feasible errors is given by

E (X) = {(er (f) , eb (f)) : f(x) ∈ [0, 1] ∀x} .

If we let

E (x) :=

{
λ

(∑
y

xy,r
pr

` (1, y) ,
∑
y

xy,b
pb
` (1, y)

)

+ (1− λ)

(∑
y

xy,r
pr

` (0, y) ,
∑
y

xy,b
pb
` (0, y)

)
: λ ∈ [0, 1]

}

represent a line segment in R2, then we see that

E (X) =
∑
x∈X

E (x) · px.

This is a (weighted) Minkowski sum of line segments, which must be a closed and convex

polygon.

A.2 Proof of Theorem 1

First observe that the Pareto frontier must be part of the boundary of the feasible set E(X),

because any interior point (er, eb) is Pareto dominated by (er − ε, eb − ε) which is feasible

when ε is small.

Consider the group-balanced case, where RX lies weakly above the 45-degree line and

BX lies weakly below. If RX = BX , then this point simultaneously achieves minimal error

for both groups, as well as minimal unfairness since it must be on the 45-degree line. In this

case it is clear that the Pareto frontier consists of that single point, which dominates every

other feasible point. Another degenerate case is when the entire feasible set E(X) consists
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of the line segment RXBX . Here again it is easy to see that the entire line segment is Pareto

undominated, and the result also holds.

Next we show that the upper boundary of E(X) connecting RX to BX (excluding RX

and BX) is Pareto dominated. One possibility is that the upper boundary consists entirely

of the line segment RXBX . Take any point Q on this line segment, and through it draw a

line parallel to the 45-degree line. Then this line intersects the boundary of E(X) at another

point Q′ (otherwise we return to the degenerate case above). By our current assumption

about the upper boundary, this point Q′ must be strictly below the line segment RXBX . It

follows that Q′ reduces both group errors compared to Q, by the same amount. Thus Q′

Pareto dominates Q. If instead the upper boundary is strictly above the line segment RXBX ,

then through any such boundary point Q we can still draw a line parallel to the 45-degree

line. But now let Q∗ be the intersection of this line with the extended line RXBX . If Q∗ lies

between RX and BX , then it is feasible and Pareto dominates Q because both groups’ errors

are reduced by the same amount. Suppose instead that Q∗ lies on the extension of the ray

BXRX (the other case being symmetric), then we claim that RX itself Pareto dominates Q.

Indeed, by definition Q must have weakly larger er than RX . And because in this case Q∗ is

farther away from the 45-degree line than RX (this is where we use the assumption that RX

is already above that line), Q∗ and thus Q also induce strictly larger group error difference

eb − er than RX . Hence Q has larger er, eb − er as well as eb when compared to RX , as we

desire to show.

To complete the proof for the group-balanced case, we need to show that the lower

boundary connecting RX to BX is not Pareto dominated. RX (and symmetrically BX)

cannot be Pareto dominated, because it minimizes er and conditional on that further min-

imizes eb uniquely. Take any other point Q on the lower boundary. If Q lies on the line

segment RXBX , then the lower boundary consists entirely of this line segment. In this case

Q minimizes a certain weighted average of group errors αer + βeb across all feasible points,

where α, β > 0 are such that the vector (α, β) is orthogonal to the line segment RXBX

(which necessarily has a negative slope). Any such point Q cannot be Pareto dominated,

since a dominant point would have smaller αer + βeb. Finally suppose Q is a boundary

point strictly below the line segment RXBX . Then it minimizes some weighted sum of group

errors αer + βeb, and it will suffice to show that the weights α, β must be positive. Indeed,

α, β ≤ 0 cannot happen because Q induces smaller er, eb than Q∗ (Q∗ defined in the same

way as before but now to the top-right of Q) and thus larger αer + βeb. α > 0 ≥ β cannot

happen because Q induces larger er and smaller eb than RX , and thus also larger αer + βeb.

Symmetrically β > 0 ≥ α cannot happen either. So we indeed have α, β > 0, which implies

that Q is Pareto undominated. This proves the result for the group-balanced case.
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This argument can be adapted to the group-skewed case as follows. Suppose X is r-

skewed, so that RX and BX are both above the 45-degree line. To show that the upper

boundary connecting RX to FX is Pareto dominated, we choose any boundary point Q and

(similar to the above) let Q∗ be on the extended line RXFX such that QQ∗ is parallel to the

45-degree line. If Q∗ is on the line segment RXFX then it is a feasible point that dominates

Q. If Q∗ lies on the extension of the ray FXRX , then as before it can be shown that RX

dominates Q. Finally if Q∗ lies on the extension of the ray RXFX , then it must be the case

that FX lies on the 45-degree line (otherwise it will not minimize |er−eb| as defined). In this

case Q is a point that is below the 45-degree line, but also above the extended line BXFX

by convexity of the feasible set. Since FX already has larger eb than BX , we see that Q must

in turn have larger eb than FX . But then it follows that Q is dominated by FX because it

has larger eb, larger er − eb (being below the 45-degree line where FX belongs to), and thus

also larger er.

It remains to show that the lower boundary connecting RX to FX is Pareto undominated.

By essentially the same argument, we know that the lower boundary from RX to BX is Pareto

undominated. As for the lower boundary from BX to FX , note that if some point Q here is

dominated by another boundary point Q̂, then Q̂ must induce smaller |eb− er|. Since eb− er
is positive at Q, this means that Q̂ induces smaller eb−er than Q, without the absolute value

applied to the difference. So either Q̂ lies on the lower boundary from Q to FX , or Q̂ belongs

to the other side of the 45-degree line (i.e., below it). Either way the alternative point Q̂

must be farther away from BX than Q on the lower boundary, so that by convexity Q̂ lies

above the extended line BXQ. Given that Q already has larger eb than BX , this implies that

Q̂ has even larger eb than Q. Hence Q̂ cannot in fact Pareto dominate Q, completing the

proof.

A.3 Proof of Corollary 1

Suppose X is group-balanced, then by Theorem 1 the Pareto frontier is the lower boundary

from RX to BX . Let LX be the group error pair that consists of the er in RX and the

eb in BX (geometrically, LX is such that the line segments RXLX and BXLX are parallel

to the axes). Then because RX , BX have respectively minimal group errors in the feasible

set, and because we are considering the lower boundary, any point on this lower boundary

P(X) must belong to the triangle with vertices RX , BX and LX . This implies by convexity

that each edge of this lower boundary has a negative slope (just note that the first and final

edges must have negative slopes). Because of this, if we start from RX and traverse along

this lower boundary, it must be the case that er continuously increases while eb continuously

decreases. Thus in the group-balanced case there does not exist any strong fairness-accuracy

31



conflict along the Pareto frontier.

