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Abstract

We develop a novel structural model to represent individual transportation decisions and
the equilibrium road traffic levels and speeds inside a city. The model has two main advantages
relative to the existing frameworks. First, it is a micro-founded equilibrium model with a
high level of heterogeneity. The model accounts for individual heterogeneity in access to
different transportation modes, values of travel time, and schedule constraints. Furthermore,
our model considers heterogeneous road congestion technologies across different areas. The
second advantage is that all the model parameters are estimated using multiple publicly
available data. We apply our model to the Paris metropolitan area to predict the road
traffic equilibria under driving restrictions and road tolls and measure each policy’s welfare
consequences. Our results suggest that all the policies decrease individuals’ utilities: the
benefits of relaxing road congestion and improving car speeds do not offset the losses for
individuals from switching to other transportation modes or to drive outside peak hours.
However, road tolls raise significant tax revenues that generate positive total surplus changes
when they are redistributed to individuals. In addition, these policies reduce emissions of
global and local pollutants. However, they represent only a small gain once converted into
monetary terms using standard social values for these emissions.
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1 Introduction

Road traffic reduction has been crucial in large metropolitan areas because of the multiple negative
externalities cars generate. For instance, INRIX estimates an annual aggregate cost of congestion of
87 billion dollars for the U.S.1 Pollution levels and air quality are also tightly related to the number
of cars on the road. Yet, changes in road traffic level are difficult to predict because the road
traffic level is the consequence of an equilibrium in which individuals make their transportation
decisions independently. However, these individual decisions affect everyone since the car speeds,
and individual trip durations ultimately depend on the traffic level. Predicting individual reactions
to a change in their transportation environment is challenging since it requires knowing how the road
traffic equilibrium is modified after individuals make their transportation decisions. Observational
studies that measure the direct impact of a change in the transportation environment are limited by
only being able to compare two equilibria, failing to separately identify the individual reactions from
the equilibrium adjustments. We define as transportation environment all the factors that affect
individual transportation decisions and are exogenous to the individuals, including the presence of
urban traffic regulations.

To analyze and predict the effects of changes in the transportation environment, we develop a
novel framework to analyze individual responses to changes in their transportation environment
in equilibrium. We build a new structural model to represent equilibrium traffic conditions in a
metropolitan area. This model exhibits an important dimension of heterogeneity at the individual
and geographical levels. The first part of the model represents the choice of a transportation
mode and a departure time by individuals with heterogeneous but fixed travel patterns (origin,
destination, and itinerary). Since individuals have distinct travel patterns, different available
transportation modes, and schedule flexibility, they are likely to react differently to a change in the
transportation environment. Our model considers the different transportation mode alternatives
to be imperfect substitutes. We also account for possible schedule constraints, implying that
commuting at different times is not perfectly substitutable. More precisely, we rely on a discrete
nested logit choice model, which contains heterogeneity in choice sets, sensitivities to trip duration,
and preferences for the different departure periods. The second part of the model represents the
road congestion technologies, which describes how driving speeds react to changes in the number of
individuals using cars and how many kilometers they drive. Our model takes into account spatial
heterogeneity by allowing the road technology to be different across areas of the city.

The model has the advantage of being transparent, tractable, and can be estimated with combinations
of data that are typically publicly available for many metropolitan areas. We also provide a
methodology to verify whether the model parameters are such that the equilibrium is unique. This
model differs from the existing ones in three key aspects. First, the model represents equilibrium

1Source: https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston-and-dc
-as-worst-in-us.html.
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transportation decisions for the entire metropolitan area rather than focusing on a specific road.
Second, it accounts for different types of roads that have possibly different congestion technologies
instead of considering one city-wide congestion technology. Third, all the model parameters are
estimated and represent the joint distribution of preferences, trip distances and characteristics,
individual characteristics, and transportation mode choice set, which is key to analyzing the effects
of changes in the transportation environment at the individual level. To allow for such individual
heterogeneity, we consider some factors to be fixed. In particular, we consider individual locations
and destinations fixed and do not allow individuals to change where they live or work in response
to a change in the transportation environment. We also assume that the transportation modes
available to an individual are fixed. Finally, we focus on unavoidable trips (work or study trips)
and thus consider individuals who have to take their trips and do not model the number of trips.

We apply our model of transportation decisions and congestion to Paris metropolitan area (Île-de-
France region) and combine data from different sources to estimate the model parameters. We rely
on a survey conducted in 2010 and 2011, where respondents provided detailed information about all
the trips done the day before the interview. We use these data to estimate the transportation mode
choice model. However, the survey does not provide trip durations using the non-chosen alternative
transportation modes or car trip durations for alternative departure times. We supplement the
survey with data on expected travel times using Google Directions for public transport and TomTom
APIs for private vehicles during peak and non-peak hours to overcome this issue. We estimate the
congestion technologies using high-frequency data on traffic density and speed from road sensors
at the day and hour level for 1,371 sensors, covering the highways, the ring roads, and the city
center. We also use subway and suburb train ridership data to approximate overcrowding levels in
the different metro and train lines at peak and non-peak hours.

We use our structural model and estimated parameters to predict the effects of policy instruments
that reduce road traffic. More specifically, we compare the effects of road tolls to simple driving
restrictions. The advantage of driving restrictions is the simplicity of implementation, only requiring
compliance controls and are often used as emergency schemes, temporary measures put in place
under pollution peaks episodes. Paris and the surrounding region have used alternate traffic
restrictions based on the car license plate digits five times between 1997 and 2016. The longest
alternate-day travel scheme lasted four days from December 6th to 9th 2016. Since 2017, the
emergency plan was triggered six times because of pollution peaks, but the driving restrictions
were based on car vintage and fuel type. Driving restrictions constitute a command and control
policy instrument. An alternative consists of sending price signals through road tolls. Indeed, road
tolls have been introduced in many European cities. For instance, Stockholm and London have
put in place systems of congestion charges, restricting access to the city center during peak hours
of weekdays to those who pay a fee. Price mechanisms have the advantage of sorting individuals
according to the benefits they get from driving: those who stop driving at peak hours have good
transportation alternatives to driving or fewer schedule constraints, limiting the welfare costs of
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traffic regulations. Driving restrictions based on the car license plate digits affect all individuals
identically, which seems inefficient. In addition, road tolls generate tax revenue that can be
redistributed to individuals, mitigating the surplus losses.

In the main analysis, we compare the effects of three simple policies: a driving restriction, a fixed
toll, and a variable toll. We analyze different transportation policies that imply identical traffic
reduction and compare the policies’ effects on individual surpluses, travel times, and emissions.
We measure the impact of the policies on global pollutant emissions (carbon emissions) and local
pollutant emissions (nitrogen oxide, particulate matter, and hydrocarbon emissions). The policies
are restricted to peak hours, so we consider individuals free to drive during non-peak hours. We first
analyze the aggregate effects of different policy stringency levels. We find that all the regulations
are costly for individuals, as speed gains cannot compensate for the losses from the constraint
imposed by the policy. However, the price instruments generate tax revenue that increases the total
surplus once redistributed to individuals. Moderate values of the tolls have a positive net impact
on individuals if the revenue is redistributed. Without accounting for the tax revenue, driving
restrictions hurt individuals less, as they force everyone to contribute to the traffic reduction. On
the contrary, tolls need to be large enough to induce enough traffic reduction. The variable toll
is more efficient than the uniform toll since it targets long-distance commuters, which exert the
largest congestion externalities. Next, we fix the stringency level and compare the impacts of tolls
and driving restrictions at the individual level. We observe that the variable tolls generate the
largest inequalities across individuals.

Finally, we investigate whether the losses for individuals can be reduced by using alternative
policy instruments or by combining the policies with other interventions. We specifically study
car vintage or fuel-based driving restrictions and driving licenses allocated through an auction.
These instruments do not perform better than the simple ones. On the one hand, the vintage and
fuel-based restrictions improve the emission reductions through better targeting of polluting cars.
But, on the other hand, they have larger they imply severe losses for a fraction of drivers while
creating winners. Overall, these policies are more cost-efficient in decreasing emissions even though
they reduce the total individual surplus. We also measure the potential gains from differentiated
tolls according to the area and nonlinear variable tolls. Finally, we evaluate the role of access to
public transport, public transport efficiency, and cost to the surplus losses. We find that connecting
the 25% of the population which currently does not have access to public transportation is the
best ancillary instrument to reduce the policy surplus losses. As a robustness exercise, we perform
the same analysis for stricter policies applied all day. We find that these policies hurt more
individuals but are much more efficient at reducing emissions. The ranking across the different
policy instruments is the same as peak hours policies.

This paper relates to the literature measuring the impacts of driving restrictions. Davis (2008)
provides reduced form evidence that driving restrictions in Mexico City were unable to curb
pollution in the long run because it induced individuals to buy a second car to bypass the regulation.
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Moreover, Gallego et al. (2013) provide evidence from additional cities and show that driving
restrictions can successfully reduce pollution in the short run, but in the long run the policy
impact is negative. Our analysis is very different both in terms of method and focus. We estimate
a structural model that credibly represents transportation decision of individuals and use it to
evaluate the effects of hypothetical policy. We focus on the short-run effects of transportation
policies and we do not allow individuals to buy a second car or a car with different specifications in
response to the policy. This is consistent with policies that are temporary and used to deal with a
pollution peak episode. We also assume the total number of trips is unaffected by transportation
policies, which is consistent with our restriction on work and study-related trips. Medium and
long-term distributional consequences of transportation policies are also important to evaluate as
shown by Tsivanidis (2018), Herzog (2021), and Barwick et al. (2021). While these approaches
incorporate the long term effects of new transportation infrastructure or urban traffic policies on
individuals’ location decisions across a metropolitan area, they are not able to account for as much
level of heterogeneity as we do.

The model that represents individuals’ transportation decisions is similar to Lucinda et al. (2017)
who identify demographic characteristics that affect individuals’ preferences for the different
transportation modes. We build a more realistic model that allows the alternatives available to
vary across individuals and introduce imperfect substitution between peak and non-peak hour
alternatives. The most significant novelty of our model is that trip durations endogenously change
in response to policy interventions. Batarce and Ivaldi (2014) develop a model with endogenous
congestion based on the number of trips made by individuals, where driving at any point in time
generates congestion the whole day. Instead, our equilibrium congestion level varies according to
the period, with only individuals driving during that period exerting congestion. Our approach is
closer to Basso and Silva (2014) who also allow peak and non-peak departure time substitution.
However, they model a single road and limit the decision to driving or taking the bus. Instead, we
allow for a richer set of transportation modes and focus on citywide congestion, with area-specific
heterogeneity. Tarduno (2022) studies the role of route substitution in the efficiency of cordon
pricing mechanisms to alleviate congestion. He estimates a structural model of route choice and
departure time for the Bay area. While we abstract from route choice and have a more limited
approach to departure time, his model focuses on individual driving and does not consider the
important role of substitution towards other transportation modes.

Arnott et al. (1990) and Arnott et al. (1993) started the literature on bottleneck congestion models
and the role of congestion pricing. Van Den Berg and Verhoef (2011) and Hall (2019) focus on the
distributional effects of pricing policies in such models and show that the policies can be welfare
improving in the absence of redistribution. Kreindler (2020) uses experimental data to estimate
a model of departure time choice. His results show that while the bottleneck model allows for a
detailed representation of the dynamics of congestion in a specific road, it fits poorly the congestion
patterns of a whole city. Since our paper focuses on the effects of citywide policies, we consider
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alternative modeling assumptions for congestion that better fit our setup.

Our estimation of the road congestion technology builds on Couture et al. (2018) who estimate
demand and supply for travel times and define speed as the equilibrium outcome. While we
rely on the same variation to identify the road technology, we rely on a structural model that
specifies individuals’ utility. Our model allows us to evaluate more extensive sets of hypothetical
policies and compute welfare costs in monetary terms. Other papers have focused on estimating
the relationship between congestion and traffic density by relying on exogenous shocks on traffic
density. For instance, Yang et al. (2020) leverage the driving restriction implemented in Beijing for
identification. Relatedly, Anderson (2014) relies on a 35-days strike by public transport employees
in 2003 to estimate the substitution between private vehicles and public transit in Los Angeles. His
estimates suggest a considerable impact of the strike on traffic because public transit users are also
those driving on the most congested roads. His study points out two essential features. First, it is
crucial to account for road heterogeneity at the city level; we do this by estimating speed-density
relationships for four different areas of Paris. Second, it is important to take into consideration the
heterogeneity in individual trips’ origins and destinations.

Previous literature on traffic restrictions in Paris also relies on a model with endogenous congestion.
De Palma and Lindsey (2006) focus on the effects of road pricing using a bottleneck model simulation
over the road network. Kilani et al. (2014) abstract from the road network and bottleneck dynamics
but differentiate across different public transport modes. Our model builds on the insights from
previous approaches but allows for a larger degree of heterogeneity at the individual level. Even
though we consider area-wide congestion levels, when we compute individuals’ travel times, we
rely on the exact route the individual is taking. This implies that individuals departing from the
same location but with different destinations face different congestion levels. We also allow for
heterogeneity in individuals’ valuation of travel time by leveraging a large set of demographics
variables included in the survey. Unlike previous literature that typically relies on calibrated
parameters, we estimate all the parameters in our model, providing a transparent methodology
that applies to other setups.

De Palma et al. (2017) analyze the role of public transport congestion on individuals’ departure
times. However, their application focuses on a specific urban train line. Our study estimates
individuals’ disutility of public transport overcrowding, and our overcrowding measure accounts for
heterogeneity across the different urban railway transit lines. Bou Sleiman (2021) uses difference-
in-differences to estimate the traffic impact of route and mode choice changes linked to a natural
experiment, the closing of a riverbank road in Paris. To keep our model tractable, we keep route
choices fixed in our counterfactuals. While this assumption limits the capacity of our model to
study highly targeted policies, such as tolling a specific road, we can still analyze a large set of
relevant policies.
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2 A structural model of transportation decisions and traffic
conditions

We develop an equilibrium model representing individuals’ choice of a transportation mode and
departure time. The model considers that car trip durations are endogenous and depend on the
congestion levels on the roads which is directly related on the number of drivers and how long they
spend on the road. We approximate this by the number of kilometers individuals drive at each
time period. To represent the relationship between speed and traffic density, we model the road
congestion technologies for the different areas of the metropolitan area. Finally, we describe how to
solve for the equilibrium of the model and check whether the equilibrium is unique.

2.1 Transportation mode choice model

First, we introduce the structural model representing how individuals decide which transportation
mode to use and their departure time. We consider that the origin and destination of the trips
are fixed and exogenous. We do not allow for an outside option, as we model the choice of
individuals facing non-avoidable trips. We make the simplification that individuals choose between
T periods denoted by 1, ..., T . Our model is a nested discrete choice model, and we follow the
standard distributional assumptions from the literature (see, Train, 2009). The nests are the
different transportation modes. We assume individuals make a sequential decision: first, they
choose a transportation mode, and then they decide when they leave. The consequence of this
modeling assumption is that we allow individuals to have correlated preference shocks for the same
transportation mode across departure periods. The utility function of an individual n associated
with transportation mode j, and departure time t is assumed to be linear in the mode and departure
period characteristics Xnjt:

unjt = β′nXnjt + εnjt.

Xnjt typically include the monetary trip cost and duration. βn is a vector of coefficients of preferences
for these variables for consumer n, and εnjt is a random idiosyncratic term. This assumption implies
that the different modes and departure periods are imperfect substitutes. We allow for correlation
between these idiosyncratic terms across different periods by decomposing the preference shocks
into a mode-specific shock common to all departure periods and a mode and period-specific shock:

εnjt = ζnj + σε̃njt.

σ represents the degree of independence between the preference shocks across different periods
for the same transportation mode and is a parameter to estimate. When σ = 1, the preference
shocks for different periods are independent, while if σ = 0, the different time periods are perfect
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substitutes. Each individual has a choice set Jn, which comprises all the transportation modes she
has access to. Each individual chooses the combination of alternative j∗ and departure time t∗ that
maximizes their utility:

{j∗, t∗} = arg max
j∈Jn,t∈{1,...,T}

unjt.

We assume that εnjt are identically and independently distributed across individuals and follow a
type one extreme value distribution. The probability that individual n chooses the transportation
mode j and departure time t is:

snjt =
exp

(
β′

nXnjt

σ

)
D1−σ
nj

∑
j′∈Jn

Dσ
nj′
,

where Dnj′ = ∑T
t=1 exp

(
β′

nXnj′t

σ

)
. In our data, we observe a sample of N individuals representing

the entire population in the metropolitan area using the survey weights. By aggregating the
transportation mode decisions of all individuals, we obtain the total number of individuals using
transportation mode j at period t as:

Njt =
N∑
n=1

ωnsnjt,

where ωn is the weight of individual n in the sample. We can also obtain the total number of
kilometers driven in a given period as:

Kt =
N∑
n=1

ωnknsnt,car.

For the estimation, we further parameterize the individual heterogeneity in preferences and assume
that βn are functions of observable demographics characteristics Zn:

βn = β̄ + ZnΓ

We estimate
(
β̄,Γ, σ

)
using the method of maximum likelihood; we want to find the values of the

parameters that rationalize the best the observed choices given the theoretical probabilities. The
log-likelihood function that we maximize is:

LL(β̄,Γ, σ) =
N∑
n=1

∑
j∈Jn,t∈{1,...,T}

ωndnjt × log
(
snjt(β̄,Γ, σ)

)
,

where dnjt is an indicator equal to one when the transportation mode j and time t are chosen and
zero otherwise. ωn corresponds to the sample weight of the individual n. The identification of
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the parameters comes from observing a cross-section of individuals who have different choice sets,
different trip characteristics, and different demographic characteristics.

To evaluate the impacts of transportation policies on individuals, we rely on changes in consumer
surplus, which are equivalent to calculating compensating variations. The consumer surplus per
trip for individual n is defined as the expected utility of the choice that maximizes the utility and
is:

CSn = 1
|αn|

log
∑
j∈Jn

exp(σ log(Dnj))
+ Cn,

where Cn represents a constant utility term that cannot be identified and αn is the parameter of
sensitivity to the trip cost, which converts the utility into monetary terms. The consumer surplus
is not identified, but the variation of consumer surplus eliminates the constant Cn and thus is
identified and given by:

∆CSn = 1
|αn|

log
∑
j∈J 1

n

exp(σ log(D1
nj))

− log
∑
j∈J 0

n

exp(σ log(D0
nj)


Where J 1
n and D1

nj represent respectively the choice set and the expected utility of transportation
mode j under the counterfactual scenario, while J 0

n and D0
nj represent their initial values. We can

further decompose the variation in consumer surplus into a partial policy effect which measures the
policy at constant final speeds, and an equilibrium speed effect measured at the initial situation,
without policy. To make the expression clearer, we make apparent the dependence between the
driving speed and the utilities associated with the transportation mode D0

nj(v0) and D1
nj(v1)where

v0 and v1 represent the initial and final vectors of driving speeds. The decomposition is given by:

∆CSn = 1
|αn|

 log
∑
j∈J 1

n

exp
(
σ log

(
D1
nj(v1)

))− log
∑
j∈J 0

n

exp
(
σ log

(
D0
nj(v1)

))
︸ ︷︷ ︸

policy effect at constant speed

+ log
∑
j∈J 0

n

exp
(
σ log

(
D0
nj(v1)

))− log
∑
j∈J 0

n

exp
(
σ log

(
D0
nj(v0)

))
︸ ︷︷ ︸

equilibrium speed effect



2.2 Road traffic conditions and congestion technology

We model congestion technology at the local level, splitting the city in a = 1, ..., A mutually
exclusive areas. The driving speed in an area depends on the road technology and the traffic density
in that area only. Following the transportation literature, we base our congestion technology model
on the fundamental traffic diagram (see Small et al., 2007). We model speed as a weakly decreasing
function of the traffic density, represented by the occupancy rate that traffic monitoring stations
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typically record. The occupancy rate is defined as the percentage of a fixed period during which
the traffic sensor detects a car. Geroliminis and Daganzo (2008) empirically show the existence of a
fundamental traffic diagram at the city level, called a “macroscopic fundamental traffic diagram”.
Other applications include Yang et al. (2020), Couture et al. (2018), and Anderson and Davis (2020).
We follow their approach but allow for heterogeneity within the city by considering area-specific
congestion technologies. We also rely on minimal functional form assumptions by approximating
the function by polynomials.

Congestion levels can be different throughout the day, but we consider that road technology is
fixed over time. Road technology represents all the elements that determine the speed at which
individuals can drive for a given traffic density. It represents the type of road (high-speed road
or city road), the presence of traffic lights and intersections, and the number of entries or exits
that may force drivers to slow down. Formally, we define the speed in area a at time t, vat to be a
function of the occupancy rate τat :

vat = fa(τat )

fa represents the congestion technology, which indicates how the speed decreases when the number
of cars increases. For the estimation, we consider that the observations contain speed shocks such
that:

vat = fa(τat ) + νat .

We assume that the speed shocks are exogenous and uncorrelated to the traffic level τat . We make
minimal function form assumptions on fa by relying on basis polynomial. More specifically, we use
Bernstein basis polynomials. We observe a sample of independent realizations of traffic densities
and speeds and estimate the following equation:

vat =
L∑
l=0

calBl(τat ) + νat .

The coefficients cal are the parameters of interest, and Bl are the Bernstein basis polynomials of
degree L, which expressions are:

Bl(T ) =
(
L

l

)
T l(1− T )L−l.

Under the assumption that the occupancy rate τat is independent of the speed shock νat , we can
estimate the parameters of the Bernstein polynomial cal using standard linear methods. Moreover,
we can easily impose the relevant shape restrictions (the speed function is positive and weakly
decreasing) through linear conditions on the parameters cal :

cal ≥ 0 ∀l
cal+1 ≤ cal ∀l = 0, ..., L− 1.
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The congestion technology model determines speeds from the traffic occupancy rates, while the
transportation mode choice model predicts the number of cars and the number of kilometers driven
by area. We thus need a mapping between the number of kilometers predicted by the transportation
mode choice model and the average occupancy rate in each area. Because the traffic level depends
on how many individuals choose to drive and how long they drive, we consider a mapping between
the total number of kilometers driven and the occupancy rate. We assume an affine relation between
the occupancy rate and the total number of kilometers driven at the area level. Because we do not
model the entire traffic source, we let the possibility that a fraction of the road traffic is irreducible
(trucks, delivery cars, buses, etc...). Formally, we consider:

τat = φat ×Ka
t + γat ,

where φat is a scale parameter that maps the number of kilometers driven to the surface of the area,
and γat represents the irreducible traffic.

2.3 Equilibrium of the model

In this model, an equilibrium is defined by individual probabilities to drive at each period and
speeds for each area and period. Then, we substitute the individual probabilities in the speed
function to express the equilibrium in terms of speeds only and get the following system of non-linear
equations:

vat = fa
(
φat

N∑
n=1

ωn.snt(v).kan + γat

)
There is no general result that guarantees that the system of non-linear equations always has a
unique solution. However, there are two special cases where the speed equilibrium is unique. The
first particular case is when there is only one period and one area, so we have just a non-linear
equation to solve. Because the speed function fa is monotonically decreasing, we are sure that if a
speed equilibrium exists, it is unique. The second particular case is when we have one area and
multiple periods. The proof relies on the fact that the Jacobian of the system of equations has
positive terms on the diagonal and negative terms off-diagonal. The property of the Jacobian of
the system of equations is the consequence of two key features of our model: the speed function is
decreasing, and the different departure periods are substitutes. We provide the proofs of uniqueness
under these two particular cases in Appendix B.

Even though there is no proof of the uniqueness of the equilibrium, we provide a method to check
if the system of equations in speeds has a unique solution given our set of estimated parameters.
The approach consists of defining the function:

gat (v, κ) = κ.vat + (1− κ).fa(v)

11



and check whether there exists κ ∈ [0, 1[ such that g(.) is a contraction. Recall that a function g(.)
is a contraction if it is K-Lipschitz, with K<1, implying that ∀v ∈ [v,v]:

||g(v′)− g(v)|| ≤ K||v′ − v||.

We use the supremum norm, so the Lipschitz coefficient K is given by:

max
a∈1,...A

max
t∈1,...,T

max
a′∈1,...A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
Suppose we can find κ ∈ [0, 1[ such that K < 1, the function g(.) is a contraction. Therefore, if the
iteration process converges, it converges to the unique solution of the system of equations. If there
exists a set of κ such that the function g(.) is K-Lipschitz with K < 1, then we select the value of
κ that implies the lowest coefficient K to ensure the maximum speed of convergence. Therefore,
we solve for:

min
κ∈[0,1[

max
a∈1,...A

max
t∈1,...,T

max
a′∈1,...A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
We provide in Appendix B.2 the analytical formula for the Jacobian of g(.) and some results on
how the Lipschitz coefficient varies with the tuning parameter κ and the policy environment.

3 Specification and estimation of the transportation choice
model

We estimate the transportation model parameters using a combination of two main datasets. We
rely on survey data on individuals’ commuting patterns in the Paris area called “Enquête Globale
Transport 2010” (EGT hereafter).2 It is combined with a second self-constructed dataset on
expected trip durations and itineraries for cars and public transport from TomTom and Google
Maps APIs. We also leverage several useful ancillary datasets. First, we use proprietary car sales
and characteristics data to estimate cars’ fuel consumption and emissions of pollutants. Second, we
obtain data on public transport passenger flows, train capacities, and public transport schedules to
estimate the overcrowding levels in the urban railway transit. Finally, we gather information about
the past prices of public transport tickets and subscriptions.

3.1 Data, sample selection and choice set characteristics

The EGT data contain information about the departure and arrival times and precise locations,
the transportation mode used for every trip, and the trips’ motives. To be consistent with the

2Enquête Globale Transport (EGT) - 2010, DRIEA, ADISP. We provide more details about the survey in
Appendix A.1.
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assumption that the trips are non-avoidable, we restrict the sample to work and study-related
trips. An individual taking the car to work will probably take it to go back home. To eliminate
possible correlation in the decisions, we model the transportation decision for the first trip of the
day, defined as the first trip in the morning widely defined (between 4:00 a.m. and 2:59 p.m).
We consider individuals choose only one mode of transportation so when individuals took several
modes, we consider the main one which is reported in the data.

In addition to the residence location and destination, the survey records household and individual
socio-demographic characteristics such as age, socio-professional activity, household size, income
class, and housing characteristics. Since individuals within a household have different demographic
characteristics and make different trips, we choose the individual as the observation unit rather than
the household. Furthermore, we assume that individuals’ decisions are independent within families,
although they share access to the same transportation modes. This simplification implies that more
than one individual can use the car when the household owns one. This assumption ignores potential
cost savings and detours associated with carpooling. However, modeling such joint decisions would
add too much complexity to the transportation mode choice model. Finally, survey recording errors,
such as missing departure or arrival locations, force us to drop some observations, resulting in a
final sample of 12,975 individual trips. With the sample weights, we have transportation decisions
representing 4,034,801 million individuals, which corresponds to approximately one-third of the
total population of the Paris metropolitan area (11.85 million inhabitants in 2011).

The survey only provides household income brackets, with the full income distribution divided
into ten brackets. We prefer to construct our own proxy of households’ wealth by leveraging the
precise housing size and location information. We estimate the real estate value per square meter
in each household’s neighborhood using estate transaction data from the French tax authority and
standard matching methods.3 The real estate prices are estimated using all transactions in the
municipality and the neighboring municipalities and weighting each match by the inverse of the
distance to the household’s location. We then multiply this estimate by the apartment or house
size observed in the EGT data. Finally, we divide our estimated household wealth by the number
of consumption units in the household. According to the French Statistical Institute (INSEE),
the first individual in a household represents one consumption unit, other adults represent half a
consumption unit, and children represent 0.3 consumption units. We provide more details about
the data and estimates in Appendix A.4. We find a correlation coefficient of 0.51 between our
income proxy and the midpoints of the income bracket provided by the EGT data.

The survey contains helpful information to define individuals’ choice sets: ownership of a car,
two-wheel motorized vehicle, and bicycle, as well as some characteristics of the vehicles. Thus,
we know precisely which transportation modes are available to each individual. We consider five
transportation mode alternatives: bicycle, public transport, two-wheel motorized vehicles, walking,

3“Demande de Valeurs Foncières”, DVF+, DGALN et Cerema. See https://datafoncier.cerema.fr/donnees/
autres-donnees-foncieres/dvfplus-open-data.
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and car. If the household does not own a car or a motorized two-wheel vehicle, the alternative is
considered non-available for the individual. If walking or biking takes more than 2.5 hours, we
define those alternatives as non-available as well. For some trips, Google Maps cannot find a public
transport itinerary, so we consider the option non-available (this occurs for 33% of the trips).

The survey also records whether individuals own a public transport pass, the type of subscription
and if they are partly or entirely reimbursed for their trip. Using this information, the vehicle
characteristics, and some additional assumptions, we estimate the cost of each trip for each available
transportation mode. The estimates are both trip and individual-specific and account for differences
in the public transportation subscriptions and vehicle characteristics in addition to the trip distance.
Consequently, the driving and public transport costs vary with the mode, the trip’s distance, and
individual characteristics. We provide the precise methodology and related assumptions made to
estimate the costs of trips in Appendix A.2.

Since the survey data only provide trip durations for chosen transportation modes, we rely on
additional data to compute travel times for non-taken alternatives. Trip durations are necessary
to estimate the sensitivity to the values of travel time for all individuals, which constitute the
key model parameters. Google Maps and TomTom Directions APIs (Application Programming
Interfaces) provide directions and expected travel times associated with an origin and destination
pair of GPS coordinates at a specified departure time. Google Maps predicts trip durations and
provides car and public transport itineraries. Google Maps is widely used in most countries, and due
to its accuracy, many individuals rely on it to obtain their trip itinerary. The data from its related
API services have been used previously in the transportation literature (see Kreindler, 2016, Hanna
et al., 2017, Akbar and Duranton, 2017 and Akbar et al., 2018). The TomTom directions API is
fairly similar to the one from Google Maps, with similar reliability, but has the inconvenient of only
being available for cars and not for public transport. For this reason, we use Google Maps data
to estimate trip durations using public transport alternatives, while we rely on TomTom data for
expected durations by car.4 In the model, we consider two time periods: peak and non-peak hours.
We use the predicted car trip durations at 8.30 a.m. for peak hours and 10.30 a.m. for non-peak
hours. We specify the trip query to a future date, and thus the predicted car trip durations are
not subject to the current traffic conditions and their idiosyncrasies. We did the TomTom queries
after the Covid crisis started but during a period without restrictions. We may be worried that
TomTom modified its prediction algorithm because of Covid, so we compare TomTom’s expected
trip durations with Google Maps predictions that we obtained before. The results are reassuring
and provided in Appendix A.3 as well as more detail about the queries. We use the predicted car
duration at non-peak hours for two-wheel motorized vehicles, assuming they can bypass traffic.

We also estimate durations by walk and bicycle. We first obtain the walking trip distances from the
GPS coordinates using Open Street Maps, which finds the fastest itinerary given the street network.

4We use TomTom data because the service is cheaper than Google Maps.
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Then, we compute the average speed for individuals who bike and walk using their declared trip
durations and the distance. We find a walking speed of 5.52 km/hr and 10.23 km/hr for biking.
Finally, we check that the speeds are not sensitive to rounding errors in the reported trip durations
by excluding observations reporting a multiple of 10 minutes and the average speeds remain very
similar.

Table 1 provides a comparison between the durations and costs for the different transportation
modes. Taking the car is the fastest option and available to the largest fraction of individuals.
Still, the low initial shares suggest that the high monetary cost dissuades many from choosing it.
Interestingly, public transport is not the fastest nor the cheapest alternative on average, yet 45% of
the individuals choose it in the sample. The public transport cost does not increase much with
distance while the car or motorbike costs linearly increase with distance. This is why the maximal
price of public transport is lower than the maximal car and motorbike costs.

Table 1: Average duration, cost and availability by transportation mode.
Variable Mean Median Std. dev. Min Max
Duration
Bike 52.12 39.65 40.66 0.57 149.98
Public transport 46.93 41.68 26.9 4.1 279.18
Motorbike 17.71 15.58 12.36 0.72 93.82
Walk 64.83 54.52 38.57 1.54 149.95
Car, peak 26.55 21.02 20.65 0.87 123.73
Car, non-peak 20.42 16.55 15.98 0.73 126.15
Cost
Bike 0.64 0 0.82 0 1.7
Public transport 1.25 1.24 1.27 0 10.55
Motorbike 1.21 0.72 1.39 0 13.72
Car 1.17 0.76 1.25 0 14.24

Mode availability Shares
Bike 69.94 2.08
Public transport, peak 71.54 30.33
Public transport, non-peak 71.54 14.52
Motorbike 12.85 2.08
Walk 42.72 15.8
Car, peak 79.75 22.88
Car, non-peak 79.75 12.31
Note: Duration expressed in minutes, cost in e. Mode availability and initial shares in %.
All statistics are weighted.
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To allow for a potential disutility of overcrowding in the public railway transport, we construct
a line and period-specific measure of overcrowding for all the subway and urban railway transit
lines. We use publicly available data from 2015 on passenger flows (the oldest year available)
combined with data on hourly public transit schedules.5 We also obtain information on the different
trains used on each line and their capacity from various sources (Wikipedia and internal reports
from the transport organization in the Paris area “STIF”). A train’s capacity is the number of
passengers that a train can accommodate, assuming a density of four persons per square meter.
We approximate the overcrowding level by the ratio between the hourly number of passengers
divided by the line’s capacity. This variable reflects the time heterogeneity in train passenger flow,
schedules, and capacities. From the urban railway line-level overcrowding estimates, we obtain
individual overcrowding levels by weighting the line-level overcrowding measures by the percentage
of the trip duration spent on the line. We give all the details on the data used and the construction
of the overcrowding variable in Appendix A.5. On average, we find that the public railway transport
is at 89% capacity at non-peak hours and reaches 143% at peak hours.

Table 2 shows the distribution of trip characteristics across the different demographic categories.
For instance, we see that the youngest category (less than 18 years old) have, on average, trip
distances three to four times lower than the rest of the population. The explanation is the proximity
of schools to their residence. Interestingly, we do not observe large differences in car usage for the
first three quintiles of the wealth but rather a considerably lower usage for the top two quintiles.
However, we see that the share of individuals using public transport increases with the wealth
and the choice of traveling at peak hours. While the share of white-collar individuals using their
car differs by 5.2 percentage points from the share for blue collars, the percentage of white-collar
individuals using it at peak hours is 19.7 percentage points higher than for blue collars. We take
this as evidence of differences in schedule flexibility across socio-professional categories.