On the other hand, suppose X is r-skewed. Then we claim that BX and FX (which are

assumed to be distinct) present a strong fairness-accuracy conflict. Indeed, by assumption

of r-skewness, BX is weakly above the 45-degree line. FX must also be weakly above the

45-degree line because otherwise it would be less fair compared to the point on the line

segment BXFX that also belongs to the 45-degree line. Thus, the fact that FX is weakly

more fair than BX implies that FX entails smaller eb − er than BX . By definition of BX ,

FX entails larger eb than BX . Combining the above two observations, we know that FX also

entails larger er than BX . Hence FX induces larger group errors than BX for both groups,

but reduces the difference in group errors. This is a strong fairness-accuracy conflict as we

desire to show.

A.4 Proof of Proposition 1

We recall the proof of Lemma A.1, where we showed that the feasible set E(X) can be

written as
∑

xE (x) · px, with E(x) representing the line segment connecting the two points(∑
y
xy,r
pr
` (1, y) ,

∑
y
xy,b
pb
` (1, y)

)
and

(∑
y
xy,r
pr
` (0, y) ,

∑
y
xy,b
pb
` (0, y)

)
. If X reveals G, then

for each realization x, either xy,r = 0 for all y or xy,b = 0 for all y. Thus each E(x) is a

horizontal or vertical line segment, implying that E(X) must be a rectangle with RX = BX

being its bottom-left vertex.

Suppose without loss of generality that RX = BX lies above the 45-degree line. If the

rectangle E(X) does not intersect the 45-degree line, then it is easy to see that FX must be

the bottom-right vertex of E(X). In this case the Pareto frontier is the entire bottom edge

of the rectangle, which is a horizontal line segment. If instead the rectangle E(X) intersects

the 45-degree line, then FX is the intersection between the bottom edge of E(X) and the

45-degree line. Again the Pareto frontier is the horizontal line segment from RX = BX to

FX . This proves the result.

A.5 Proof of Corollary 2

Suppose without loss of generality that RX = BX lies above the 45-degree line. Then from

Proposition 1 we know that the Pareto frontier is the horizontal line segment from RX = BX

to FX . Thus, every point on the Pareto frontier has the same group b error as BX , which is

the minimal feasible error given the covariate X. For concreteness let us use eb to denote this

minimal group b error. Then we have er ≤ eb = eb at every Pareto optimal point, where the

first inequality holds because such a point lies above the 45-degree line. A Rawlsian designer

whose utility function is −max{er, eb} thus gets −eb in payoff at any Pareto optimal point.
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On the other hand, any feasible point (er, eb) satisfies eb ≥ eb by definition of eb. Thus

−max{er, eb} ≤ −eb ≤ −eb, showing that a Rawlsian designer’s payoff is maximized along

the Pareto frontier.

A.6 Proof of Corollary 3

From the definition it is easy to see that if group b is disadvantaged given covariate X, then

when given covariate (X,G) we have that BX,G = RX,G lies above the 45-degree line (in fact,

the group b error at BX,G is the same as the group b error at BX , similarly for group r).

Thus, every Pareto optimal point given (X,G) achieves the minimal feasible group b error

given (X,G). Now, for any valid designer preference w, there must exist an optimal point

that lies on the Pareto frontier given (X,G). Such an optimal point (e∗∗r , e
∗∗
b ) thus achieves

the minimal feasible group b error given (X,G), which is weakly lower than the minimal

feasible group b error given X alone. It follows that e∗∗b ≤ e∗b for any feasible point (e∗r, e
∗
b)

given X. This comparison certainly holds also for any optimal point (e∗r, e
∗
b) given X.

A.7 Proof of Lemma 1

We first characterize the input-design feasible set, and later study the input-design Pareto

set. It is clear that regardless of what garbling the designer gives the agent, the agent’s payoff

will be weakly better than what can be achieved under no information. Thus any error pair

that is implementable by input-design must belong to the halfspace H. Such an error pair

must also belong to the feasible set E(X), so we obtain the easy direction E∗(X) ⊆ E(X)∩H
in the lemma.

Conversely, we need to show that a feasible error pair (er, eb) ∈ E(X) that satisfies

αrer + αbeb ≤ e0 can be implemented by some garbling T . We will in fact prove this result

for a general group-dependent loss function `(a, y, g), which covers an extension discussed in

Section 6.

Consider a garbling T that maps X to ∆(A), with the interpretation that the realization

of T (x) is the recommended action for the agent. If we abuse notation to let f(x) denote the

probability that the recommendation is a = 1 at covariate x, then this algorithm f needs to

satisfy the following obedience constraint for a = 1:31∑
y,g

αg
pg

∑
x

px,y,g · f(x) · `(1, y, g) ≤
∑
y,g

αg
pg

∑
x

px,y,g · f(x) · `(0, y, g).

31By a version of the revelation principle, such garblings together with the following obedience constraints
are without loss for studying the feasible outcomes, in a general setting.
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The above is just a direct generalization of equation (3) to group-dependent loss functions. It

is adapted to the current setting with the observation that given the recommendation T = 1,

the conditional probability of Y = y and G = g is proportional to the recommendation

probability
∑

x px,y,g · f(x), where we use px,y,g as a shorthand for P(X = x, Y = y,G = g).

Let us rewrite the above displayed equation as∑
x,y,g

px,y,g
αg
pg
· f(x)`(1, y, g) ≤

∑
x,y,g

px,y,g
αg
pg
· f(x)`(0, y, g).

If we add px,y,g
αg

pg
(1− f(x))`(0, y, g) to each summand above, we obtain

∑
x,y,g

px,y,g
αg
pg
· (f(x)`(1, y, g) + (1− f(x))`(0, y, g)) ≤

∑
x,y,g

px,y,g
αg
pg
· `(0, y, g). (A.1)

Now, the LHS above can be rewritten as
∑

x,y,g px,y,g
αg

pg
·E[`(A, y, g) | X = x, Y = y,G = g],

which is also equal to
∑

g αg · E[`(A, Y, g) | G = g]. This is precisely the agent’s expected

loss when following the designer’s recommended actions.