5“Données de validation”, ÎledeFrance mobilités. See https://data.iledefrance-mobilites.fr/explore/
dataset/histo-validations/table/.
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Table 2: Summary statistics by demographic groups.
Mean Mode shares

Freq. Distance Duration Car Peak/ PT Peak/
car chosen PT chosen

Age
Age ≤ 18 25.4 4.21 18.9 21.3 93.7 31.8 81.7
Age ∈ ]18- 25] 10.8 14.8 38.9 20.6 57.4 68.9 62.5
Age ∈ ]25- 35] 17.8 15.5 35 36.7 57.6 52.7 66.6
Age ∈ ]35- 45] 19.4 17 35.6 45.7 57.9 43.2 62.1
Age ∈ ]45- 60] 24 16.5 34.9 45.3 63.5 43.9 65.9
Age > 60 2.56 13.4 30 49.9 56.1 39.7 64.6
Wealth proxy
Wealth ≤ 110,000 20 14.6 32.8 36.7 57 41.3 58.3
Wealth ∈ ]110,000-152,000] 20 14.9 33.2 39.5 65.1 42.7 64.8
Wealth ∈ ]152,000-205,000] 20 13.4 31.8 37.2 65.3 44 69.7
Wealth ∈ ]205,000-283,000] 20 12 30.2 33.7 68.4 47.7 71.1
Wealth > 283,000 20 10.1 28.5 28.8 70.8 48.6 72.7
Socio-professional category
Independent 3.58 17 30.5 59.5 51.8 24.4 61
White collar 33.3 15.9 35.2 39.3 70.5 49.6 74.5
Blue collar 30.6 16.4 35.3 44.5 50.2 45.2 54.4
Student ≤ high school 25.6 4.09 18.8 21.6 93.3 31.5 82.8
Student - higher education 6.86 15.1 41.9 11.7 68.1 80.4 58.8
Household size
Couple and/or children 84 13.1 31.2 35.6 65.9 42.9 68.6
Single 16 12.7 32.2 32.9 60.2 55.1 63.8
Average 13 31.3 35.2 65 44.8 67.6
Note: Duration expressed in minutes, distance in km, wealth per household consumption units in e. Frequencies and
mode shares are in %. Distance and duration are those of the chosen transportation modes. All statistics are weighted
using the survey weights.

3.2 Model specification and estimation results

We specify the utility as a linear function of the following variables: transportation mode-specific
intercepts, the trip’s monetary cost, and the logarithm of the trip duration. Only differences in
utilities are identified in these discrete choice models, so we consider walking as the baseline option
and normalize the intercept to 0. Note that the mean utility of walking is not normalized to 0
because the utility contains the trip duration. We use the logarithm of the trip duration since it
implies that the marginal valuation of travel time decreases with the trip duration: spending one
additional minute is more harmful to someone taking a short trip than to someone with a longer
trip time. We test in robustness the sensitivity of the results to this specification assumption. We
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allow the sensitivity to the trip duration to vary with age (we rely on six age classes) and wealth
(we rely on the quintiles of our wealth proxy). The trip duration might be differently valued if
individuals have to make a physical effort or if they can use their time to read or listen to the radio.
To capture this, we add an interaction between a dummy for walk and bicycle and the trip duration
in the utility function. While we allow for heterogeneity in the sensitivity to the trip duration, we
do not allow heterogeneity in the cost sensitivity. We choose to put all the heterogeneity on the
sensitivity to the duration for two reasons. First, the trip durations are fairly precisely measured,
while the trip cost estimates rely on several assumptions and imputations. Second, the costs display
much less variation across modes and individuals than trip durations. We also test this restriction
in a robustness exercise.

Individuals may have different schedule flexibility, and it may be very costly for some individuals
to make their trips outside peak hours. Workers in some specific professional activities and young
individuals that go to their study place may have less flexibility regarding their departure time for
work. Therefore, we interact the socio-professional category with a dummy for non-peak hours.
Families typically try to coordinate on departure times and may be less flexible, so we also add an
interaction between an indicator for families and non-peak hours.

Additionally, we add some controls to represent the characteristics of public transport. First, we
use the overcrowding level in the metro and suburb trains, a dummy if the public transport is
composed of railway modes only and the number of layovers. Following the literature on public
transport congestion, such as De Palma et al. (2017) and Haywood and Koning (2015), we assume
the utility is linear in the level of overcrowding in the public transit.

The estimated coefficients, presented in Table 3, have the expected signs. Individuals value
negatively the cost of the trip as well as its duration. The interactions between the trip duration
and individual characteristics reveal that the sensitivity to trip duration is more heterogeneous
across age than across income categories. Older individuals are more sensitive to the trip duration.
But the sensitivities to the trip duration are not so different for individuals between 25 and 60
years old. The sensitivity to the trip duration depends non-linearly on wealth: it increases until the
4th quintiles and then decreases for the highest quintile. However, the coefficients in the first four
quintiles are not significantly different. It reveals that the top-wealth individuals are less sensitive
to trip durations than lower-wealth categories.

The transportation mode dummies reveal significant differences in the stand-alone preferences
for the different transportation alternatives. We also find that driving a car or taking public
transport at peak hours are preferred to using these modes at non-peak hours. The value of the
nest parameter is high (0.79), indicating that leaving at peak and non-peak hours are subject to
relatively independent shocks and thus constitute imperfect substitutes. Yet, the coefficient is lower
than one, implying a slight correlation between the preference shocks within transportation modes.
The value of the nest parameter also confirms the relevance of the nest to represent the substitution
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patterns between the different transportation modes and departure times.

The interactions between the non-peak hour dummy and the socio-professional categories reveal
that white collars and young students are less flexible than the other categories. The most flexible
individuals are the blue collars, students in higher education, and independent workers. We also
find that families dislike traveling outside peak hours, indicating lower schedule flexibility. Finally,
the public transport controls have the expected signs: the number of layovers and the overcrowding
reduce the utility of public transport. The railway dummy is positive but not significant.

Table 3: Estimation results for the utility parameters
Coefficients Mean S.E.
Log(duration) -0.56∗∗ 0.09
Log(duration) × wealth ∈ q2 -0.05 0.08
Log(duration) × wealth ∈ q3 -0.01 0.08
Log(duration) × wealth ∈ q4 -0.11 0.08
Log(duration) × wealth ∈ q5 0.15† 0.09
Log(duration) × age ∈ ]18-25] -0.4∗∗ 0.1
Log(duration) × age ∈ ]25-35] -1.59∗∗ 0.09
Log(duration) × age ∈ ]35-45] -1.7∗∗ 0.08
Log(duration) × age ∈ ]45-60] -1.45∗∗ 0.08
Log(duration) × age > 60 -2.03∗∗ 0.2
Log(duration) × effort -1.66∗∗ 0.06
Cost -0.41∗∗ 0.02
Bicycle -3.48∗∗ 0.08
Public transport, peak -4.2∗∗ 0.21
Public transport, non-peak -4.49∗∗ 0.23
Motorized 2-wheel -7.35∗∗ 0.21
Car, peak -6.22∗∗ 0.2
Car, non-peak -6.81∗∗ 0.22
Non-peak hour × white collar -0.57∗∗ 0.09
Non-peak hour × blue collar 0.16† 0.08
Non-peak hour × school ≤ high school -0.98∗∗ 0.12
Non-peak hour × school > high school 0.01 0.1
Non-peak hour × family -0.08† 0.04
No. layovers in public transport -0.35∗∗ 0.04
Railway only 0.05 0.06
Public transport overcrowding -0.06∗∗ 0.02
σ 0.79∗∗ 0.06
No. observations 12,975
Log-likelihood -13,624
Notes: Walking is the baseline alternative. The reference categories are
individuals with age < 18, the first wealth quintile and independent workers.
Duration measured in minutes. Cost in e.
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3.3 Values of travel time and substitution across modes and periods

With these parameters, we compute individuals’ values of travel time (or opportunity cost of time)
in e/hr. The value of travel time represents how much an individual should receive (in e) to
compensate for the decrease in utility related to an increase in travel time by an hour. Formally
the value of travel time for individual n is:

VOTn = βduration
n

α
× 1

durationn
,

where α is the sensitivity to the trip monetary cost. Because we specify the utility as a function of
the logarithm of the duration, the marginal utility of duration depends on the trip duration. We,
therefore, calculate the values of travel times associated with the chosen alternatives and departure
periods.

Table 4 presents detailed information about the distribution of the value of time across individuals.
We obtain an average value of time of e15.9, higher than the median value, which reaches only
e10.3. We observe substantial heterogeneity in how individuals value their time in transport,
reflected by the extreme minimum and maximum opportunity costs of time (e0.44 and e389).
However, the maximal value is an outlier since the 99th percentile of the distribution is much more
reasonable (81 e/hr). The mean value of travel time is in line with a recent study by Buchholz
et al. (2020) that estimates an average value of time of $13.5 on a sample of cab riders in Prague.
Our results are consistent with Parry and Small (2009) who estimate the mean valuation of travel
time to be close to half the average hourly wage in London and Washington D.C., given an average
hourly wage of e23.9 in 2012 in the Paris metropolitan area.6 Our mean value of travel time is
also consistent with Kilani et al. (2012), who estimate an average of e17 for a working father in
Paris. Indeed, our estimate is for the whole population, and we expect working fathers to have
higher opportunity costs of travel time than average. Appendix E.1 presents the model parameters
under different functional form assumptions and the corresponding distribution of the values of
travel time.

We present the distribution of the value of travel time by age and income in Figure 1 using
second-order local polynomials. Who dislikes the most to spend time commuting? Very young
individuals are associated with large values of the opportunity cost of time, but the value of time
decreases rapidly with age, reaching its minimum at 20 years old. After that age, the value of time
increases, except for a flat part between 30 and 50 years old. The graph also indicates that the
most senior individuals have the highest valuations. One of the reasons for this shape is that the
estimated value of time for young children indirectly represents those of their parents, who have
both to commute to work and drop off their children at school. The value of travel time rapidly
decreases between 0 and 18, as older children can commute on their own to school. The steep

6Source: https://www.lemonde.fr/les-decodeurs/article/2016/11/28/en-ile-de-france-le-salaire
-horaire-depasse-de-41-celui-des-autres-regions_5039717_4355770.html.
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increase afterward reflects the role of professional commitments that raise travel time value. We
also see heterogeneity in the value of travel time across income categories, but the heterogeneity is
much less pronounced. Poor individuals have the lowest valuations of time on average, but the
opportunity cost of time increases rapidly with income. The opportunity cost of time displays an
inverted bell shape. From a wealth of e360,000, the opportunity cost increases.

Table 4: Distribution of the values of travel time.
Min p1% Mean Median p99% Max
0.44 1.34 15.9 10.3 81.1 389
Notes: in e/hr.

Figure 1: Value of travel time and individual characteristics.
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To better understand the substitution across departure periods for driving, we compute the own
and cross elasticities to duration. We also calculate the own and cross elasticities to the car trip
cost to put the values in perspective. The elasticities represent the change in the probability of
driving at period t when the driving duration or cost at period t′ increases by 1%:

Edurationn,t,t′ = ∂ log snt
∂ log durationnt′

Ecostn,t,t′ = ∂ log snt
∂ log costnt′

where t and t′ can be peak hour or non-peak hour. Table 5 contains the main statistics of the
distributions of the elasticities and we provide a graph with the distributions of the own elasticities
in Figure 13 of Appendix C.
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The direct elasticities are very heterogeneous across individuals. For instance, the own duration
elasticity for peak hours is between -3 and -0.06. The heterogeneity partly reflects the differences
in the trip distance, which is highly correlated to duration and cost. It is also the consequence of
the heterogeneity in preferences and access to efficient alternatives to cars. The cost elasticities are
even more dispersed, as they are between -6.8 and 0. We have elasticities of zero because some
individuals are fully reimbursed for the driving costs by their companies, and some use electric
vehicles that we assume have zero cost.

Individuals are less elastic to changes in duration or cost at peak hours than at non-peak hours,
indicating better substitution from driving at non-peak hours to other options. The cross elasticities
of driving at peak hours to the trip duration at non-peak hours are very low (0.45 on average),
indicating very low substitution. The elasticity of driving at non-peak hours to the trip duration at
peak hours is slightly higher, reflecting the preference for driving during peak hours. The direct
elasticities to driving costs are very low, indicating that the monetary trip cost is not the most
critical barrier to driving. The elasticities are slightly lower for non-peak hours than peak hours,
reflecting the preference for peak hours again.

Table 5: Driving duration and driving cost elasticities
Min p1% Mean Median p99% Max

Own elasticities
Edurationpeak, peak -3 -2.51 -1.28 -1.29 -0.23 -0.06
Edurationnon-peak, non-peak -3.1 -2.66 -1.58 -1.78 -0.49 -0.43
Ecostpeak,peak -6.37 -2.23 -0.4 -0.22 -0.02 0
Ecostnon-peak, non-peak -6.78 -2.53 -0.48 -0.29 -0.02 0
Cross elasticities
Edurationpeak, non-peak 0.06 0.07 0.45 0.4 1.21 1.65
Edurationnon-peak, peak 0.17 0.3 0.87 0.78 1.88 2.09
Ecostpeak, non-peak 0 0.0009 0.13 0.08 0.73 2.42
Ecostnon-peak, peak 0 0.006 0.21 0.13 1.23 3.88
Notes: Values are in %.

4 Estimation of the road traffic congestion technologies

4.1 Data and sample selection

We split the Paris area into five zones: the city center, the ring roads, the close suburb, the far
suburb, and the main highways that connect the city center to the suburb. We estimate the
congestion technology for three areas: the city center, ring roads, and highways. Because of data
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limitations, we cannot estimate the congestion technology for the suburbs. However, we still
allow for adjustment of the equilibrium speeds in the close and far suburbs by assuming the same
congestion technology as in the city center.

To estimate the three road congestion technologies, we rely on hourly data on traffic conditions
from remote sensors for 2016 and 2017. The data come from two different sources. The highway
traffic data come from the regional road maintenance agency (DRIF). Traffic data for Paris and for
the ring roads come from the city of Paris.7 We provide the road coverage of the sensors in Figure
14 in Appendix C.

The traffic sensors typically record four variables: the traffic flow (in cars per hour), the traffic
density (in vehicles per kilometer), the occupancy rate, i.e., the percentage of time during which
the sensor detects a car (in percentage per hour), and the speed (in km/hr). The traffic flow, traffic
density, and speed are related through the fundamental equation of traffic flow:

traffic flow = speed× traffic density.

And the traffic density and occupancy rate are related through:

traffic density = occupancy rate
mean effective car length × no. lanes.

The mean effective car length represents the length of the car plus the space between two vehicles.
The data on the highways contain the four variables but the data from the city center and the ring
roads do not record speeds. We detail below how we deal with this limitation.

For traffic observations from the highways connecting the far suburb to the city center, we restrict
the sample to sensors that record traffic going in the direction of the city center. We drop outliers
in speed (below 0 or greater than the maximal highway speed limit, 130 km/hr) and occupancy
rates (below 0% and above 60%). An occupancy rate of 60% represents extreme traffic conditions:
the traffic monitoring institute in Paris defines traffic as pre-saturated from 15% and saturated
from 30%. We also detect inconsistent observations using the fundamental relationship between
traffic flow, occupancy rates, and speed. More specifically, we combine the two equations above to
get the implied average car length from traffic flow, speed, and occupancy rate:

mean effective car length = occupancy rate× speed× no. lanes
traffic flow .

We then drop observations with a car-length lower than 3.6 meters (the length of a small city
car like Renault Twingo) and 18.75 meters (the size of a heavy truck). On the initial sample of
8.9 million observations, we keep 6.2 million of them. These observations come from 654 traffic
monitoring stations and constitute an unbalanced panel.

7Source: https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents-historique/
information/.
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The data on the city center traffic (Paris intra-muros) and the ring roads (periphériques) contain
sensors’ measurements of the traffic flows and the occupancy rates only. Unfortunately, sensors
cannot measure speed accurately because of traffic lights and multiple intersections. We, therefore,
estimate the speed using the formula above, but this time used to express the unobserved speeds:

speed = traffic flow
occupancy rate

mean effective car length × no. lanes
.

Instead of relying on an assumption for the effective car length as often done in the literature (e.g.,
Geroliminis and Daganzo, 2008 or Loder et al., 2017), we rely on the highway data to predict the
average car lengths in Paris. It has been documented by Jia et al. (2001) that the traffic composition
varies over time, making the uniform car length assumption inappropriate. We, therefore, rely
on a prediction model for the car length that we estimate on the highway data. Then, we use
this model to predict hourly car lengths in the city center and the ring roads. Our prediction
model specifies the mean effective car length as a function of the distance to the city center and
day-of-the-week interacted with hour fixed effects. Because the relationship between the car length
and the distance to the city center may not be constant as we get closer to the city center, we
rely on a piecewise linear specification with six intervals. This prediction model is estimated using
4.9 million observations from highway data, for which we observe the GPS coordinates of the
measurement stations and obtain an R2 of 0.17. To predict the car length, we set the distance to
the city center to 0. We then get expected car lengths that are hour- and day-of-the-week-specific.
Our predictions are very realistic since they are all between 5.5 and 6.7 meters, with an average
of 5.9 meters. We do not directly observe the number of lanes in the city center traffic data, so
we rely on additional data from Open Street Map. Finally, we exclude outliers in occupancy rate
and estimated speed following the same criteria as before for the highway data. Our final sample
contains 1.9 million hourly observations for the ring roads recorded from 118 stations. We have 599
measurement stations recording 8 million observations for the city center.

Table 6 provides the summary statistics for the speeds and occupancy rates in the different areas.
We observe significant heterogeneity across areas, suggesting that our partition is relevant. Speeds at
peak and non-peak hours are significantly different, supporting our differentiation across periods. In
addition to providing evidence of heterogeneity across areas, the traffic speeds and occupancy rates
are highly variable; we leverage these variations to estimate flexible road congestion technologies.
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Table 6: Road traffic conditions by area.

Peak Non-peak All sample
Area Mean Mean Mean Median Std. dev.

Speed Highway 44.9 67 86 91 25.6
City center 22.4 31.7 38.1 31.8 24.9
Ring roads 30.4 57.9 56.3 61.1 21.3

Occupancy Highway 23.4 14.1 7.92 5.84 7.67
City center 17.2 6.17 6.04 3.75 7.52
Ring roads 33.5 15.3 15.4 12.3 11.6

Note: Speed is in km/hr, and the occupancy rate is in %. Averages at peak and non-peak hours are
computed over workdays, excluding school and public holidays, and weighted by the average traffic
flow of the remote sensor. Peak hour is between 8:00 and 8:59 a.m., and non-peak hour is between
6:00 and 6:59 a.m.