On the other hand, the RHS in (A.1) can be seen to be the agent’s expected loss when

taking the action a = 0 regardless of the designer’s recommendation. Thus, we deduce that

the obedience constraint for the recommendation a = 1 is equivalent to (A.1), which simply

says that the agent’s payoff under the designer’s recommendation should be weakly better

than the constant action a = 0 ignoring the recommendation. Symmetrically, the other

obedience constraint for the recommendation a = 1 is equivalent to the agent’s payoff being

better than the constant action a = 1. Put together, these obedience constraints thus reduce

to the requirement that the designer’s recommendation gives the agent a payoff that exceeds

what can be achieved with no information.

For any error pair (er, eb) that is feasible under unconstrained design, we can construct an

action recommendation/garbling T that implements it assuming that the recommendation

would be obedient for the agent. If (er, eb) belongs to the halfspace H, then by the previous

analysis we know that obedience is satisfied. Thus (er, eb) is implementable under input-

design, showing that E(X) ∩H = E∗(X) as desired.

Finally we turn to the Pareto set and argue that P∗(X) = P(X)∩H. In one direction, if

an error pair is undominated in E(X) and implementable under input design, then it is also

undominated in the smaller set E∗(X). This proves P(X) ∩ H ⊆ P∗(X). In the opposite

direction, suppose for contradiction that a certain point (er, eb) ∈ P∗(X) does not belong to

P(X)∩H. Since P∗(X) ⊆ E∗(X) ⊆ H, we know that (er, eb) must not belong to P(X). Thus

by definition of P(X), (er, eb) is Pareto dominated by some other error pair (êr, êb) ∈ E(X).

In particular, we must have êr ≤ er and êb ≤ eb, which implies αrêr+αbêb ≤ αrer+αbeb ≤ e0
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(the first inequality uses αr, αb ≥ 0 and the second uses (er, eb) ∈ P∗(X) ⊆ E∗(X)). It follows

that the dominant point (êr, êb) also belongs to H and thus E∗(X). But this contradicts the

assumption that (er, eb) is undominated in E∗(X). Such a contradiction completes the proof.

A.8 Proof of Theorem 2

We will deduce Theorem 2 from Lemma 1. If X is group-balanced, then by Theorem 1 we

know that P(X) is the part of the boundary of E(X) that connects RX to BX from below.

Clearly, P∗(X) = P(X) can only hold if RX , BX ∈ P∗(X) ⊆ H, so we focus on the “if”

direction of the result. Suppose RX , BX ∈ H, then we claim that the entire lower boundary

of E(X) from RX to BX belongs to H. Indeed, let LX be the error pair that consists of

the er in RX and the eb in BX . Geometrically, LX is such that the line segments RXLX

and BXLX are parallel to the axes. Because RX , BX have respectively minimal group errors

in the feasible set E(X), and because we are considering the lower boundary, any point on

this lower boundary P(X) must belong to the triangle with vertices RX , BX and LX . Since

RX , BX , LX all belong to the halfspace H (LX ∈ H because the agent’s payoff weights αr, αb

are non-negative), we deduce that P(X) ⊆ H. Hence whenever RX , BX ∈ H, we have

by Lemma 1 that P∗(X) = P(X) ∩ H = P(X). This argument proves Theorem 2 in the

group-balanced case.

Suppose instead that X is r-skewed (a symmetric argument applies to the b-skewed

case). To generalize the above argument, we need to show that whenever RX , FX belong to

H, then so does the entire lower boundary connecting these points. To see this, note that

by the definition of BX and FX , the lower boundary connecting these two points consists

of positively sloped edges.32 So across all points on this part of the lower boundary, FX

maximizes αrer +αbeb. Thus the assumption FX ∈ H implies that the lower boundary from

BX to FX belongs to H. In particular BX ∈ H, which together with RX ∈ H implies that

the lower boundary from RX to BX also belongs to H (by the same argument as in the

group-balanced case before). Hence the entire lower boundary from RX to FX belongs to H,

as we desire to show.

A.9 Proof of Proposition 2

We first present a simple lemma which conveniently restates the property of “uniform wors-

ening of frontier”:

32If we start from BX and traverse the lower boundary to the right until FX , then the first edge of this
boundary must be weakly positive because BX has minimum eb. The final edge of this boundary must also
be positive, since otherwise the starting vertex of this edge would be closer to the 45-degree line than FX .
It follows by convexity that the entire boundary from BX to FX has positive slopes.
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Lemma A.2. Excluding covaraite X ′ over X uniformly worsens the frontier if and only if

P∗(X) does not intersect with P∗(X,X ′).

The proof of this lemma is straightforward: If there exists a point in P∗(X) that also

belongs to P∗(X,X ′), then this point is not Pareto-dominated by any point in P∗(X,X ′), so

that the frontier does not uniformly worsen when excluding X ′. On the other hand, suppose

no point in P∗(X) belongs to P∗(X,X ′). Note that any point in P∗(X) is implementable via

a garbling of X and thus implementable via a garbling of X,X ′. Thus any such point belongs

to E∗(X,X ′), and since it is not Pareto-optimal in this set, it must be Pareto-dominated by

some Pareto optimal point in this (compact) set. In this case we do have uniform worsening

of the frontier, as we desire to show.

Below we use Lemma A.2 to deduce Proposition 2. The key observation is that whether

or not G is excluded does not affect the minimal (or maximal) feasible error for either group.

This is because if we want to minimize the error of a particular group g using an algorithm

that depends on X, then we essentially condition on G = g anyways.

With this observation, suppose X is strictly group-balanced. Then RX lies strictly above

the 45-degree line and BX lies strictly below. Since we assume RX , BX ∈ H, Theorem 2

tells us that the input-design Pareto frontier P∗(X) is the same as the unconstrained Pareto

frontier P(X), and by Theorem 1 this frontier is the lower boundary of the feasible set E(X)

connecting RX to BX . By Lemma A.2, we just need to show that in this case the lower

boundary of E(X) from RX to BX does not intersect with the input-design Pareto frontier

P∗(X,G) given (X,G). To characterize the latter frontier, let LX = RX,G = BX,G denote

the error pair that has the same er as RX and the same eb as BX . Without loss of generality

assume LX lies weakly above the 45-degree line. Then from Proposition 1 we know that the

unconstrained Pareto frontier P(X,G) is the horizontal line segment from LX to FX,G. This

point FX,G is the intersection between the line segment LXBX and the 45-degree line (here

we use the fact that LX lies above the 45-degree line and BX lies below). As BX ∈ H, the

points LX and FX,G also belong to H because they have equal eb and smaller er compared

to BX . Hence the input-design Pareto frontier P∗(X,G) is also the line segment from LX to

FX,G. To see that this horizontal line segment does not intersect the boundary of E(X) from

RX to BX , just note that BX is the only point on that boundary with the same (minimal)

eb as any point on the horizontal line segment. But BX does not belong to that line segment

because it is strictly below the 45-degree line. This proves the result when X is strictly

group-balanced.