4.2 Estimates of the congestion technologies

We use the observations on speed and occupancy rate to estimate the congestion technologies in
each area. We approximate fa by Bernstein polynomials of degree seven and impose the constraint
that the functions are weakly decreasing. The identification of the relationship between speed
and traffic comes from the variation in traffic conditions in the data. First, we expect different
hours to have heterogeneous traffic levels: traffic should be heavier at peak hours in the morning
and evening. Second, traffic conditions are presumably variable across weekdays, weekends, public
holidays, and school holidays. In addition, we observe data for different roads within an area that
may also have different traffic conditions.

Table 7 represents the number of observations used to estimate the congestion technologies for each
area and the fit of the models, measured by the R2. The three congestion technologies have good
fits with R2 between 0.21 for the city center and 0.69 for the ring roads. The lower R2 in the city
center probably reflects more idiosyncrasies in traffic speed: traffic lights and intersections generate
heterogeneous traffic flows, implying heterogeneous speeds. As Figure 2 shows, the estimated values
of the maximal speeds are very much in line with the maximum speed limits in each area. We
estimate it to be 99.8 km/hr for highways compared to speed limits that vary between 90 and 130
km/hr depending on the road and the location. The speed limit is typically 70 km/hr on the ring
roads, very close to our estimate of 71.6 km/hr. Lastly, the speed limit was usually between 30 and
50 km/hr in the city center at that period, but individuals may not always comply with the speed
limit. Therefore, our estimate of 53.8 km/hr shows high consistency again.

Figure 2 suggests that the congestion technologies are very different across the city areas. On
highways, the speed starts high, but it decreases more rapidly with the occupancy rate. The
congestion technology on the highways even becomes inferior to ring roads from an occupancy rate
of 19.6%, maybe because there are many interchanges and entries and exits on highways, decreasing
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the speed quickly when the road becomes congested. This implies a critical difference in speeds
between peak and non-peak hours: while the average speed is 85.4 km/hr at non-peak hours, it is
only 65.2 km/hr at peak hours. The congestion curve for ring roads remains flat initially: the slope
remains higher than -0.3 until an occupancy rate of 4.2%. In contrast, the speed in the city center
displays a convex relation, with speeds decreasing faster for lower occupancy rates than for larger
ones.

Table 7: Fit of the congestion technology by area
Area Number of observations R2

Highways 6,195,874 0.65
City center 8,013,979 0.21
Ring roads 1,907,088 0.69
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Figure 2: Estimated congestion technologies and initial traffic conditions.
Note: Initial conditions are average speeds at peak and non-peak hours from TomTom predicted
durations.

We might be worried that our estimates are biased if the same unobserved shocks affect the
occupancy rate and speed. We do two sensitivity analyses to check that our estimates are robust
to adding more controls to decrease the propensity to have common unobserved shocks. First, we
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exclude observations with extreme weather. Second, we estimate congestion technologies that are
allowed to be heterogeneous across measurement stations, hours of the day, days of the week, or
dates. We discuss the underlying assumptions behind these robustness checks and their results in
Section C.2 in Appendix C. We find that our benchmark estimated congestion technologies are not
systematically higher or lower when we estimate different specifications or use restricted samples,
suggesting that we do not have biases from the endogeneity of the occupancy rate.

4.3 Mapping between individual decisions and initial traffic conditions

Our transportation mode choice model predicts the individual probabilities of driving at peak
and non-peak hours given car trip durations. We have considered that the car trips are fixed and
observed for the estimation. In our equilibrium model, however, car trip durations depend on the
speeds and distances in each area. More specifically, the car trip duration for individual n at period
t is given by:

durationnt =
A∑
a=1

kan
vat
× εnt.

kan represents the distance in area a and vat is the speed. Note that if the itinerary of a individual
does not include an area, the distance is set to 0. εnt represents an individual and period-specific
multiplicative speed shock. It captures individual-specific unobserved trip characteristics that
make an individual average speed lower or higher than the average. We assume these shocks are
exogenous to the traffic conditions and hold them constant when we simulate new traffic equilibria.
We take the logarithm of the previous equation and estimate the inverse of the initial area-specific
speeds at peak and non-peak hours, 1

va
t
and the individual speed shocks ε̃nt from trip durations

from TomTom and trip distances. We use the non-linear least squares to estimate, for each period
separately:

log(durationnt) = log
(

A∑
a=1

kan
vat

)
+ ε̃nt.

The estimated speeds are provided in Table 8. Speeds are always higher at peak hours than
non-peak hours. They are also much higher on the highways, then on the ring roads and far
suburb and finally in the city center and the close suburb. These estimated speeds also reveal that
the difference in speeds between peak and non-peak hours is very similar for the city center and
the close suburb, which is consistent with our assumption that these two areas share the same
congestion technology.
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Table 8: Estimated average speeds from TomTom data

Peak hour Non-peak hour
Area Average speed Std. errors Average speed Std. errors
Highways 64.99 0.85 85.83 0.98
City center 13.79 0.14 18.25 0.16
Ring roads 27.67 0.46 46.52 0.72
Close suburb 15.89 0.1 20.15 0.11
Far suburb 25.47 0.13 29.21 0.13
Notes: Speeds are in km/hr. Standard errors are computed using the delta-method.

With these estimated initial speeds, we then back out the initial occupancy rates by inverting the
congestion technologies:

τat = (fa)−1 (vat ).

τat is unique since fa is decreasing in speed.

Finally, we consider a mapping between the number of individuals driving and the occupancy rate
in each area and period. We assume an affine relation between the occupancy rate, which is the
argument of the speed function, and the total number of kilometers driven. We choose to consider
the number of kilometers driven because the traffic depends on how many individuals decide to
drive and how long they drive. Formally, we consider:

τat = φat ×Ka
t + γat .

φat is a scale parameter representing the inverse of the size of the area while γat reflects irreducible
traffic or traffic that is not due to households (buses, delivery trucks, etc...). We can only identify
two parameters per area because we observe individual choices and speeds for only two periods.
We therefore impose that φat = φa and γat = γa. Instead, we could impose some restrictions across
areas and let the parameters vary with the period. But given that the areas have very different
sizes and may be subject to different levels of irreducible traffic, it does not seem to be a more
realistic assumption.

Using the initial occupancy rates and the predicted number of individuals in each area given the
initial speeds, we solve for φa and γa such that:

τat = φa ×Ka
t + γa

We have two linear equations and two unknowns to find a unique pair of parameters for each
area. We further impose that the shares of irreducible traffic are between 0 and 60% and use the
constrained least-squares method that minimizes the sum of square deviations from the equations
above. The calibrated parameters are presented in Table 9. We obtain a rather large irreducible
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share of traffic in the close suburbs (21.6%) and the city center (13.3%) while we estimate no
irreducible traffic for highways and the ring roads.

Table 9: Calibrated parameters of the mapping between occupancy rates and driven distances.

Area Scale parameter Irreducible traffic % irreducible traffic
(φa) (γa) (γa/τapeak × 100)

Highways 0.024 0 0
City center 0.373 3.18 13.3
Ring roads 0.372 0 0
Close suburb 0.115 4.37 21.6
Far suburb 0.011 6 57.3
Notes: The share of irreducible traffic is in % of peak hour occupancy rates.

We evaluate the model’s fit by comparing the aggregate frequency of each transportation mode
observed in the data with the predicted using our model. Table 10 below shows the observed and
predicted shares. The difference between Columns 1 and 2 comes only from the winsorizing of a
few speed shock outliers (below 1/2 or above 2). The trimming has virtually no impact on the
predicted shares. In column 3, we solve for the equilibrium speeds and individual choices using the
full model. Since we calibrate the mapping parameters by imposing constraints, we do not exactly
match the initial occupancy rates. However, our model predicts transportation mode shares close
to the observed ones.

Table 10: Shares of transportation modes observed and predicted by the model.

Observed Predicted Predicted
initial speeds full model

Bicycle 2.1 2.1 2.09
Pub. transport, peak 30.32 30.28 30.28
Pub. transport, non-peak 14.52 14.56 14.57
2 wheels 2.08 2.08 2.08
Walking 15.8 15.8 15.8
Car, peak 22.88 22.85 22.91
Car, non-peak 12.3 12.33 12.27
Notes: Shares are in %.

Table 11 shows the comparison between the average speeds from traffic data and those predicted
from the model equilibrium. Our estimates are optimistic for the highways at peak hours but
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pessimistic for ring roads and the city center. We nevertheless correctly predict the speeds ranking
between areas for both periods.

Table 11: Comparison between the predicted equilibrium speeds and average speeds from traffic
data.

Peak hour Non-peak hour
Area Traffic Eq. speeds Traffic Eq. speeds
Highways 44.9 65.2 67 85.4
City center 22.4 13.7 31.7 18.3
Ring roads 30.4 28.8 57.9 44.2
Close suburb 15.8 20.2
Far suburb 25.5 29.2
Notes: Speeds are in km/hr.

4.4 Check of the equilibrium uniqueness

We now apply the method developed in Section 2.3 to check that our algorithm is a contraction.
We check that, given the estimated model parameters, the model is such that it has a unique
equilibrium. We compute the Lipschitz coefficients for values of the algorithm tuning parameter κ
between 0 and 0.99. We solve for these coefficients at the equilibrium speeds without policy and
under the different policy environments that we consider in section 6. We compute:

max
a∈A

max
t∈T

max
a′∈A

max
t′∈T

∣∣∣∣∣∂gat (v∗, κ)
∂va

′
t′

∣∣∣∣∣ ,
where v∗ denotes the vector of equilibrium speeds. Pane (a) of Figure 3 shows several interesting
insights. First, we do not have a contraction only when κ is very low. We find that the policies do
not modify the Lipschitz coefficients of the algorithm. We observe that the variable toll environment
is the one that requires the highest κ to converge.

We also check for which values of the tuning parameters our algorithm is a contraction in the entire
set of possible speed values in their interval [v,v]. This time we calculate:

max
a∈1,...,A

max
t∈1,...,T

max
a′∈1,...,A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
Panel (b) of Figure 3 shows that there exist values of κ lower than one such that the function is a
contraction on the entire space of the speeds. From κ = 0.53, the algorithm is a contraction. This
time, we find that the no-policy environment is associated with the smallest set of κ that ensure
our algorithm is a contraction. The lowest value of κ that corresponds to the lowest Lipschitz
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coefficients under the different policy environments is thus 0.65. We use this value to solve the
equilibrium speeds in the counterfactual simulations.

Figure 3: Lipschitz coefficients at the equilibrium speed and for any speed.
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(a) At the equilibrium speeds.
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(b) In the space of all possible speeds.

We show in Appendix B.3 that the number of iterations and the computation time increase
exponentially with the tuning parameter κ. Under the benchmark situation, without policy, the
highest speed is obtained for κ = 0.5. The value we choose, κ = 0.65, multiplies the convergence
time by around 1.5.

5 Results from the equilibrium model

5.1 Value of driving and costs of congestion

First, we measure the value of driving at peak hours at the initial equilibrium speeds. If the
individuals could not take their cars at peak hours, they would incur a surplus loss of e2.56 million,
corresponding to 79 cents per potential driver.8 Then, we measure the value of driving at peak
hours under maximal speeds (we use the maximal speeds given the irreducible portions of traffic
for each area). These speed improvements correspond to a total surplus increase of e6.12 million,
corresponding to e1.90 per potential driver. The value of driving at peak hours at maximal speeds
is 2.4 times the value of driving at initial speeds, highlighting the importance of congestion in
the Paris metropolitan area. It also reveals that the congestion levels are crucial when looking
at individuals’ surplus changes from a change in individuals’ transportation environments. The

8A potential driver is an individual who owns a car.
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congestion generates a total increase in travel time of 396 thousand hours, which corresponds to an
average increase of 7.4 minutes per driver. This represents a considerable variation, given that the
average trip duration is 31.3 minutes.

We then compute the marginal costs of congestion for each area at peak and non-peak hours,
defined as the total surplus losses associated with having one additional kilometer or driver in the
area. We also compute the marginal cost of an average driver by adding the average number of
kilometers driven by an individual in that area. Both marginal changes in traffic affect marginally
the driving speed, which increases trip durations by a tiny amount for everyone going in the area.
Finally, we calculate the total marginal changes in individual trip durations in monetary terms,
and then we sum the individual surplus changes.

We estimate area-specific marginal costs for an additional kilometer between 2 and 53 cents as Table
12 shows. The marginal cost for one additional kilometer driven is the lowest on the highways and
in the far suburb, reflecting that these areas are wide; one additional kilometer does not significantly
change the traffic density. When we consider the marginal costs associated with an average driver,
the costs on the highways and the far suburb become closer to those from the other areas. Globally,
the costs associated with an additional driver are between 34 cents and e2.1. The initial marginal
costs are higher at peak hours than at non-peak hours. But the difference between periods is highly
heterogeneous across areas. The differences are small in the city center and the suburbs, while
the difference is striking for the highways, where the marginal cost of congestion per driver is 2.7
times larger at peak hours than non-peak hours. The marginal costs depend on two key model
parameters. First, the slopes of the congestion technologies are higher at peak hours than during
non-peak hours in all the areas. The second key parameters are the marginal valuations of travel
time. Because our utility specification is logarithmic in the duration, and trip durations are higher
at peak hours than at non-peak hours, the values of travel time are higher at peak hours. Finally,
we also calculate an average marginal cost of congestion by considering adding an individual driving
with the average itinerary (i.e., distance traveled in each area) among individuals owning a car. The
average costs are e2.97 at peak hours and e1.87 at non-peak hours. Comparing our results with
the literature is not a straightforward task. In most studies, the cost of the congestion externality
is defined as the difference between the socially optimum cost of congestion and the private cost of
congestion (see Small et al., 2007). This relation is, in turn, estimated using aggregate supply and
demand curves and thus does not consider the marginal cost of an extra individual driving but
the cost of an additional kilometer driven. We think that the most appropriate way to compare
our results to the ones in the literature is to use our marginal cost of congestion per individual.
Making such a comparison puts our congestion values close to those from Akbar and Duranton
(2017) and Yang et al. (2020).
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Table 12: Estimated initial marginal costs of congestion by area.

One kilometer One average driver
(in cents) (in e)

Area Peak Non-peak Peak Non-peak
Highways 7.6 1.7 1.14 0.42
City center 53 42 1.58 1.26
Ring roads 45 25 2.09 1.19
Close suburb 45 36 1.29 1.04
Far suburb 8.2 4.3 0.58 0.34
Average 2.97 1.87
Notes: “Average” is the marginal cost for an average driver in the
whole metropolitan area.

5.2 Importance of endogenous speeds

To study the importance of accounting for speed adjustments to predict policy effects accurately,
we compare the outcomes predicted from our model against those obtained under constant speeds.
The comparison illustrates the importance of considering the policies’ effects on congestion levels
and driving rates, as they will influence substitution patterns between transportation modes and
departure periods. We thus analyze the predictions for our three principal policies: (1) driving
restrictions that ban a fraction of the car at peak hours, (2) a uniform toll at peak hours, and (3) a
variable toll at peak hours that is linear in the total trip distance. We consider a range of policy
stringency levels, such that the strongest stringency level achieves the same traffic reduction at
peak hours under all three policies (represented by the total number of kilometers driven).

Figure 4 shows the predictions of the fractions of individuals who drive under each policy. All
scenarios and stringency levels show the same biases under exogenous speeds: we overestimate the
number of individuals substituting away from using their cars at peak hours and underestimate
those who choose to drive at non-peak hours. The equilibrium speed effects dampen the incentives
to stop driving because the speeds at peak hours improve due to the regulations, while at the same
time, the speeds at non-peak hours decrease.
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Figure 4: Predicted car shares as function of the policy stringency level.
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(a) Driving restrictions.
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(b) Uniform tolls.
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(c) Variable tolls.

We provide the equilibrium speeds in the three main areas at peak and non-peak hours, associated
with the different policies, for all policy stringency levels in Figure 5. At peak hours, the speeds
increase with the policy stringency level, while at non-peak hours, they decrease monotonically.
This is the consequence of important shifts towards driving at non-peak hours. The speed changes
the most on the highways while there is much less speed improvement at peak hours in the city
center. We can also observe that at non-peak hours the speed in the city center is almost constant.
This reflects that individuals driving in the city center have better alternatives to cars, while those
who drive on the highways and the ring roads are more likely to substitute for driving at non-peak
hours.
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Figure 5: Speeds under the different policies and stringency levels.
(a) Peak hours.
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(b) Driving restrictions.
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(c) Uniform tolls.
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(d) Variable tolls.
(e) Non-peak hours.
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(f) Driving restrictions.
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(g) Uniform tolls.
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(h) Variable tolls.

To further highlight the importance of taking into account the equilibrium speed adjustments,
we compare the tax revenues predicted under constant speeds with the predictions from our
model. The results, in Figure 6 below, suggest that not accounting for the changes in speeds
underestimates significantly the number of individuals paying the toll and the tax revenue. Moreover,
the magnitude of the bias increases with the policy stringency levels, reflecting the prominent role
of speed adjustments. In addition, we can note that the tax revenues follow a Laffer curve under
both toll types and decrease when the toll levels are too high. This maximum level is attained
more rapidly for the uniform toll than the variable one.
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Figure 6: Predicted tax revenues under tolls at peak hour.
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(a) Uniform tolls.
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(b) Variable tolls.

6 Quantifying the welfare consequences of the regulations

Using the transportation choice model and estimated road technologies, we study the welfare costs
of driving restrictions and road tolls. We focus on policies applicable at peak hours only so that
driving at non-peak hours is never constrained. There are two reasons why we choose to focus on
peak-hour policies. First, as shown in the estimates of the cost of congestion, the congestion is most
severe at peak hours. The high concentration of cars is also associated with high pollution levels
and deteriorated air quality. These two factors make the regulation the most relevant at peak hours.
The second reason to focus on peak hour policies is technical: in our sample, we observe individuals
without alternatives to driving their cars. Under a restriction applicable all day, these individuals
would not comply with the regulations, so we need to make an assumption about non-compliance
and, in particular, its cost. We make such assumptions and provide results for all-day policies in
Appendix D.

Our model predicts individual probabilities of choosing each available transportation mode and
the driving speeds at peak and non-peak hours in the five different areas of the region. Thus, we
do not predict counterfactual choices. Instead, we use the predicted probabilities to compute the
expected number of individuals choosing each transportation mode and departure period. The
estimated effects correspond to one trip per person for the entire population of commuters in the
Paris area. There are, on average, 253 working days annually and two commuting trips per day, so
we should roughly multiply the costs by 500 to convert them into annual terms. We measure the
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policies’ impacts on consumer surplus, tax revenue, and emissions. We define aggregate welfare
effects as the sum of the change in consumer surplus and tax revenues. We also measure the impact
of the policies on the emissions of global and local pollutants. However, we choose not to consider
a broader welfare measure that includes changes in emissions valued at the standard levels. The
reason is that traffic regulations are often used as emergency schemes to react to an episode of
pollution peak where the social costs of emissions are much higher than their traditional values.
To avoid relying on social values that may be difficult to assess, we measure the policy costs in
terms of welfare change (surplus change and tax revenue) associated with a reduction in one ton of
equivalent NOX emissions.

6.1 Analysis of different policy levels

We fix a key outcome across policies to properly compare the three policies. We choose to rely
on the reduction, in percentage, of the total number of kilometers driven at peak hours. Figure 7
presents the surplus losses, tax revenues, and welfare (excluding emissions) changes associated to
the different policy stringency levels. Since the driving restriction affects all individuals uniformly,
it is not surprising to see an almost linear relation between the policy stringency level and the
surplus loss. Since the uniform toll charges everyone the same amount, independently of their trip
duration, we find a concave relation between the stringency level and surplus losses. This relation
is in contrast to the variable toll, which can achieve the same traffic reductions with considerably
lower surplus losses by targeting high distance drivers. Panel (b) shows that the uniform toll is
much better at generating revenue than the variable toll for almost all stringency levels. However,
redistributing this larger tax revenue is not enough for the uniform toll to have a lower welfare
cost than the variable toll, which remains the most welfare-cost efficient policy for all stringency
levels. Interestingly, as Panel (c) shows, the two types of tolls have positive welfare impacts for
moderate stringency levels after tax-revenue redistribution. Indeed, we obtain welfare gains for
reducing distance driven below 35% for the uniform toll and below 50% for the variable toll.
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Figure 7: Change in individual surplus, tax revenue and welfare.
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(a) Surplus losses.
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(b) Tax revenues.
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(c) Welfare losses (surplus losses
minus tax revenues).

We now focus on the distributional implications of the policies. Figure 8 presents the aggregate
surplus losses using distributional weights (the inverse of wealth), the range of surplus losses
(difference between maximum and minimum surplus losses), and the difference in surplus variation
between the top and bottom 10% of the income distribution. Using weights based on the individuals’
wealth does not affect the ranking or the magnitude of the aggregate surplus losses, as seen in Panel
(a). However, Panel (b) highlights the main disadvantage of the variable toll, its distributional
impacts. While the uniform toll and the driving restriction generate almost the same dispersion, the
dispersion of the surplus losses is twice as large under the variable toll. This result highlights how
policymakers’ secondary objectives might affect the choice of a policy instrument, as the variable
toll decreases the aggregate surplus less but generates winners and losers.

Figure 8: Change in distributional outcomes.
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(a) Surplus losses with
distributional weights.
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(b) Surplus loss range.
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(c) Difference in surplus loss
between the top and bottom
10% of the income distribution.

We then analyze the policies’ effects on the local and global pollutant emissions. Since we have
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multiple local pollutants, we construct an equivalent NOX emissions measure that includes emissions
of NOX, PM, and HC. Each pollutant is weighted by its social cost relative to the cost of NOX. The
values we use for the social costs come from a report of the DG MOVE (2014).9 We compute an
average cost of reducing one ton of equivalent NOX for each regulation by dividing the welfare cost
(including the redistribution of the tax revenue) by the change in the total emissions of equivalent
NOX. Note that we do not combine local and global pollutants because our measure would be
dominated by CO2 emissions which constitute the major part of the emission cost for vehicles.

Figure 9 presents the costs associated with the different policy stringency levels. First, we can
see that the three policies have a similar but different impact on total emissions of equivalent
NOX and CO2. Two factors can explain this. The main one is that we only match the number of
kilometers driven at peak hours across policies, and the substitutions for driving at non-peak hours
are different across policies. Second, different individuals decide to drive under the three policies,
and these individuals have different cars with different emission levels. The uniform toll effectively
decreases emissions because it discourages individuals with good transportation mode alternatives
to driving. This is why the share of individuals driving outside peak hours is lower under the
uniform toll than under the two other policies. The driving restriction does not target any specific
individuals and thus generates the most substitution for driving at non-peak hours. Second, Panel
(b) shows that the local and global emissions follow the same patterns. Finally, we provide the
average costs of the regulations in Panel (c). Under a uniform toll, the average cost is almost
linear, while under a variable toll, the cost function is concave. In sharp contrast, the cost function
decreases with the policy stringency under driving restrictions, reflecting that the welfare losses
increase more slowly than the decrease in emissions. The function is almost linearly decreasing, but
the costs remain high for all stringency levels. On the other hand, the average costs of reducing
emissions increase with the policy stringency under the two types of tolls. Price instruments can
have negative costs for low stringency levels, consistent with the net benefit we obtain after the tax
redistribution. These are policies with a uniform toll below e2.7 or a variable toll of e0.15/km.
We can find a more extensive set of policies with a net positive impact on individuals under the
variable toll despite being less effective at decreasing emissions.

9The values are: 13,052 e/ton for NOX, 1,695 e/ton for HC and 211,795 e/ton for PM.
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Figure 9: Average cost of reducing emissions of local pollutants.
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(a) Change in Equivalent NOX
emissions.
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(b) Change in CO2 emissions.
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(c) Cost of the regulation.

6.2 Comparison across policies at a benchmark level

To analyze the effects of the previous policy instruments in more detail, we set a benchmark policy
stringency level. We calibrate the stringency level of the three policies to achieve the same traffic
reduction at peak hours, represented by the total distance driven. We start by implementing a
driving restriction that deprives individuals of driving with a probability of one-half. This policy is
similar to a ban based on whether the last digit of the license plate is odd or even. Such policy
reduces the number of kilometers driven by 34% at peak hours. We then calibrate the uniform and
variable tolls to reach the same traffic reduction in kilometers driven. An alternative benchmark
would match the total distance driven at peak and non-peak hours across policies. We obtain
slightly lower calibrated tolls to achieve such matching. The policy parameters are summarized in
Table 13 below.

Table 13: Policy parameters for the benchmark stringency level.

Outcome matched Driving restriction Uniform toll Variable toll
Distance, peak hours 50% 2.69 0.1
Distance, peak and non-peak hours 50% 2.08 0.09
Note: Uniform tolls in e and variable tolls in e/km.

The uniform tolls would imply a total cost of e5.4 per day, close to the London congestion charge
before 2007. The London toll implemented in 2003 was initially £5/day and increased to £8 in
2005, £10 in 2011, £11.5 in 2011, and £15 in 2020. The variable toll is e0.10/km, implying an
average cost of e1.43, lower than the uniform toll. This is the consequence of the variable toll
being able to target individuals with long trips and thus quickly reducing the total distance driven
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at non-peak hours. The maximum toll cost reaches e14.1 for the longest distance.

Modal shift
The variation in aggregate shares of transportation modes are reported in Table 14. They

indicate an important inter-temporal modal shift towards driving at non-peak hours. The share of
individuals driving at peak hours drops under all policies but the magnitudes are different. While
driving restrictions and uniform tolls decrease the number of car users by 8.3 to 8.9 percentage
points, the variable toll only decreases it by 2.9 percentage point. This is because the variable toll
discourages individuals with long distances to drive and keep the number of drivers relatively high.
For the same reason, we also observe important differences for the modal shifts across policies:
driving restrictions and the uniform toll increase the fraction of individuals who walk and take
the public transport more than the variable toll. These differences between the two tolls can be
explained by the uniform toll discouraging short trips, which can be easily done by walking or using
a bicycle. In contrast, the variable toll prevents individuals with long trip distances, which cannot
be done by foot or using a bicycle.

Table 14: Predicted shares of the transportation modes under the different policies.

Initial Driving Uniform Variable
restriction toll toll

Bicycle 2.09 2.3 2.34 2.09
Pub. transport, peak 30.3 32.2 32.7 31.4
Motorbike 2.08 2.44 2.49 2.31
Walking 15.8 17.1 17.4 15.8
Car, peak 22.9 14.6 14 20
Car, non-peak 12.3 15.9 15.4 13.3
Pub. transport, non-peak 14.6 15.4 15.6 15.1
Total car share 35.2 30.6 29.4 33.2
Total pub. transport share 44.8 47.5 48.3 46.6
Note: Shares are expressed in %.

Impacts on consumer surplus
We now turn to the policies’ impacts on consumer surplus, which results are reported in Table

15. The uniform toll generates the largest total consumer surplus losses among the three policies,
but it raises the highest tax revenue, e1.52 million. The second most costly policy in terms of
the aggregate surplus is the driving restriction which costs e1.11 million and generates no tax
revenue. Finally, the variable toll is the least costly for individual surplus and still generates tax
revenue (e0.87 million). If we abstract the cost of public funds and redistribute the tax revenue

41



entirely, the variable toll outperforms the uniform toll by a small amount (e0.16 million). And the
driving restrictions are much more costly for individuals than the tolls. The uniform toll generates
tax revenue that covers 102% of the surplus losses, while the variable toll revenue covers 128% of
the total welfare costs for individuals. As long as the shadow cost of public funds is below 75%,
the uniform toll outperforms the driving restriction policy, which is very likely to be the case in
reality. The variable toll is preferred to the driving restriction, even when there is no tax revenue
recycling. In terms of average surplus loss, we note that the variable toll is associated with a 17
cents reduction, while the two other policies decrease the individual surplus by 28 to 37 cents.

To better understand the role of the changes in speeds induced by the different policies, we
decompose the total variation in consumer surplus into two terms: (1) the variation in consumer
surplus due to the policies keeping the speeds constant and (2) the changed in surplus induced by
the change in equilibrium speeds. The first outcome measures the cost of the policy independent of
the changes in driving speeds. The second outcome measures the gains from speed improvement
at peak hours and losses from reduced speeds at non-peak hours. As expected, the reduction in
congestion levels always creates a welfare gain. However, these gains are mild since they cover
only between 13% and 34% of the consumer surplus losses linked to the policies, indicating that
the relaxation of congestion by the policies is not enough to offset the cost of traffic policies. The
largest gain from speeds occurs under the variable toll since we provide incentives to stop driving
to individuals with long distances that have a high impact on traffic.

When looking at the share of individuals with surplus gains, we find that no one is better off under
a uniform toll. A tiny fraction of individuals is better off under driving restrictions (around 3,000
individuals out of 4.03 million). In contrast, a significant fraction of individuals improves their
welfare under a variable toll (18.9% of the population). These individuals with short trips and
high valuations of time continue to drive at peak hours because their toll is low. Indeed, among
the better-off individuals, the average toll is e0.29 versus an average toll of e1.44 for individuals
holding a car. Across policies, there is a constant share of individuals with no change in their
surplus. These are individuals without a car who are not affected by the regulations. This result
does not hold if the quality of public transport is downgraded from the modal shifts. In appendix
E.2, we show the robustness of the results to an increase in the overcrowding in the public transport,
finding minimal changes in substitution patterns even after a 15% or 30% increase in overcrowding.

A key dimension for the policy comparison is the distributional consequence. To evaluate this
aspect, we analyze two outcomes. First, we construct an aggregate redistributive surplus measure
that weights each individual by the inverse of the wealth. We find that this measure keeps the
ranking of the policy identical. We nevertheless see that the redistributive surplus decreases by
8.7% relative to the standard aggregate measure under the variable toll. In contrast, it decreases
less under the uniform toll and the driving restriction (by between 4% and 4.5% only). Second, we
compute the minimal and maximal changes in individual surplus. The uniform toll is the regulation
associated with the smallest interval between the maximum and minimum welfare losses. While
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the driving restriction has a fairly similar range, the median welfare loss indicates fewer consumers
have larger losses under driving restrictions. Meanwhile, the variable toll has the highest difference
between the maximal and minimal welfare losses. This is consistent with the presence of winners
and suggests a larger heterogeneity of the variable toll’s impact across the population.

Table 15: Consumer surplus variation under the three main policies.

Driving Uniform Variable
restriction toll toll

Total ∆CS (Me) -1.11 -1.49 -0.69
∆CS, constant speed (Me) -1.28 -1.69 -0.93
∆CS from speed (Me) 0.164 0.199 0.24

Total ∆wCS (Me) -1.16 -1.55 -0.752
Tax revenue (Me) 0 1.52 0.871
∆W = ∆ CS + tax revenue (Me) -1.11 0.027 0.181
% ∆CS = 0 20.3 20.3 20.3
% ∆CS > 0 0.075 0 18.9
% ∆CS < 0 79.7 79.7 60.8
Min ∆CS -2.09 -2.04 -4.07
Mean ∆CS -0.276 -0.37 -0.171
Median ∆CS -0.163 -0.255 -0.031
Max ∆CS 0.037 0 0.765
Note: ∆CS are in e/trip.

Impacts on individual trip durations
We complement the surplus analysis by looking at how the policies impact the expected travel

times. The results are presented in Table 16 below. The average increase in expected travel time is
between 0.03 and 0.42 minutes, implying an increase in the total travel time between 2.3 and 24.9
thousand hours. We can indeed observe that the distribution of changes in travel time under all
policies is skewed towards larger trips. The maximum time reductions are always lower than the
maximum increases in travel time. However, the skewness is less pronounced under the driving
restriction and uniform toll than under the variable toll. The variable toll is associated with a
maximal duration increase of 41 minutes versus 24 to 27 minutes for the two other policies. Under
the three policies, some individuals reduce their expected trip durations. The variable toll has the
largest share of individuals with reduced travel times, with 56% of the individuals versus 28% and
29% under the two other policies. These individuals with short trips keep driving because their tolls
are small. However, for many individuals, the gain in terms of travel time does not compensate for
the toll cost, as we obtain only 19% of individuals with surplus gains.
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Table 16: Trip duration variation under alternative policies.

Driving Uniform Variable
restriction toll toll

Min ∆duration -10.4 -13 -10.9
Mean ∆duration 0.371 0.423 0.034
Median ∆duration 0.011 0.052 -0.044
Max ∆duration 24.4 26.9 40.5
Total ∆duration (in 1,000 hrs) 24.9 28.5 2.32
% ∆duration = 0 20.3 20.3 20.3
% ∆duration > 0 50.4 51.9 23.7
% ∆duration < 0 29.3 27.9 56
Average speed, peak (km/hr) 34.1 34.8 33.1
Average speed non-peak (km/hr) 32.4 32.9 32.9
Note: ∆ durations are in minutes, except “Total ∆ duration”.

The variable toll offers slightly lower average speed improvements than the two other policies, and
we see that the average speeds at peak and non-peak hours become very close. But the average
speeds hide significant heterogeneity across areas. We analyze the change in the speeds for the
different areas below in Table 17. The variable toll most improves the speed on the highways at
peak hours. The variable toll is also better than the driving restriction to improve the speed on the
ring roads at peak hours. However, it raises speeds in the city center and the suburbs the least at
peak hours. This occurs because the individuals who drive on the highways and ring roads have
long distances and are discouraged from driving at peak hours. But since they do not have good
transportation alternatives, they end up driving during non-peak hours. This is consistent with the
highest speed reduction at non-peak hours under the variable toll.

The uniform toll is the policy that most improves the speeds at peak hours in the city center, the
ring roads, and the close suburb. In contrast, the speed is the highest in the far suburb under the
driving restriction. This indicates that many individuals who drive through the far suburbs keep
driving under the uniform toll because they do not have alternatives to cars. Indeed, the public
transport does not cover very well the far suburb.

The speeds at non-peak hours decrease in all areas but remain higher than the initial levels at peak
hours. This reflects the imperfect substitution between driving at peak and non-peak hours, which
avoids having a simple shift of the peak hour period.
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Table 17: Predicted speeds under the different policies.

Area Initial Driving Uniform Variable
restriction toll toll

Peak hours Highways 65.2 82.7 82.3 87
City center 13.7 17.2 18.6 15.8
Ring roads 28.8 41.7 45.7 43.7
Close suburb 15.8 19.6 20.4 17.9
Far suburb 25.5 28.4 28.2 27.6

Non-peak hours Highways 85.4 75.9 78.4 74.1
City center 18.3 17.6 17.6 18
Ring roads 44.2 41.6 42 41.8
Close suburb 20.2 18.8 18.9 19.6
Far suburb 29.2 27.1 27.5 27.7

Note: Speeds are in km/hr.

Winners and losers
To complement the analysis, we investigate the distribution of surplus changes across individuals

for the different policies. Table 18 presents the average changes by age, wealth, socio-professional
activity, and family size. Here, we provide the average individual surplus shift without any potential
redistribution of the tax revenue.