Now suppose X is not strictly group-balanced. Then RX and BX lie weakly on the

same side of the 45-degree line, and without loss of generality let us assume they lie weakly

above. It is still the case that the unconstrained Pareto frontier P(X,G) is the horizontal
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line segment from LX to FX,G. But in the current setting FX,G must be weakly closer to the

45-degree line than BX , which means that BX now lies in between LX and FX,G. In other

words, BX ∈ P(X) and BX ∈ P(X,G). But by assumption, BX also belongs to H. So

Lemma 1 tells us that BX belongs to the input-design Pareto frontiers P∗(X) and P∗(X,G).

This shows that the two frontiers P∗(X) and P∗(X,G) intersect, which completes the proof

by Lemma A.2.

A.10 Proof of Proposition 3

Let eg = min{eg | (er, eb) ∈ E(X)} and eg = max{eg | (er, eb) ∈ E(X)} be the minimal and

maximal feasible errors for group g given X, and define e∗g = min{eg | (er, eb) ∈ E(X,X ′)}
and e∗g = max{eg | (er, eb) ∈ E(X,X ′)} to be the corresponding quantities given X and X ′.

The following lemma says that access to X ′ reduces the minimal feasible error for group g if

and only if X ′ is decision-relevant over X for group g.

Lemma A.3. e∗g < eg if X ′ is decision-relevant over X for group g, and e∗g = eg if it is not.

Proof. Let ag : X → {0, 1} be any strategy mapping each realization of X into an optimal

action for group g, i.e.,

ag(x) ∈ arg min
a∈{0,1}

E [`(a, Y ) | G = g,X = x)] ∀x ∈ X .

Likewise let a∗g : X × X ′ → {0, 1} satisfy

a∗g(x, x
′) ∈ arg min

a∈{0,1}
E [`(a, Y ) | G = g,X = x,X ′ = x′)] ∀x ∈ X , ∀x′ ∈ X ′.

By optimality of a∗g,

E
[
`(a∗g(x, x

′), Y ) | G = g,X = x,X ′ = x′]

≤ E [`(ag(x), Y ) | G = g,X = x,X = x′] ∀x ∈ X ,∀x′ ∈ X ′. (A.2)

Suppose X ′ is decision-relevant over X for group g. Then there exist x ∈ X and x′, x̃′ ∈ X ′
such that the optimal assignment for group g is uniquely equal to 1 at (x, x′) and 0 at (x, x̃′),

where both (x, x′) and (x, x̃′) have positive probability conditional on G = g. But then

(A.2) must hold strictly at either (x, x′) or (x, x̃′). Thus, by taking the expectation of (A.2)

conditional on G = g, we obtain

e∗g = E
[
`(a∗g(X,X

′), Y ) | G = g
]
< E [`(ag(X), Y ) | G = g] = eg.
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If X ′ is not decision-relevant over X for group g, then (A.2) holds with equality at every

x, x′, and the equivalence e∗g = eg follows.

We now use Lemma A.2 and A.3 to prove Proposition 3. First suppose X is r-skewed.

Together with the assumption that X reveals G, we know that RX = BX lies strictly above

the 45-degree line. In this case the unconstrained Pareto frontier P(X) is the horizontal line

segment from RX = BX to FX , by Proposition 1.

Now if X ′ is not decision-relevant over X for group b, then from Lemma A.3 we know

that the minimal feasible error for group b is the same given (X,X ′) as given X. Note that

the group b minimal error given X exceeds the group r minimal error given X. The former

remains the same given (X,X ′), while the latter becomes weakly smaller. Thus the group b

minimal error given (X,X ′) also exceeds the group r minimal error given (X,X ′). In other

words, RX,X′ = BX,X′ also lies strictly above the 45-degree line, and the Pareto frontier

P(X,X ′) is the horizontal line segment from RX,X′ = BX,X′ to FX,X′ . Crucially, this line

segment shares the same eb as the line segment from RX = BX to FX . In addition, as RX,X′

must have weakly smaller er than RX , and FX,X′ must be weakly closer to the 45-degree

line than FX , we deduce that the unconstrained Pareto frontier P(X,X ′) is a horizontal

line segment that is a superset of the line segment P(X). Thus, in particular, RX = BX

belongs to both of these frontiers. Lemma 1 thus imply that RX = BX also belongs to the

input-design Pareto frontiers P∗(X) and P∗(X,X ′) (RX = BX belongs to H because this

point can be implemented by giving X to the agent, who will then minimize both groups’

errors given this information). By Lemma A.2, uniform worsening of the frontier does not

occur when excluding X ′, as we desire to show.

If X ′ is decision-relevant over X for group b, then Lemma A.3 tells us that e∗b < eb with

strict inequality. There are two cases to consider here. One case involves e∗b > e∗r, so that

(X,X ′) is r-skewed just as X is. Then the unconstrained Pareto frontier P(X,X ′) is again

a horizontal line segment, but with eb equal to e∗b . Since e∗b < eb, this frontier is parallel

but lower than the Pareto frontier P(X). Thus P(X) does not intersect P(X,X ′). As

their subsets, the input-design Pareto frontiers P∗(X) and P∗(X,X ′) also do not intersect.

Thus by Lemma A.2, there is uniform worsening of the frontier. In the remaining case we

have e∗b ≤ e∗r, so that (X,X ′) is b-skewed. Then the unconstrained Pareto frontier P(X,X ′)

is now a vertical line segment with er = e∗r. The points on this frontier have varying eb,

but any of the eb does not exceed e∗r because these points are below the 45-degree line.

Because e∗r ≤ er < eb, we thus know that any point on the frontier P(X,X ′) has strictly

smaller eb compared to any point on P(X). Once again these two unconstrained frontiers

do not intersect, and nor do the input-design frontiers. This proves Proposition 3 when X

is r-skewed.
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A symmetric argument applies when X is b-skewed, so below we focus on the case where

X is group-balanced. That is, RX = BX lies on the 45-degree line. In this case the Pareto

frontiers P(X) and P∗(X) are both this singleton point. If X ′ is not decision-relevant over

X for group b, then Lemma A.3 tells us that e∗b = eb = er ≥ e∗r. When equality holds the

Pareto frontiers P(X,X ′) and P∗(X,X ′) are also the singleton point RX = BX , and uniform

worsening does not occur. If we instead have strict inequality e∗b = eb > e∗r, then (X,X ′) is

r-skewed and the unconstrained Pareto frontier P(X,X ′) is a horizontal line segment with

one of the endpoints being FX,X′ = RX = BX . Thus RX = BX belongs also to the input-

design Pareto frontier P∗(X,X ′), showing that P∗(X) and P∗(X,X ′) intersect. Uniform

worsening of the frontier does not occur either way.

Conversely, suppose X ′ is decision-relevant over X for both groups. Then by Proposition

1, the unconstrained frontier P(X,X ′) is either a horizontal line segment with eb = e∗b < eb =

eb, or a vertical line segment with er = e∗r < er = eb. Either way the point RX = BX does not

belong to this frontier, showing that P(X) does not intersect with P(X,X ′). Hence P∗(X)

and P∗(X,X ′) also do not intersect, and by Lemma A.2 we know that there is uniform

worsening of the frontier. This completes the entire proof of Proposition 3.

B Additional Material

B.1 Microfoundation for the Pareto Frontier

We now provide a foundation for our Pareto frontier as the designer-optimal points across a

large class of designer preferences. First, we define a designer preference to be any preference

over error pairs that is in favor of accuracy and fairness.33

Definition B.1. A designer preference � is any total order such that e � e′ whenever er ≤ e′b,

eb ≤ e′b and |er − eb| ≤ |e′r − e′b| with at least one strict inequality.

The Utilitarian, Rawlsian, and Egalitarian orderings defined in Section 2.1 are all examples

of designer preferences.

Given any designer preference �, let

P� (X) = {e ∈ E (X) : e � e′ for all e′ ∈ E (X)}

denote the optimal error pairs in E (X) under �. One possible definition of the Pareto fron-

tier is the union of P�(X) over all �, i.e., the set of all optimal points across all designer

33We could have alternatively defined designer preferences � to be weakly decreasing in er, eb and |er − eb|.
Proposition B.1 would still hold.
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preferences. But this Pareto frontier is simply the entire feasible set E(X), since the prefer-

ence that is completely indifferent over all error pairs is a designer preference. To obtain a

more meaningful Pareto frontier, we instead consider sets that include at least one optimal

point for every designer preference.

Definition B.2. P ⊂ E (X) is admissible if for any designer preference �, P� (X) 6= ∅ implies

P ∩ P� (X) 6= ∅.
A set is admissible if every designer preference that achieves an optimal point also achieves

an optimal point in that set. Clearly, the entire feasible set E (X) is admissible. Our Pareto

set corresponds to the smallest admissible set.

Proposition B.1. P (X) is the smallest admissible set in E (X).

Proof. We first show that P (X) is admissible. Fix some designer preference � and let

e∗ ∈ P� (X) be an optimal point. If e∗ ∈ P(X) then we already have a nonempty intersection

between P = P (X) and P� (X). Suppose e∗ /∈ P(X), then there exists some e∗∗ ∈ E(X)

that Pareto-dominates e. In fact, because E(X) is compact, we can choose e∗∗ to belong

to the Pareto frontier P(X) (just choose e∗∗ to lexicographically minimize er and eb among

those points that Pareto dominate e∗). Now since e∗∗ Pareto-dominates e∗, and the designer

preference is defined to respect the Pareto ranking, we have that e∗∗ � e∗. Thus e∗∗ must

also be an optimal point for the preference �, just as e∗ is. This shows that e∗∗ ∈ P∩P� (X),

which must again be a nonempty set. Thus P (X) is admissible.

We now show that P (X) is the smallest admissible set. Fix a strictly decreasing function

h mapping R to the open interval (0, 1). For any e∗ ∈ P(X), we can define a designer

preference � represented by the utility function w such that w(e) = 1 + h(er + eb) if e = e∗

or e Pareto-dominates e∗, and that w(e) = h(er + eb) otherwise. To see that this preference

respects the Pareto ranking, note that whenever e Pareto-dominates e′, either e, e′ both

Pareto-dominates e∗, or neither of them Pareto-dominates e∗, or e Pareto-dominates e∗

while e′ does not. In the first and second cases, w(e) > w(e′) follows from the fact that

er + eb must be strictly smaller than e′r + e′b, and thus h(er + eb) > h(e′r + e′b). In the last

case we also have w(e) = 1 + h(er + eb) > 1 > h(e′r + e′b) = w(e′). So this is a legitimate

designer preference. Moreover, the unique optimal point in E(X) under this preference is e∗

itself, because by definition of Pareto optimality there cannot exist another point in E(X)

that achieves utility more than 1, as e∗ does. Thus any admissible set must include e∗. But

since e∗ ∈ P(X) is arbitrary, we conclude that any admissible set must contain P(X). This

completes the proof.

The above result shows that our Pareto set P (X) is minimal in the sense that we cannot

exclude any points from P (X) without hurting some designer. In fact, our proof demon-
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strates that for every point e ∈ P (X), there exists some designer preference � such that e

is the unique optimal error pair given � within the feasible set E(X).

Below we provide another characterization of the Pareto set via a simple class of designer

preferences. Consider a designer with the following utility over errors

w (er, eb) = αrer + αbeb + αf |er − eb|

where αr, αb < 0 and αf ≤ 0. Call such designer utilities simple. Simple utilities are

consistent with Pareto dominance. For example, both the Utilitarian and Rawlsian designers

have utilities that are simple. To see this for the Utilitarian designer, set αr = −pr, αb = −pb
and αf = 0. To see this for the Rawlsian designer, set αr = αb = αf = −1. Our Pareto set

corresponds exactly to the set of optimal points for all simple designer utilities.

Proposition B.2. Suppose the number of possible covariate values (i.e. |X |) is finite. Then

e∗ ∈ P (X) if and only if there exists a simple designer utility w such that e∗ maximizes w

within E(X).