First, we can see that the ranking of the policies is identical for all subgroups of individuals.
Individuals prefer the variable toll and then driving restrictions. Note that this ranking could be
reverted if the tax revenue is redistributed to individuals.

The category of individuals below 18 and, consequently, the individuals in education below high
school have the lowest cost of the variable toll. This is explained by the short distance of their
trips, which implies larger gains from the improved speed at peak hours, partially compensating for
the small toll cost. Under the driving restriction, the category of individuals between 18 and 25
has the lowest average loss reflecting their low car availability and usage.

The most affected individuals are those between 35 and 60 years old, those in the two lowest wealth
quintiles, and those with a family. These profiles are consistent across all policies. The white collars
are the most affected by the policies among the employed individuals, while the blue collars are the
least affected. Our model suggests that the blue collars have the highest utility of driving outside
peak hours, reflecting higher flexibility in their schedules.
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Table 18: Average surplus variation by demographic group.

Driving Uniform Variable
restriction toll toll

Age < 18 -0.228 -0.303 -0.057
Age ∈ [18-25[ -0.195 -0.269 -0.148
Age ∈ [25-35[ -0.272 -0.366 -0.184
Age ∈ [35-45[ -0.322 -0.43 -0.237
Age ∈ [45-60[ -0.327 -0.437 -0.238
Age ≥ 60 -0.306 -0.403 -0.178
Wealth ≤ 110,000 -0.303 -0.4 -0.207
Wealth ∈ ]110,000-152,000] -0.32 -0.423 -0.213
Wealth ∈ ]152,000-205,000] -0.299 -0.397 -0.188
Wealth ∈ ]205,000-283,000] -0.252 -0.341 -0.141
Wealth ≥ 283,000 -0.208 -0.288 -0.106
Independent -0.298 -0.419 -0.241
White collar -0.331 -0.427 -0.223
Blue collar -0.283 -0.394 -0.213
Education ≤ high school -0.233 -0.309 -0.059
Education > high school -0.128 -0.185 -0.113
Family -0.29 -0.388 -0.18
Single -0.205 -0.276 -0.126
Average -0.276 -0.370 -0.171
Note: in e/trip.

Environmental impacts
Next, we focus on the environmental impacts of the policies by studying the reduction in the

emissions of different pollutants. The results displayed in Table 19 below show the differences
between policy instruments’ efficacy at reducing carbon and local pollutant emissions. We calibrate
the three policies to affect identically the total number of kilometers driven at peak hours. Yet, we
see that they do not have the same effects on total emissions, which come from drivers at peak
and non-peak hours. The difference in emissions across policies mainly comes from individuals
substituting differently for driving at non-peak hours. A second but less important factor is that
the different policies discourage different individuals from driving, and those may have different
cars. For instance, we expect a higher share of diesel cars among long-distance commuters. The
variable toll is the regulation that generates the largest substitution for driving at non-peak hours.
In contrast, the uniform toll discourages short trips, which usually have better alternatives outside
driving. The driving restriction is the least efficient at reducing emissions because it is untargeted.

46



Table 19: Changes in emissions under the different policies.

Driving Uniform Variable
restriction toll toll

∆CO2 -300 -383 -330
∆CO -0.638 -0.821 -0.688
∆NOX -0.379 -0.481 -0.432
∆HC -0.104 -0.134 -0.112
∆PM -0.052 -0.068 -0.057
∆Eq. NOX -1.24 -1.59 -1.37
%∆CO2 -9.61 -12.3 -10.6
%∆CO -9.8 -12.6 -10.6
%∆NOX -9.22 -11.7 -10.5
%∆HC -9.81 -12.7 -10.6
%∆PM -9.68 -12.5 -10.6
%∆Eq. NOX -9.53 -12.2 -10.5
Note: ∆emissions are in tons, %∆emissions are in percent. “Eq.
NOX” aggregates the different local pollutants into equivalent NOX
emissions.

We also estimate car emissions that are flexible functions of speed using Copert emission factors as
a robustness check.10 The emission factors are pollutant-specific and vary with the fuel type, Euro
norm, and car segment. We provide the results using these alternative estimates of car emissions
in Table 31 in Appendix C. We obtain slightly lower emission decreases due to the policies, but
the heterogeneity patterns across pollutants and policies remain identical. We also decompose the
changes in emissions into a speed change effect and an effect purely due to changes in behaviors. The
shares of emission reduction due to the speed improvements are shown in Table 32 in Appendix C.
Overall, the speed improvements are responsible for a small share of the total decrease in emissions
of most pollutants. They represent around 20% of the emission change for HC and 10% for NOX.

Average costs of regulations
Lastly, we combine our estimates of the emission reductions and the aggregate surplus changes to

compute an average cost of avoiding one ton of emissions. More specifically, we calculate the costs
of reducing carbon emissions and emissions of local pollutants separately. We rely on our measure of
equivalent NOX emissions presented above for the latest. Since the traffic regulations are typically
implemented to prevent pollution peaks caused by emissions of local pollutants, we believe that it
is relevant to measure the costs of the regulations per ton of equivalent NOX emissions avoided.

10Source: https://www.emisia.com/utilities/copert/.

47

https://www.emisia.com/utilities/copert/


The results, presented in Table 20, show that the costs of regulations are much lower for a ton of
CO2 emissions than for a ton of equivalent NOX emissions; they are around 240 times lower. The
report from the DG MOVE (2014) suggests that the value of a ton of CO2 is 326 times lower than
the one for a ton of NOX, revealing that our emissions costs are in line with the relative value for
NOX and CO2 emissions. The costs of reducing emissions are much higher than the social values.
Indeed, the report of the DG MOVE (2014) recommends e13,000 for one ton of NOX or e50 for a
ton of CO2 . We estimate costs that are at least 40 times higher. However, during a pollution peak,
we expect the social cost of emissions to be much higher than the long-term value of emissions
savings. Still, to our knowledge, there is no recommendation for the value of emissions under these
circumstances.

Ignoring tax revenue, we find that the most cost-efficient policy is the variable toll despite the fact
that is generates lower emission reductions. Between the three main policies, the most costly is
the uniform toll. However, when redistributing the tax revenue, the driving restriction becomes
the costliest policy, and the tolls have negative costs. The highest benefit is associated to the
variable toll, despite the fact that the uniform toll raises more revenue.The costs of reducing one
ton of equivalent NOX emissions appear to be lower using Copert estimates than when we use our
estimates which ignore the effect of speed improvements on emissions. Using the Copert estimates.

Table 20: Average costs of regulation for the different policies.

Driving Uniform Variable
restriction toll toll

w/o redistribution ∆CO2 3,720 3,893 2,094
∆EqNOX 897,728 935,863 502,519
∆EqNOX, Copert 605,655 654,286 359,188

with redistribution ∆CO2 3,720 -72 -550
∆EqNOX 897,728 -17,192 -131,897
∆EqNOX, Copert 605,655 -12,019 -94,277

Note: in e/ton.

Marginal costs of congestion
Table 21 presents the marginal costs of congestion for each area and period under the different

policies. We provide the marginal costs associated with adding one average driver in each area to
account for differences in area sizes. The driving restriction and uniform toll reduce the marginal
costs of congestion across all areas at peak hours. However, we observe an increase in the marginal
costs of congestion in the city center and the close suburb at peak hours under the variable toll.
The rise in the costs is lower than 8%, and we can observe the opposite pattern at non-peak hours,
where the costs decrease in the same two areas and the far suburb. This occurs because the speed
improvements make individuals’ trip durations lower, increasing, in turn, their marginal valuations
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of duration. Thus, having an additional driver on the road raises the surplus losses for individuals.
The marginal costs on the highways and the ring roads are the most reduced by the policies.

Table 21: Marginal costs of congestion under the different policies.

Area Initial Driving Uniform Variable
restriction toll toll

Peak hours
Highways 1.14 0.49 0.51 0.41
City center 1.58 1.35 1.3 1.7
Ring roads 2.09 1.29 1.09 1.3
Close suburb 1.29 1.07 1.04 1.39
Far suburb 0.58 0.39 0.4 0.58
Non-peak hours
Highways 0.42 0.75 0.66 0.76
City center 1.26 1.3 1.3 1.19
Ring roads 1.19 1.31 1.29 1.22
Close suburb 1.04 1.12 1.12 0.98
Far suburb 0.34 0.51 0.49 0.39
Note: Costs associated to adding an average driver, in e.

7 Mitigating the surplus losses

7.1 Alternative policy instruments

In addition to the three standard policies, we analyze other existing regulations. In particular, we
focus on vintage-based driving restrictions and driving permit auctions.

Vintage-based driving restrictions
The vintage-based driving restriction forbids cars older than a particular vintage from driving

in the entire metropolitan area. This resembles the low emission zone policies that have been
particularly common in Germany. Under simple driving restrictions, everyone is affected with
the same probability. In contrast, owners of cars older than a particular vintage cannot drive
under vintage-based driving restrictions, so they never benefit from speed improvements. On the
other hand, the individuals who are still allowed to drive have only benefits due to the speed
improvements. Thus, we expect the vintage-based driving restrictions to have more important
distributional effects than the standard ones, as the burden of traffic reduction is put on a fraction
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of the population only. Yet, these vintage-based policies might be more cost-efficient than the usual
ones because they target the old and more polluting cars.

We compare policies by calibrating the vintage to reach the same traffic reduction as under the
regular driving restriction. Since the car vintage is a discrete variable, we cannot exactly match
the expected number of kilometers at peak hours with the vintage parameter only. We use the
strictest vintage and assume that individuals are subject to the policy with a probability lower
than 1. Then, we calibrate this probability to exactly match the traffic reduction across policies.
This technical assumption can be interpreted as the frequency at which the policy is implemented.
The calibrated parameters is presented in Table 22 below. The vintage parameter is 2006, above
the average car vintage of 2004, and the policy should be applied 90% of the time. Overall, 50.8%
of the population is restricted by this vintage-based regulation.

Table 22: Parameters for the vintage-based driving restrictions

Policy type Outcome matched Vintage Frequency
Peak-hours traffic at peak hours 2006 0.90

As Table 23 suggests, the vintage-based policy is slightly more costly for individuals, generating
1.19 million euros of surplus losses versus 1.11 for the standard driving restriction. As expected, we
find more distributional concerns under the vintage-based policy since the difference in surplus
losses is larger when considering the surplus with redistributive weights. Nevertheless, the aggregate
gains from speed improvements are identical under the two policies.

On average, individual surplus decreases by 30 cents under the vintage-based driving restriction,
indicating that the gains from the unaffected individuals do not compensate for the losses of the
affected ones. However, we find a more extensive range in the distribution of changes in individual
surplus. For example, the gain from speed improvements goes up to e1.3 while the cost from not
being able to drive at peak hours is up to e3.9. Indeed, we find that the vintage restriction hurts a
smaller fraction of individuals (50.8%) but more severely and benefits 28.9% of the population.

From the emissions reduction perspective, the vintage-based driving restriction improves results
significantly. This is particularly striking for the equivalent NOX emissions that decrease 53%
more. The higher emission reduction balances the higher surplus losses through a lower implied
average cost of regulation. In the end, the vintage-based restriction reduces the average cost by
e125,000/ton.
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Table 23: Surplus changes under standard and vintage-based driving restrictions.

Standard Vintage-based
restriction restriction

Total ∆CS (Me) -1.11 -1.19
∆CS, constant speed -1.28 -1.36
∆CS from speed 0.164 0.164

Total ∆wCS (Me) -1.16 -1.37
Min ∆CS -2.09 -3.91
Mean ∆CS -0.276 -0.296
Max ∆CS 0.037 1.3
% ∆CS > 0 0.075 28.9
% ∆CS < 0 79.7 50.8
∆ CO2 (ton) -300 -363
∆ eqNOX (ton) -1.24 -1.92
Implied cost/eqNOX (e/ton) 897,728 621,314

Auctioned driving license
The second instrument is a quota of driving permits allocated through an auction which resembles

Shanghai’s vehicle license regulation. We consider a simple uniform second-price auction format,
which implies that individuals bid their true license valuation. The equilibrium price is the highest
rejected bid associated with a fixed number of licenses. Individual valuations are equal to the
difference between the expected utilities with and without the right to drive, and we assume
individuals perfectly anticipate the speed improvements. Thus, the willingness to pay includes
the gain in utility from better speeds at peak hours. We use an iterative algorithm to solve for
the license price together with the equilibrium speeds for a given quota of driving licenses. Our
algorithm cannot find a stable equilibrium for some values of the quota of driving licenses. This is
particularly the case when we consider stringent policies (i.e., with a low number of permits) where
the speed gains are significant. We thus select the quota of driving licenses that implies the closest
outcome to the one obtained in our main policies. Then, we re-calibrate the uniform toll to match
the traffic reduction across policies, measured by the number of kilometers driven at peak hours.
We thus analyze policies that are milder than before since they trigger a decrease in traffic at peak
hours of 25.2%. This policy seems more suited to a comparison with the uniform toll, as they both
put a price on the right to drive. However, there is an essential difference from the perspective of
individuals. Under the toll, individuals decide to drive and pay the toll after they receive their
preference shocks for the transportation modes and departure times. While under the auction,
individuals have to submit their bid for the license before receiving their preference shocks and lose
the ability to take their car at peak hours in case of extreme preference shocks. We provide the
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policy parameters in Table 24 below.

Table 24: Parameters for the driving license and equivalent uniform toll policies.

Policy type Parameter Value
License Quota of licenses 30.5%

License price 1.34
Uniform toll toll 1.95
Note: License price and toll in e/trip.

Since individuals who get the license pay for it regardless of how often they decide to drive at
peak hours, the policy generates a high surplus losses. Individuals can no longer react to some
bad realizations of their preference shocks for driving. The license regulation causes e1.9 million
loss for consumer surplus, against 1.14 million under the uniform toll. The two policies generate
comparable tax revenue of around e1.3 million. If the entire auction revenue is redistributed, the
quota of driving licenses causes a net loss of e0.6 million, showing the superiority of the toll over
the quota of driving licenses.

Uniform toll License
Total ∆CS (Me) -1.14 -1.9

∆CS, constant speed -1.37 -2.31
∆CS from speed 0.23 0.405

Total ∆wCS (Me) -1.18 -1.95
Tax revenue (Me) 1.28 1.31
∆ welfare (Me) 0.142 -0.592
Min ∆CS (e) -1.54 -1.31
Mean ∆CS (e) -0.281 -0.472
Max ∆CS (e) 0 0.394
% ∆CS > 0 0 0.133
% ∆CS < 0 79.7 79.6
∆ CO2 (ton) -285 -440
∆ eqNOX (ton) -1.19 -1.88
Implied cost local pollutants (e/ton NOX)
Without redistribution 956,790 1,015,204
With redistribution -119,543 315,530
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7.2 Differentiated tolls

We now investigate what the consequences of applying differentiated tolls are. First, we consider
tolls that depend on the areas where individuals drive. Second, we analyze combinations of fixed
and variable tolls.

Area-specific tolls
We consider a toll that takes two different values: one for the city center and ring roads and

one for the highways, the close and the far suburb. This policy instrument is similar to the cordon
pricing mechanism, which defines tolls based on the distance to the city center. We determine all
the toll combinations that imply the same objective traffic at peak hours and find the best toll
combination for each objective outcome. When individuals drive through the two toll zones, we
assume they only pay the highest toll.11

The left graph in Figure 11 shows all the combinations of road tolls that achieve the same objective
traffic at peak hours. The right graph in Figure 10 provides the change in total welfare (measured
by the sum of consumer surplus and tax revenue) as a function of the value of the toll in the suburb.
First, the uniform toll is not too far from the welfare-maximizing toll combination. By slightly
reducing the toll value in the suburb and increasing the value of the toll inside the city center, we
can multiply the total welfare surplus by 3.2. The welfare is maximized for the combination of
e2.03 in the suburb and e3.51 in the city center. We also provide the toll values that maximize
other outcomes, and we see that the best toll combination for welfare is very close to the best one
for tax revenue. In contrast, the best toll combination for consumer surplus (both with and without
redistributive weights) consists of having zero tolls in the suburb and the high value of e7.01 inside
the city center.

11We could alternatively consider individuals driving through the two toll areas pay the sum of the tolls, but this
situation would not nest the benchmark uniform toll and thus makes the comparison less straightforward.
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Figure 10: Differentiated tolls and their welfare impacts.
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Combination of fixed and variable tolls
We now consider another way to define tolls, given by a fixed and a variable part. We allow for

negative values of the two components of the toll. Interestingly, we find that the best toll value
for consumer surplus has the lowest fixed part and the highest negative part. This is because
individuals with short trips have high valuations of the travel time, so their gains more than
compensate for the losses for individuals with long distances and high toll values. However, this
combination of road tolls is not efficient at raising tax revenue. This is why the best combination,
from a welfare perspective (assuming welfare is equal to the aggregate surplus and the tax revenue),
is a toll with a small variable part than our benchmark variable toll (7 cents/km) and a moderate
fixed amount of e0.72. We could reach the maximal tax revenue with the large fixed value of e3.2
and a negative variable part (-0.2 cents/km). This combination of tolls would be, nevertheless,
welfare-decreasing as Figure 11 (b) suggests.
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Figure 11: Combination of fixed and variable tolls and their welfare costs.
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7.3 Improving public transport

Public transport is a crucial part of cities’ infrastructure, and its quality and density have a large
impact on individuals’ transportation decisions. While our paper focuses on traffic policies, we can
still give useful insights on how infrastructure improvements such as better coverage or quality of
public transport mitigate the consumer surplus losses.

While public transport is the most used transportation mode in our data, 28.5% of the individuals
do not have access to it. In the first scenario, we allow them to use a hypothetical public transport
service with the median characteristics: a speed of 12.2 km/hr, a price of 1.52e, and congestion
levels of 1.67 at peak and 0.80 at non-peak hours. A commonly considered improvement for public
transport corresponds to capacity increases at the station or train levels. In our second scenario,
we interpret this type of investment as improvements to the public transport service quality via a
decrease in the trip’s duration of 40% for all trips. Finally, in the third scenario, we look at the
impact of making public transport free, a policy implemented during pollution peaks, and driving
restrictions in December 2016 in Paris.