Proof. In one direction, we want to show that if e∗ maximizes some simple designer utility,

then it must be Pareto optimal. Indeed, suppose for contradiction that e∗∗ Pareto dominates

e∗, then by definition e∗∗r ≤ e∗r, e
∗∗
b ≤ e∗b and |e∗∗r − e∗∗b | ≤ |e∗r − e∗b | with at least one strict

inequality. Thus in fact there must be a strict inequality between e∗∗r ≤ e∗r and e∗∗b ≤ e∗b .

It follows that for weights αr, αb < 0, we must have αre
∗∗
r + αbe

∗∗
b > αre

∗
r + αbe

∗
b with

strict inequality. Note also that αf |e∗∗r − e∗∗b | ≥ αf |e∗r − e∗b | since αf ≤ 0. Putting it

together, we deduce w(e∗∗r , e
∗∗
b ) > w(e∗r, e

∗
b) for every simple designer utility w, contradicting

the assumption about e.

In the opposite direction, we want to show that every Pareto optimal point e∗ maximizes

some simple designer utility. By Theorem 1, e∗ must either belong to the lower boundary

from RX to BX or the lower boundary from BX to FX , where the latter case only happens

when X is r-skewed (we omit the symmetric situation when X is b-skewed). If e∗ belongs to

the boundary from RX to BX , then from the proof of Theorem 1 we know that e∗ belongs

to an edge of this boundary that has negative slope. Thus there exists a vector (αr, αb) that

is normal to this edge, such that e∗ maximizes αrer + αbeb among all feasible points. Since

this edge has negative slope, it is straightforward to see that αr, αb < 0. So e maximizes the

simple utility αrer + αbeb as desired.

If instead X is r-skewed and e∗ belongs to the boundary from BX to FX , then again e∗

belongs to an edge of this boundary. But now this edge must have weakly positive slope

(since the edge starting from BX has weakly positive slope by the definition of BX , and since

the boundary is convex). In addition, this slope must be strictly smaller than 1 because

41



otherwise FX would be farther away from the 45-degree line compared to its adjacent vertex

on this boundary. It follows that the outward normal vector (βr, βb) to the edge that e∗

belongs to satisfies βr ≥ 0 ≥ −βr > βb. The point e∗ of interest maximizes βrer + βbeb

among all feasible points. Now let us choose any αf to belong to the interval (βb,−βr),
which is in particular negative. Further define αr = βr +αf < 0 and αb = βb−αf < 0. Then

βrer + βbeb can be rewritten as αrer + αbeb + αf (eb − er). If we consider the simple utility

αrer + αbeb + αf |eb − er|, then for any other feasible point e∗∗ it holds that

αre
∗∗
r + αbe

∗∗
b + αf |e∗∗b − e∗∗r | ≤ αre

∗∗
r + αbe

∗∗
b + αf (e

∗∗
b − e∗∗r )

= βre
∗∗
r + βbe

∗∗
b

≤ βre
∗
r + βbe

∗
b

= αre
∗
r + αbe

∗
b + αf (e

∗
b − e∗r)

= αre
∗
r + αbe

∗
b + αf |e∗b − e∗r|,

where the first inequality holds since αf ≤ 0 and the last equality holds because e∗ ∈ P(X)

must be weakly above the 45-degree line. Hence the above inequality shows that e∗ maximizes

the simple utility we have constructed, completing the proof.

B.2 Supplementary Material for Section 5

B.2.1 Adversarial Agents

We now consider the problem outlined in Section 5, when one of the weights αr, αb is nega-

tive.34 Without loss, let αr > 0 > αb, reflecting an adversarial agent who prefers for group

b’s error to be higher. The first half of Lemma 1 extends fully.

Lemma B.1. For every covariate X, E∗(X) = E(X) ∩H.

But the analogous equivalence for the Pareto frontier does not extend. Instead, similar to

the development of RX , BX , and FX , define

G∗X ≡ arg min
(er,eb)∈E∗(X)

eg

to be the feasible point in E∗(X) that minimizes group g’s error (breaking ties by minimizing

34It is straightforward also to consider the case where both weights are negative, but we do not consider
this setting to be practically relevant.
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the other group’s error), and define

F ∗X ≡ arg min
(er,eb)∈E∗(X)

|er − eb|

to be the point that minimizes the absolute difference between group errors (breaking ties

by minimizing either group’s error).

Definition B.3. Covariate X is:

• input-design-r-skewed if er < eb at R∗X and er ≤ eb at B∗X

• input-design-b-skewed if eb < er at B∗X and eb ≤ er at R∗X

• input-design-group-balanced otherwise

The proof for Theorem 1 applies for any compact and convex feasible set, and so directly

implies:

Theorem B.1. The input-design Pareto set P∗(X) is the lower boundary of the input-design

feasible set E∗(X) between

(a) R∗X and B∗X if X is input-design-group-balanced

(b) G∗X and F ∗X if X is input-design-g-skewed

We can use this characterization to extend our result from Section 5.2.1.

Definition B.4. X is strictly input-design-group-balanced if er < eb at R∗X and eb < er at B∗X .

Proposition B.3. Suppose αr > 0 > αb and X is strictly input-design-group-balanced. Then

excluding G over X uniformly worsens the frontier.

This result says that, perhaps surprisingly, even if the agent choosing the algorithm

has adversarial motives against one of the groups, the designer may still prefer to send

information about group identity. The notion of group-balanced covariates, suitably adapted

to the input design setting, again serves as a sufficient condition for uniform worsening of

the frontier when excluding G.

Proof. By assumption, the input-design Pareto frontier given X is the lower boundary of

E∗(X) from R∗X to B∗X , which consists of negatively sloped edges. We will show that every

point on this frontier is Pareto-dominated by some point in E∗(X,G).

If this point (er, eb) is distinct from B∗X and R∗X , then we claim that for sufficiently small

positive ε, the point (er− ε, eb− ε) belongs to E∗(X,G). Indeed, (er− ε, eb− ε) belongs to the
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unconstrained feasible set E(X,G) because this feasible set is a rectangle, and er − ε, eb − ε
are within the minimal and maximal group errors achievable given X. Moreover, (er, eb)

must have smaller group-r error and larger group-b error compared to B∗X , which means the

same is true for (er − ε, eb − ε). Since αr > 0 > αb, the point (er − ε, eb − ε) must belong

to H given that B∗X does. Hence when (er, eb) differs from B∗X and R∗X , it is dominated by

(er − ε, eb − ε) ∈ E∗(X,G).

Suppose now that (er, eb) = B∗X . Then by similar argument it is dominated by (er−ε, eb) ∈
E∗(X,G). Finally if (er, eb) = R∗X , then it is dominated by (er, eb−ε) ∈ E∗(X,G). In all these

cases the Pareto frontier uniformly worsens when excluding G, completing the proof.

B.2.2 Result for Excluding X ′ Over Group-Balanced X

Our results in the main text assume that group identity is revealed by (X,X ′), allowing us

to exploit the special structure of the Pareto frontier when G is revealed. We now provide

a sufficient condition for when excluding X ′ over X uniformly worsens the frontier, without

assuming that G is revealed.

Definition B.5. Say that X ′ is uniformly decision-relevant at x ∈ X if there exist x′, x̃′ ∈ X ′
such that:

(i) the optimal action for both groups at (x, x′) is uniquely equal to 1

(ii) the optimal action for both groups at (x, x̃′) is uniquely equal to 0

(iii) P(X = x,X ′ = x′ | G = g),P(X = x,X ′ = x̃′ | G = g) > 0 for both groups

This definition says that the realization x is “split” into (x, x′) and (x, x̃′), where the

optimal action is the same for both groups at each of these realizations, but different across

(x, x′) and (x, x̃′).

Proposition B.4. Let X and X ′ be any two covariates, where X is strictly group-balanced.

Suppose X ′ is uniformly decision-relevant at any x ∈ X . Then excluding X ′ over X uni-

formly worsens the frontier.

This proposition provides a weak sufficient condition for a uniform Pareto improvement:

the additional information in X ′ only needs to allow for a more accurate decision for both

groups at some realization of the covariate vector X.

Proof. Suppose the conditions of the proposition are met at x∗ ∈ X and x′∗, x̃
′
∗ ∈ X ′. That

is, the optimal action at (x∗, x
′
∗) is uniquely equal to 1 for both groups, the optimal action at
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(x∗, x̃
′
∗) uniquely equal to 0 for both groups, and both pairs (x∗, x

′
∗) and (x∗, x̃

′
∗) have strictly

positive probability conditional on both groups.

Consider any (er, eb) ∈ P(X). Since this error pair is feasible, there exists an algorithm f

such that (er, eb) = (er(f), eb(f)). Now define f ∗ : X ×X ′ → ∆(A) to satisfy f ∗(x∗, x
′
∗) = 1,

f ∗(x∗, x̃
′
∗) = 0, and f ∗(x, x′) = f(x) at every other x ∈ X , x′ ∈ X ′. At least one of f ∗(x∗, x

′
∗)

and f ∗(x∗, x̃
′
∗) must be different from f(x∗). Thus

E[`(f ∗(x, x′), Y ) | G = g,X = x,X ′ = x′]

≤ E[`(f(x), Y ) | G = g,X = x,X ′ = x′] ∀x ∈ X ,∀x′ ∈ X ,

and strict inequality holds with positive probability. So er(f
∗) < er(f

∗) and also eb(f
∗) <

eb(f
∗). Thus every point on the Pareto frontier P(X) has a paired point strictly to the left

and below it, which belongs to the feasible set E(X,X ′).

We now argue that every point on P(X) is Pareto-dominated in E(X,X ′). Let (e∗, e∗) ≡
FX,X′ . (This point must lie on the 45-degree line, since FX belongs to the 45-degree line

for any group-balanced X, and FX,X′ must involve a weakly lower difference in group errors

compared to FX .) Consider any (er, eb) ∈ P(X)wither < e∗ ≤ eb. Then by the argument

above, there exists a paired point (e′r, e
′
b) strictly below it and to the left. By convexity of

E(X,X ′), we can choose (e′r, e
′
b) to be above the 45-degree line (otherwise replace it by a

point on the line connecting it to (er, eb)). By convexity again, we can find another feasible

point (er, e
′′
b ) ∈ E(X,X ′) on the line connecting (e∗, e∗) and (e′r, e

′
b), which is directly below

(er, eb). This point (er, e
′′
b ) remains above the 45-degree line, so it is clear that it Pareto

dominates (er, eb).

An essentially symmetric argument applies to the case where eb < e∗ ≤ er. To complete

the proof, note first that er, eb cannot both be strictly smaller than e∗, as that would imply

that the group errors under FX are strictly better than those under FX,X′ . Thus the remain-

ing possibility is when er, eb ≥ e∗. If one of these inequalities holds strictly, then (er, eb)

is Pareto-dominated by (e∗, e∗). So the final step of the argument is to show that (e∗, e∗)

cannot be on the original Pareto frontier P(X); in other words, under the assumptions FX,X′

must be strictly better than FX .

Suppose for contradiction that (e∗, e∗) ∈ P(X). Then we can find a paired point (e′r, e
′
b) ∈

E(X,X ′) with e′r, e
′
b < e∗. Without loss suppose (e′r, e

′
b) is weakly above the 45-degree line.

Then we can connect this point to BX (which falls strictly below the 45-degree line by

assumption of strict group balance) and find the intersection of this line segment with the

45-degree line, which we label as (e∗∗, e∗∗). Since (e′r, e
′
b) lies to the bottom left of (e∗, e∗)

and BX lies to its bottom right, we deduce that e∗∗ < e∗. But then (e∗∗, e∗∗) would be a
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feasible point in E(X,X ′) that Pareto-dominates (e∗, e∗), contradicting the definition that

(e∗, e∗) = FX,X′ . This contradiction proves the result.

B.3 Supplementary Material for Section 4

Section 4 considers the case where group identity is an input. In this section, we consider a

more general case where covariates satisfy the following conditional independence condition.

Definition B.6. Say that X satisfies conditional independence if G ⊥⊥ Y | X.

Under conditional independence, the covariate X contains all of the information in group

identity that is relevant for predicting Y . In other words, once the algorithm has conditioned

on X, there is no additional predictive value to knowing group identity. Note that if X reveals

G, then X is conditionally independent.

We first characterize the Pareto set under conditional independence.

Proposition B.5. Suppose X is conditionally independent. Then P (X) is from the point

BX = RX to the point FX .