Table 25 shows the shares of transportation modes under the different scenarios. Extending
public transport coverage is the most effective policy for decreasing car usage thanks to a large
substitution towards public transport. Nonetheless, during non-peak hours, the coverage increase
does not improve public transport usage, while the highest increase in usage comes from quality
improvement. A possible explanation for these results would be a lack of scheduling flexibility
among those benefiting from the coverage extension. A full service subsidy is less effective than an
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increase in quality at nudging individuals towards public transport usage, showing the importance
of infrastructure investments, rather than subsidies, in improving public transport usage. While a
full subsidy or a decrease in duration of 40% could be seen as extreme cases of possible policies,
these results give useful insights on how to rank the impact of different policies.

Table 25: Shares of transportation modes under public transport improvements.

Driving restriction Uniform toll Variable toll
Mode (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Bicycle 2.4 1.7 1.9 2.2 2.4 1.7 1.9 2.2 2.2 1.7 1.7 2
Pub. transport, peak 32.1 48.1 37.9 35.1 32.4 48.7 38.3 35.4 32.9 48.6 38.6 35.9
Motorbike 2.5 1.7 1.8 2.1 2.5 1.7 1.8 2.1 2.6 1.8 1.9 2.2
Walking 17.6 12 15.5 16.5 17.8 12.2 15.7 16.8 15.9 11.6 13.9 14.9
Car, peak 14 10.4 11.6 12.8 14 9.6 11.5 12.6 14 9.7 11.7 12.8
Car, non-peak 16.1 10.9 13.3 14.6 15.5 10.8 12.7 14 16.5 11.1 13.7 14.9
Pub. transport, non-peak 15.3 15.1 18.1 16.8 15.5 15.2 18.2 16.9 15.8 15.5 18.5 17.2
Total car share 30.1 21.3 24.9 27.4 29.5 20.4 24.2 26.6 30.5 20.8 25.4 27.8
Total pub. transport share 47.4 63.2 56 51.9 47.9 63.9 56.5 52.4 48.7 64.1 57.1 53.1
Notes: In %. (1): Benchmark, no improvement. (2): Coverage improvement. (3): Duration improvement. (4): Free usage of
public transport.

Surplus changes are showed in Table 26. An increase in public transport coverage reduces consumer
surplus losses considerably, decreasing between 35% and 40% across policies. Quality improvements
via a 40% reduction in duration lead to smaller reductions in consumer surplus losses, at most 15%
of the loss under no improvement. Finally, fully subsidizing public transport has a minimal effect
on mitigating the policies’ costs. These results indicate that a coverage extension is the most useful
improvement to mitigate traffic policies. In the subsidy scenario, the decrease in revenue from
a larger public transport usage is bigger than the decrease in consumer surplus variation due to
the policy implementation. Thus, making public transport free while implementing another traffic
regulation can create a larger decrease in welfare than when only applying the restriction or pricing
mechanism.
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Table 26: Consumer surplus variation under public transport improvements

Driving restriction Uniform toll Variable toll
Mode (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Total ∆CS (Me) -1.27 -0.77 -1.15 -1.2 -1.55 -1.02 -1.38 -1.46 -1.64 -1.02 -1.39 -1.48
Tax revenue 0 0 0 0 1.5 1.06 1.26 1.39 1.1 0.77 0.79 0.91
∆ welfare -1.27 -0.77 -1.15 -1.2 -0.01 0.04 -0.13 -0.07 -0.58 -0.24 -0.6 -0.57
% ∆CS = 0 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3
% ∆CS > 0 0.5 0.57 0 0.02 0 0.01 0 0 14.3 14.4 12.6 13.6
% ∆CS < 0 79.2 79.2 79.7 79.7 79.7 79.7 79.7 79.7 65.4 65.4 67.2 66.1
Min ∆CS -2.49 -2.25 -2.51 -2.49 -2.18 -1.97 -2.18 -2.18 -5.3 -4.23 -5.31 -5.29
Mean ∆CS -0.32 -0.19 -0.29 -0.3 -0.38 -0.25 -0.34 -0.36 -0.41 -0.25 -0.34 -0.37
Median ∆CS -0.18 -0.15 -0.13 -0.16 -0.26 -0.21 -0.19 -0.23 -0.14 -0.11 -0.1 -0.13
Max ∆CS 0.05 0.05 0 0.02 0 0.01 0 0 1.5 1.43 1.15 1.15
Notes: ∆CS are in e/trip. (1): Benchmark, no improvement. (2): Coverage improvement. (3): Duration improvement. (4):
Free usage of public transport.

8 Conclusion

Combining data from a detailed survey, Google maps, TomTom, and public transport users, we
estimate a nested logit model to represent the transportation decisions of individuals for their daily
trips to work or study places in the Paris metropolitan area. The estimated parameters confirm
the importance of trip duration for individuals’ decisions and reveal profound schedule inflexibility
making it challenging to discourage individuals from driving at peak hours. We combine this
transportation mode choice model with a flexible reduced-form congestion model that predicts
how road speeds vary when the number of drivers changes in the different parts of the city. We
simulate the effects of simple transportation policies and measure their welfare effects on individuals
and their impacts on emissions. We find that all the regulations are costly for individuals. Still,
simple driving restrictions are not as bad as we expected because it forces everyone to contribute
to traffic reduction. As a result, it generates fewer surplus losses than uniform tolls on aggregate.
However, variable tolls are better than driving restrictions because they target individuals with
long distances and are thus efficient at reducing the total number of kilometers driven. In contrast,
driving restrictions do not raise revenue, unlike tolls. If the toll revenue is entirely redistributed to
individuals, moderate toll values may improve the total surplus.
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A Additional information on data and sample construction

A.1 Detailed information about EGT

The EGT survey was conducted from 2009 to 2011 between October and May, excluding school
holidays. Due to a low answer rate during the initial collection period (2009 to 2010), the second
wave of data collection took place from 2010 to 2011. Regarding the survey sampling, the region (
Île-de-France) was divided into 112 sectors. In each sector, between 400 and 500 individuals were
interviewed to maintain representativeness at the sector level. Instead of relying on a trip diary
where surveyed individuals self-report their trips, the EGT hinged on pollsters visiting households
and recording the information of the trips performed the previous day using a computer application.

A.2 Cost estimation

The survey does not report the cost incurred by the individuals when taken a trip. Thus, we
proceed to estimate the cost both for taken and non-taken alternatives. For all transportation
modes, we neglect the fixed expenses. We assume that individuals do not consider yearly, monthly,
or one-time-only fixed costs related to the transportation alternatives unless that cost is a service
subscription. Thus, expenses related to the transportation alternatives like car purchase, insurance,
taxes, or administration fees, are not included in the cost computation. The rationale is that we
focus on the short-term reaction to policy introduction, implying that individuals cannot avoid
these fixed costs.

Walking is always free, while cycling is free only for households that own bicycles. If the individual
has a bike-sharing subscription, the cost of the subscription is divided by twice its duration (in
days), which is equivalent to assuming two bike trips per day. In other cases, we consider biking
has the cost of a single bike-sharing ticket (e1.7).

A.2.1 Public transport

Public transport in Paris comprises a network of subway, buses, tramways, and suburban trains.
This network is operated by two companies: “RATP” mainly covers the public transport inside
Paris and close suburbs, while “SNCF” operates trains that connect Paris to the suburban areas.12
During the period of our data, the RATP pricing system was based on pricing zones, from 1 (inside

12Observations for which part of the trip used either Vogueo (ships) or any non-urban train are dropped. We keep
the school buses.
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Paris) to 5 (far suburb), of the trip’s origin and destination.13 We use the prices stated in the price
guide of RATP for July 2011.14

Public transport in Paris comprises a network of subway, buses, tramways, and suburban trains.
This network is operated by two companies: “RATP” mainly covers the public transport inside
Paris and close suburbs, while “SNCF” operates trains that connect Paris to the suburban areas.15
During the period of our data, the RATP pricing system was based on pricing zones, from 1 (inside
Paris) to 5 (far suburb), of the trip’s origin and destination.16 We use the prices stated in the price
guide of RATP for July 2011.17

In contrast, the ticket price using the SNCF network depends on the exact stations of origin and
destination rather than simply their zones. Since there is no exhaustive data with the prices for
all combinations of origin and destination stations, estimate the train ticket price. We rely on a
sample of ticket prices for 36 origin and destination pairs and estimate the train ticket price as a
cubic function of the distance between stations using ordinary least squares. This regression has a
good fit with an R2 of 0.82. We use this function to predict prices of the public transport trips
that include taking an SNCF suburb train.

For individuals with a public transport subscription, we estimate a trip’s average cost by dividing
the daily price of the subscription by two, which is the average number of trips taken in a day
conditional on using public transport. For some individuals, we have missing data about the
coverage of their subscriptions. We assume individuals pay the regular ticket price as if they did
not have a subscription. For those who take a public transport trip outside of their subscription
coverage or do not have a subscription, we also assume a cost equal to the price of an individual
ticket. Seven individuals stated to have used the service without paying (fraud); we assume a
zero cost for their public transport trip. The survey includes information on whether individuals
can buy subsidized tickets and access reduced-price subscriptions. We take this information into
account when computing their cost of using public transport.

13Before 2011, the region was split into 8 pricing zones. In 2011, zones 6 to 8 were eliminated and included in
zone 5. We follow the zoning system of 2011.

14Source: “Guide tarifaire”, Juillet 2011, https://www.slideshare.net/quoimaligne/guide-tarifaire-ratp
-sncf-ile-de-france-2011.

15Observations for which part of the trip used either Vogueo (ships) or any non-urban train are dropped. We keep
the school buses.

16Before 2011, the region was split into eight pricing zones. In 2011, zones 6 to 8 were eliminated and included in
zone 5. We follow the zoning system of 2011.

17Source: “Guide tarifaire”, Juillet 2011, https://www.slideshare.net/quoimaligne/guide-tarifaire-ratp
-sncf-ile-de-france-2011.
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A.2.2 Cars and motorbikes

We estimate the cost of using a car or a motorbike by combining the trip distance from the route
provided by TomTom, estimates of the fuel consumption of the households’ vehicles, and average
fuel prices in 2011 from the National Survey Institute (“Insee”).18 When the household has multiple
vehicles, we assume the trip uses the most fuel-efficient one. We also assume each individual pays
the total cost of the trip, regardless of the number of passengers.

The survey data does not contain vehicles’ fuel consumption, so we predict it from the main car
characteristics (vintage, fuel type, and fiscal horsepower). We rely on detailed data on car purchases
that contains information on CO2 emissions and car characteristics. We specify car’s CO2 emissions
as a linear function of a time trend and the fiscal horsepower. The functions are fuel-specific. More
details on the car purchase data and the regressions are provided below in Section A.6.

For two-wheel motorized vehicles, we assign the average fuel consumption by the number of cylinders
provided by the French Energy Agency “ADEME”.19

A.3 Map direction APIs

The survey maps the Paris region into a grid with 1,489,347 squares to locate individuals’ trips’
origins and destinations. Each square is 100 square meters. Thus, we use the GPS coordinates of
the centroids of the grid squares. This approach limits any trip geocoding inaccuracy to a maximum
of approximately 70 meters.

The public transport queries were done on June 2nd, 2019, setting all trips to take place on Tuesday,
June 4th 2019, with a departure time at 9:30 a.m. The car queries were done in April 2021, setting
the trips to take place the Thursday 16th of September 2021 at 8:30 a.m. for peak hours and 6:30
a.m. for non-peak hours.

TomTom queries for future dates use historical trip data and not the live conditions. However, to
solve concerns regarding the impact of Covid on traffic and TomTom’s predictions, we compare our
TomTom queries at peak hours (8:30) with Google maps queries done in August 2019. We find
that the average difference between the two data sources implies that TomTom queries predict trip
durations 7.5% larger than the older ones from Google maps, with a median difference of 7.6%. The
results suggest that the Covid crisis did not significantly decrease traffic and affected the prediction
algorithm of TomTom. Furthermore, they show the similarities between the two sources and thus
TomTom’s reliability.

18See https://www.prix-carburants.developpement-durable.gouv.fr/petrole/se_cons_fr.htm.
19Source: https://www.statistiques.developpement-durable.gouv.fr/les-deux-roues-motorises-au

-1er-janvier-2012.
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A.4 Estimating real estate prices

We proxy the households’ wealth using the expected values of their housing. To estimate each
household’s real estate price, we rely on a database containing all real estate transactions in France
for 2014-2015 (“Demande de Valeurs Foncières - DFV+”) from the French tax authority and
CEREMA.20 We use this period since it is the earliest for which these data are publicly available.

We match each household to all the estate transactions from the municipality of residence and the
neighboring municipalities. For Paris, we use the “arrondissement” level.21 We limit the sample
of matches to apartments and houses’ sales and properties sold in one transaction and exclude
partial sales of the property. We drop transactions with a price of zero or above five million euros
and keep only the properties with a built surface between 15 and 500 square meters. We then
compute the average price per square meter for each transaction by dividing the price by the
property’s built surface. Next, we trim the sample and drop the top 0.5 % and the bottom five
percent of each municipality’s distribution of square meter prices. Next, we estimate individual
estate prices by taking a weighted average over all transactions from the municipality and the
neighboring municipalities, using the inverse distance between the household and the match as
weight. We finally multiply the average estate price by the households’ apartment, or house surface
area reported in the EGT survey. As seen in Table 27, the average real estate price that we estimate
for each area is close to the area-specific price from external sources, supporting the credibility of
our estimates.

Table 27: Comparison of the real estate prices.

Paris Close suburbs Far suburbs
Average from our estimates 8,030 4,789 3,175
Average from official data 8,074 4,338 2,998
Note: Our average is computed using survey weights. Average from
official data obtained by averaging quarterly average price per square meter
for the year 2014. Source: https: / / basebien .com/ PNSPublic/ DocPublic/
Historiquedesprixdesappartementspardep .pdf

A.5 Estimation of the public transport overcrowding

To have an individual level measurement of overcrowding in public railway transport, we first
compute a line-level measure of congestion. To do so, rely on data provided by the agencies in
charge of public transportation in the Paris region (SNCF and RATP) on the number of passengers
at the metro or train station level. We rely on data for 2015, which is the oldest data available,
and consider only the urban railway network, where overcrowding is the most problematic. These

20Source: https://www.data.gouv.fr/fr/datasets/dvf-open-data/#_.
21Paris is split in 20 “arrondissements”.

64

https://basebien.com/PNSPublic/DocPublic/Historiquedesprixdesappartementspardep.pdf
https://basebien.com/PNSPublic/DocPublic/Historiquedesprixdesappartementspardep.pdf
https://www.data.gouv.fr/fr/datasets/dvf-open-data/#_


data only record the validations from passengers that use an electronic metro card. Unfortunately,
there is no exhaustive data on traffic in public transport that accounts for passengers using tickets.
Estimates suggest that the electronic validations represent two-thirds of the traffic for 2016.22 We
believe that during morning peak and non-peak hours, the share is even higher than 67%.

The data are composed of two separate datasets. The first one contains daily entry flows of
passengers at the railway station level. The second dataset contains “hourly profiles” at the station
level: the distribution of validations (in %) across hours for different periods (business days outside
holidays, business days during school holidays, and weekends). By combining these two datasets, we
can obtain a daily estimate of the number of passengers in each metro station for a regular business
day. We exclude weekends, school holidays, public holidays, and two dates with a relatively low
total number of entries (less than a million versus an overall daily average of 7.5 million according
to the official figures of the RATP). We interpreted this low number of passengers as indicating the
occurrence of a strike. In the end, we average 172 days to compute the daily numbers of entries per
railway station. We use the average profiles for the business days outside holidays for the second
semester of 2015.23 We define our two periods as between 7 and 8:59 a.m. for peak and 6:00-6.59
a.m. for non-peak hours to be consistent with the expected driving durations.

We observe the number of passengers entering a station, but there are multiple railway lines in a
station. We estimate the average number of passengers by line using the total annual traffic divided
by the total railway traffic from official figures. More specifically, we calculate the percentage of
passengers that use each line per station and then sum across stations of the line to get the total
number of passengers per period.

We use the 2015 General Traffic Feed Specification (GTFS) schedules from RATP and SNCF that
provide frequencies of trains at the station level.24 We use schedules of September 2015 to be
consistent with the station passenger flow data and compute the average number of trains per hour
for peak and non-peak hours for each station and urban transit line. We average across stations
to get the expected number of trains for each railway line. Additionally, we gather information
about the passenger capacity of the train models used on each line.25 The passenger capacity
represents the number of passengers a train can carry, assuming four passengers per square meter.
We compute the total railway line capacity at peak and non-peak hours by multiplying the train
capacity by the number of trains per hour. Finally, the overcrowding level clt for line l, at time
period t is:

clt = plt
2× tclt

,

22See https://www.iledefrance-mobilites.fr/usages-et-usagers-des-titres-de-transport.
23We noticed some problems with the data from the first semester 2015: the percentages did not sum to 100% for

20 stations and thus preferred not to use that semester of data.
24Source: https://transitfeeds.com/l/162-paris-france.
25We rely on Wikipedia and old reports containing information about the fleet of trains owned by RATP and

SNCF.
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where plt is the hourly number of passengers in line l at time period t, tclt is the line total passenger
capacity per hour. We multiply the total line capacity by two because we have two directions, and
we use the total number of passengers going in both directions. Then from the overcrowding at
the railway line level, we obtain an estimate of individuals’ subjective overcrowding levels, which
averages the different lines through:

Cnt =
∑
l

clt × ωnl,

where clt is the estimated line l overcrowding level and ωnl is the percentage of the trip duration
spent in line l. The ωnl are such that ∑l ωnl = 1, ∀n. Note that the portion of the trip done by foot
or using bus, tram or another transportation network for which we do not have data are excluded.
ωnl are obtained from the Google maps detailed public transport itineraries.