Proof. We will show that BX = RX under conditional independence. Recall from the proof

of Lemma A.1 that

E (X) =
∑
x∈X

E (x) px

where

E (x) =

{
λ

(∑
y

xy,r
pr

` (1, y)

)
+ (1− λ)

(∑
y

xy,r
pr

` (0, y) ,
∑
y

xy,b
pb
` (0, y)

)
: λ ∈ [0, 1]

}

Under conditional independence, xy,g = xyxg so we have

E (x) =

{
λ
∑
y

xy` (1, y) + (1− λ)
∑
y

xy` (0, y)

(
xr
pr
,
xb
pb

)
: λ ∈ [0, 1]

}

This means that for each realization x ∈ X , the action that gives the lower error for group

r also gives the lower error for group b. In other words, when
∑

y xy` (1, y) ≤∑y xy` (0, y),

then action Y = 1 is optimal for both groups (and vice-versa for the other action). Consider

the following algorithm:

f (x) =

1 if
∑

y xy` (1, y) ≤∑y xy` (0, y)

0 if
∑

y xy` (1, y) >
∑

y xy` (0, y)
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This algorithm will deliver the lowest error for both groups and

(er (f) , eb (f)) = RX = BX

as desired.

er
45�

E(X)

RX = BX

eb

FX

Figure 9: Depiction of the Pareto frontier under assumption of conditional independence of G and Y .

Figure 9 depicts an example of a Pareto frontier for a covariate satisfying Conditional

Independence. The left point is the (shared) group optimal point RX = BX , which is the

preferred point for both a Rawlsian and Utilitarian designer. The right endpoint is the

fairness optimal point FX , and this is the preferred point for an Egalitarian designer. From

RX = BX to FX , the Pareto frontier consists entirely of positively sloped line segments.

Thus, everywhere along the frontier, the two groups’ errors move in the same direction,

implying that the only way to improve fairness is to decrease accuracy uniformly across

groups, and that the only difference across designers that matters is how they choose to

resolve strong fairness-accuracy conflicts. We generalize this in the corollary below.35

Corollary 4. Suppose X is conditionally independent. Then any two points in P(X) exhibit

a strong fairness-accuracy conflict.

Proof. If RX = BX lies on the 45-degree line, then this is the only point in the Pareto

frontier, and the result holds vacuously. Otherwise suppose without loss of generality that

RX = BX lies above the 45-degree line. Then we are in the r-skewed case, and by Theorem

1 the Pareto frontier is the lower boundary of E(X) from RX to FX . Since RX = BX , the

35In the special case when RX = BX = FX , the Pareto set is just a singleton, and there is no strong
fairness-accuracy conflict. (Corollary 4 is vacuous in this case, since there are no two distinct points on the
Pareto frontier.)
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Pareto frontier in this case is also the lower boundary from BX to FX . But by the definition

of BX , we know that this part of the lower boundary consists of positively sloped edges. So

there is a strong fairness-accuracy conflict everywhere along the frontier.

Finally, we consider another special case of conditional independence when covariates

satisfy the following strong independence condition:

Definition B.7. Say that X satisfies strong independence if for both groups g,

P(G = g | Y = y,X = x) = pg ∀x, y.

In this case, the feasible set turns out to be a line segment on the 45-degree line, and the

Pareto set is a single point, as depicted in Figure 10.

Proposition B.6. Suppose X is strongly independent. Then the Pareto frontier is a single

point on the 45-degree line.

Proof. We continue to follow the notation laid out in the proof of Lemma A.1. Note that

under strong independence,

xy,r
xy,b

=
P(Y = y,G = r | X = x)

P(Y = y,G = b | X = x)

P(Y = y,G = r,X = x)

P(Y = y,G = b,X = x)

=
P(G = r | Y = y,X = x)

P(G = b | Y = y,X = x)
=
pr
pb
.

Thus xy,r
pr

=
xy,b
pb

for all x, y. It follows that the line segment E(x), which connects the

two points
(∑

y
xy,r
pr
` (1, y) ,

∑
y
xy,b
pb
` (1, y)

)
and

(∑
y
xy,r
pr
` (0, y) ,

∑
y
xy,b
pb
` (0, y)

)
, lies on the

45-degree line. Therefore E (X) =
∑

xE (x) · px is also on the 45-degree line.

The Pareto frontier consists of the single point that is achieved by conditioning on all of

the available information in X. Since this point is on the 45-degree line, both groups have

the same error. Thus, this point is simultaneously optimal for Rawlsian, Utilitarian, and

Egalitarian designers—indeed, fairness-accuracy preferences are completely irrelevant here:

All designers who agree on the basic Pareto dominance principle outlined in Definition 2

prefer the same policy.

B.4 Details of Example 9

In this appendix we compute the input-design feasible set and Pareto frontier for Example

9. Since X is a null signal, garblings of (X,X ′) are the same as garblings of X ′. Without
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Figure 10: Depiction of the Pareto frontier under assumption of strong independence

loss, we can restrict attention to garblings of X ′ that take two values, a = 1 and a = 0,

which correspond to the designer’s action recommendation for the agent. Any such garbling

can be identified with a pair (α, β), where α is the probability with which X ′ = 1 is mapped

into a = 1, and β is the probability with which X ′ = 0 is mapped into a = 1. It is easy to

check that the agent’s obedience constraint reduces to the simple inequality α ≥ β, which

intuitively requires the agent to take the action a = 1 more often when X ′ = 1.

For any pair (α, β), the two groups’ errors can be calculated as

er(α, β) =
1

2
(1− α) +

1

2
β = 0.5− 0.5(α− β),

eb(α, β) =
1

2
· 0.6(1− α) +

1

2
· 0.4(1− β) +

1

2
· 0.4α +

1

2
· 0.6β = 0.5− 0.1(α− β).

So as α − β ranges from 0 to 1, the implementable group errors constitute the line seg-

ment connecting (0, 0.4) with (0.5, 0.5). This entire line segment is also the Pareto frontier

P∗(X,X ′), as illustrated in Figure 8 in the main text.

For an Egalitarian designer, sending the null signal X leads to the point (0.5, 0.5) and

yields a payoff of 0. In contrast, we say that the designer “makes use of X ′ over X” if the

garbling T is not independent of X ′ conditional on X (in this example the conditioning is

irrelevant since X is null). Whenever T is not independent of X ′, then for some realizations

of T the agent believes X ′ = 1 is more likely, which makes a = 1 strictly optimal. Thus,

whenever the designer makes use of X ′ in the garbling, the agent is strictly better off com-

pared to the null signal, and the resulting error pair must be distinct from (0.5, 0.5). But

given the shape of the implementable set, this means that the designer is strictly worse off

when any information about X ′ is provided to the agent.
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