For 46 stations out of 537, we estimate more passengers at non-peak than at peak hours. These
stations are all in the far suburb except one. The exception is Bercy station on the suburb train
network. Across stations and lines, the number of passengers is multiplied by 3.2 between non-peak
and peak hours, and the median ratio is 2.34. But the train and metro frequency increase a lot
between peak and non-peak hours. Finally, we provide in Table 28 the estimates of the overcrowding
levels in the different metro and train lines. On average, we estimate the overcrowding to be 0.89
at non-peak hour and 1.43 at peak hour. But these averages hide important heterogeneity across
lines that provide key variation for estimating the sensitivity to overcrowding in public transport.

One caveat of our overcrowding measures is that is they use validations by electronic passes only, so
we underestimate the traffic. However, we exploit the variation between peak and non-peak hours
traffic across metro lines. As long as traffic is homogeneously underestimated over the network and
periods, omitting a portion of the traffic is not a major problem.
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Metro Suburb trains
Line Peak Non-peak Line Peak Non-peak
1 0.43 0.72 A 2.35 4.37
2 0.5 0.77 B 0.55 1.07
3 1.04 1.29 C 0.58 1.16
3B 0.18 0.36 D 1.24 1.75
4 0.6 1.11 E 0.78 1.37
5 1.3 1.84 H 0.4 0.71
6 0.72 1.01 J 0.63 1.12
7 1.5 1.71 K 1.39 2.22
7B 0.19 0.41 L 0.61 1.36
8 0.86 1.12 N 0.48 1.01
9 0.81 1.07 P 1.91 3.82
10 0.59 1.13 R 0.93 1.3
11 0.98 1.39 U 0.88 2.1
12 1.07 1.44
13 1.62 1.93
14 0.56 0.95

Table 28: Estimates of the overcrowding level in the railway.

A.6 Car emissions

A.6.1 Copert emissions factors

Our goal is to have emissions estimates that depend on the distance driven and the speed. To do so,
we rely on Copert emissions factors for cars published in the EMEP/EEA air pollutant emission
inventory guidebook - 2009. This report provides an emission function that links a car’s emissions
of local pollutants with its speed. The function parameters are specific to each pollutant, fuel type,
emission standard, and car segment (in four categories: mini, small, medium, and large).

The EGT data does not directly provide the car’s segment, so we predict it from the fiscal horsepower.
We use a logit regression that links the segment to the fiscal horsepower and estimates it using data
from car characteristics and their corresponding segment. This regression estimates the horsepower
thresholds that classify the cars into segments from their horsepower.

Additionally, we assign cars to an emission standard from their vintage: cars with a vintage below
2000 are under Euro 2 standards. From 2000 to 2005 they are under Euro 3 standards. From 2005
onward, they are subject to Euro 4 standards. Since both the Copert emissions data and the survey
include information on fuel types, we can directly match survey cars to the correct set of factors by
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fuel type. We assume electric vehicles do not emit pollutants.

A.6.2 Alternative estimation for the vehicle emissions

The Copert emission factors are only available for local pollutants, so we use another method to
estimate CO2 emissions. We also use this method to predict emissions of local pollutants as a
robustness check. We estimate a model that predicts the average car emissions of pollutants from
its fuel type, fiscal horsepower, a linear time trend, and the emission standards applicable at that
time. To estimate this prediction model, we use car registration data in Île-de-France from 2003 to
2018.26 We complement these data with local pollutant emissions data by car model from the UK
Vehicle Certification Agency.27

We first match the French car registration data to the UK data on local pollutant emissions. This
allows us to weigh each car model in the UK emissions data by their sales in the Île-de-France
region. The two datasets do not contain the same car characteristics. We, therefore, rely on the
following algorithm to match the French car sales to the UK emissions:

1. We compute the total car sales by year, brand, model name, fuel type, and CO2 emissions in
the French data.

2. We merge them with the UK emissions data by year, brand, model name and fuel type.
Since there are several versions for the same combination in the UK data, we select the
closest neighbor based on cylinder capacity and CO2 emissions. We use the following norm
to compute the distance to every potential matches:

distance =

√√√√(CO2,FR − CO2,UK

CO2,FR

)2

+
(
CylinderFR − CylinderUK

CylinderFR

)2

3. To ensure the matching accuracy, we drop observations for which either the percentage
difference in CO2 emissions or cylinder capacity between the two matches is larger than 10%.

4. For each pollutant, we drop car models for which the emission levels are above the corresponding
Euro standard limit. We also drop cars whose emissions level is lower than a tenth of the
Euro norm value, as we assume they correspond to reporting errors.

For hybrid cars and other fuel types (liquefied petroleum or natural gas), we observe that the
top models in France are not available in the UK emissions data. Thus, we match the data on

26These come from proprietary data obtained from the French Car Manufacturers syndicate “CCFA” (for 2003-2008)
and from AAAData (for 2009-2018).

27Source: https://carfueldata.vehicle-certification-agency.gov.uk/downloads/archive.aspx..
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registrations to another dataset that provides car emissions data from 2012 to 2015. The data
come from the French environment agency (“ADEME”).28 We did not use it for the conventional
fuel cars because the sample period is limited to the latest emission standards. We follow the same
procedure as described above, but we allow for more discrepancy between the potential matches.
Specifically, we drop observations only if the percentage difference in CO2 emissions or cylinder
capacity between the two matches is greater than 30%. We also rely on these ADEME data to
obtain estimates of PM emissions for gasoline cars since the UK data only provide PM emissions
for diesel cars.

Once we have a final sample of car models and the corresponding sales and emissions, we estimate
a prediction model. We specify the emissions level of a specific pollutant as a linear function of
the fiscal horsepower, a linear time trend, and dummies for the years of changes in the emissions
standard of this particular pollutant. We allow the parameters to be different by fuel type. For PM
emissions, we regress the logarithm of the emission levels on car characteristics because PM data
are less reliable and have more outliers. All regressions are weighted by the number of car sales.

Table 29: Fit of the emissions regressions

Observations R2

Pollutant Gasoline Diesel Gasoline Diesel
CO2 6,407 7,962 0.84 0.83
NOX 5,414 6,759 0.31 0.78
HC 6,138 6,701 0.51 0.14
CO 13,686 0.36
PM 3,570 0.85
Notes: Pooled regressions used for the PM and CO emissions
estimation.

For hybrid cars and other fuels, given the small matched sample size (91 observations), we use the
weighted average emission levels by fuel type. Emissions for electric cars are set to zero for all
pollutants. For some individuals in EGT data, the car vintage and horsepower are missing; in such
cases, we attribute the average vintage or horsepower values in the EGT sample for the specific
fuel type.

28Source: https://www.data.gouv.fr/fr/datasets/emissions-de-co2-et-de-polluants-des-vehicules
-commercialises-en-france/.
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Table 30: Comparison between observed and predicted emissions

Gasoline Diesel
Pollutant Observed Predicted Observed Predicted
CO2 203 197 171 168
CO 651 569 227 219
NOX 100 62.1 371 346
HC 100 88.2 114 55.6
PM 0.44 1.59 3.26 23.1
Note: Values computed for the sample of cars used to predict the emissions
levels on the EGT sample. All the values are for the year 2003 (the average
car vintage in the EGT sample) except for PM. For PM emissions, we use
the earliest year in the sample with available data: 2012 for gasoline and
2005 for diesel.

B Additional results on the uniqueness of the model equilibrium

We provide here the proofs of uniqueness of equilibrium under special cases of our model and
investigate the numerical properties of our algorithm for the general model.

B.1 Uniqueness under two special cases

Model with one period, one area. We consider here the case on only one endogenous speed
in the model. The equilibrium speed v is given by:

v − f(φ
N∑
n=1

ωnsn(v)kn + γ) = 0

We define g(v) := v − f(φ∑N
n=1 ωnsn(v)kn + γ). If the non-linear equation admits a solution, the

solution is unique if and only if |g′(v)| > 0 ∀v ∈ [v, v]. The derivative is:

g′(v) = 1− f ′(φ
N∑
n=1

ωnsn(v)kn + γ)︸ ︷︷ ︸
≤0

. φ︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂sn(v)
∂v︸ ︷︷ ︸
≥0

,

which is always positive for v ∈ [v, v] as long as the speed function is weakly decreasing in the
occupancy rate and the probability to drive increases with the speed.

Model with multiple periods, one area.
Now, we consider a model with a single area but multiple time periods which are substitutes for
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individuals. In this setting we have a system of T non-linear equations, g(v) = 0, where:

gt(v) := vt − f
(
φt

N∑
n=1

ωnknsnt(v) + γt

)

We want to show that the Jacobian of the system is a Leontieff matrix, i.e. the diagonal terms are
positive and the off-diagonal terms are non-positive. First we compute the diagonal terms, which
resemble the previous derivative and is always greater than 1:

∂gt
∂vt

= 1− f ′(φt
N∑
n=1

ωnknsnt(v) + γt)︸ ︷︷ ︸
≤0

. φt︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂snt(v)
∂vt︸ ︷︷ ︸

≥0

.

Then we compute the off-diagonal terms, which are always negative due to the substitutability
between the different time periods:

∂gt
∂vt′

= − f ′(φt
N∑
n=1

ωnknsnt(v) + γt)︸ ︷︷ ︸
≤0

. φt︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂snt(v)
∂vt′︸ ︷︷ ︸
≤0

.

The Jacobian of g(v) is thus a Leontieff matrix and by Theorem 5 from Gale and Nikaido (1965)
it is a P-matrix. We can then apply the main theorem of Gale and Nikaido (1965) (Theorem 1)
that states that if the Jacobian of a system of non-linear equations is a P-matrix, the system has a
unique solution in its bounded support.

B.2 Uniqueness for the general model

We provide here the analytical formula for the Jacobian of the contraction defined as:

gat (v, κ) = κ.vat + (1− κ).fa(v).

We can separate the Jacobian in three types of derivatives: ∂ga
t (v,κ)
∂va

t
, ∂g

a
t (v,κ)
∂va′

t

, ∂g
a
t (v,κ)
∂va′

t′
.

∂ga
t (v,κ)
∂va

t
= κ+ (1− κ) fa′

(
φa

N∑
n=1

ωnk
a
nsnt(v) + γa

)
︸ ︷︷ ︸

≤0

. φa︸︷︷︸
>0

.
∑N
n=1 ωnk

a
n

∂snt(v)
∂vat︸ ︷︷ ︸

≥0

∂ga
t (v,κ)
∂va′

t

= (1− κ) fa′(φa
N∑
n=1

ωnk
a
nsnt(v) + γa)︸ ︷︷ ︸
≤0

. φa︸︷︷︸
>0

.
∑N
n=1 ωnkn

∂snt(v)
∂va

′
t

1{ka′

n > 0}︸ ︷︷ ︸
≥0

∂ga
t (v,κ)
∂va′

t′
= (1− κ) fa′(φa

N∑
n=1

ωnk
a
nsnt(v) + γa)︸ ︷︷ ︸
≤0

. γa︸︷︷︸
>0

.
∑N
n=1 ωnk

a
n

∂snt(v)
∂va

′
t′

1{ka′

n > 0}︸ ︷︷ ︸
≤0
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The signs of the derivatives of the probabilities are obtained from the analytical formulas

∂snt(v)
∂va

′
t′

= ka
′
n

(va′
t′ )2 × εnt′ × 60︸ ︷︷ ︸

≥0

× βduration
n

durationn︸ ︷︷ ︸
≤0

× snt
(

(1− σ) sn,t′∑T
t̃=1 snt̃

+ σsnt′

)
1{ka′

n > 0}︸ ︷︷ ︸
≥0

if t 6= t′

∂snt(v)
∂va

′
t

= − ka
′
n

(va′
t )2 × εnt × 60︸ ︷︷ ︸

≥0

× βduration
n

durationn︸ ︷︷ ︸
≤0

× snt
(

1− (1− σ) sn,t∑T
t̃=1 snt̃

− σsnt
)
1{ka′

n > 0}︸ ︷︷ ︸
≥0

B.3 Additional results of the algorithm

We show additional numerical results about the convergence by plotting the average number of
iterations needed to converge for the possible values of κ between 0.45 and 0.95. More specifically,
we draw 10 different initial speed values from a uniform distribution over [v,v] and solve for the
speed equilibrium with different values for the tuning parameter. As expected, the number of
iterations and the time increases exponentially from κ = 0.45 onward. Furthermore, we always
converged to the same equilibrium speeds regardless of the policy environment. This shows that
the choice of setting κ = 0.5 is efficient in terms of speed of convergence.

Figure 12: Average number of iterations and convergence times (across 10 simulations).
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C Additional tables and figures

C.1 Additional results for the transportation choice model

Figure 13: Own and cross duration elasticities for car
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C.2 Additional results for the congestion technology estimates

For highways, we use 6.2 million observations consisting of hourly data from 654 roadway traffic
measuring stations for the years 2016 and 2017. The stations are located on 10 highways (A1, A10,
A12, A14, A15, A3, A4, A6a, A6b, A86) and 3 national roads (N104, N118, N315).
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Figure 14: Traffic sensors’ road coverage

Robustness analysis. We perform a sensitivity analysis to check whether the estimates of the
congestion technologies are biased due to potential endogeneity issues. The concern is that there
might be some speed shocks that also affect traffic density. Such shocks may be for example weather
conditions that may change the incentives to drive (e.g. rain) as well as the speed (e.g. the rain may
reduce visibility so drivers slow down). To check whether our estimated congestion technologies
are subject to such issue, we use hourly data on weather conditions in Paris to define an extreme
weather event and drop theses observations. We define an extreme weather event as satisfying at
least one of the following characteristics: temperature below the 5% quantile (1.39◦C) or above the
95% quantile (25.28◦C), a rain amount greater than the 95% quantile (0.46 mm/hr), snow or a
wind speed greater than the 95% quantile (20.5 km/hr). We find that the estimates are robust
to excluding up to 39.5% of the observations where am extreme weather condition was observed
within a three-hours window (see Figure 15).
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Figure 15: Robustness checks: elimination of extreme weather conditions.
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(b) City center.
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(c) Ring roads.

Next, we may be worried that road or time unobserved heterogeneity cause an endogeneity problem
for the estimation of the congestion technologies. To check this we allow congestion technologies to
vary across stations or time. More specifically, we estimate congestion technologies by subgroup
and then aggregate them to construct an average congestion technology. Since we approximate
the speed-traffic density functions by Bernstein polynomials of order seven we can only consider
subgroups with more than eight observations. The aggregate congestion technologies are displayed
in Figure 16. We see that the inclusion of the fixed effects do not change by a lot the shapes of the
congestion technologies.

Figure 16: Robustness checks: estimate technology by subgroups.
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(b) City center.
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Table 31: Changes in emissions under the different policies using Copert emission factors.

Driving Uniform Variable
restriction toll toll

∆CO -0.604 -0.996 -0.77
∆NOX -1.05 -1.16 -1.3
∆HC -0.071 -0.102 -0.088
∆PM -0.048 -0.053 -0.06
∆Eq. NOX -1.84 -2.03 -2.28
%∆CO -12.4 -20.4 -15.8
%∆NOX -11 -12.1 -13.6
%∆HC -15.2 -22.1 -19
%∆PM -10.2 -11.2 -12.7
%∆Eq. NOX -10.6 -11.7 -13.2
Note: ∆ emissions are in tons.

Table 32: Relative importance of the speed changes for the emission reductions.

Driving Uniform Variable
restriction toll toll

CO 12.6 10.1 8.98
NOX 11.6 9.9 10.3
HC 19.7 18.8 20.5
PM 8.12 6.88 7.38
Eq. NOX 10.2 8.66 9.09
Note: in %.

D Results for all day policies

[This section is preliminary.]

We look at the impacts of the stricter policies applicable during the whole day. We calibrate the
policy parameters to match the total traffic reduction, both at peak and non-peak hours. Since
4.06% of the individuals in our sample do not have an alternative to cars, we allow them to be
non-compliant to the regulation. In exchange, they pay a fee of e68. This value is inspired by the
fine for breaking the driving restriction rule applied to Paris in 2016. The value is also a proxy for
the cost of using a taxi instead of using individuals’ cars. We only allow those without alternatives
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to be non-compliant in the main analysis. However, we check the robustness of our predictions to
adding an endogenous compliance behavior. For a fine of e68, we find that the probability of being
non-compliant is very small. These all-day policies imply a larger reduction of total traffic. While
we reach a total share of individuals driving between 27.5% to 30.5% under the peak policies, we
can decrease the share of individuals driving to 21.8% under these strict policies. As a consequence,
we observe larger effects of the policies in terms of welfare loss and emissions reductions.

Modal shifts
Under the mild policies, we predict a large modal shift towards driving at non-peak hours. However,

under strict policies, we observe large modal shifts towards other transportation modes. Bicycles
and two-wheel vehicles see the largest relative increase: for instance, the share of individuals biking
doubles under the driving restriction. The variable toll implies a significantly larger substitution
to public transport than the other policies; We predict that 55.6% of the individuals use public
transport. Since the number of individuals taking public transport may affect the congestion
level in the railway transit and create disutility to users, we evaluate two robustness scenarios in
which we raise the public transportation overcrowding level by 10% and 30%. The results show
that the shares are barely affected. Given these results, we estimate the percentage of individuals
using public transport to commute to be overestimated by at most 0.75% when we do not change
overcrowding levels.29

Welfare impacts
The total welfare losses from all-day policies are considerably higher than from peak-only policies.

These results highlight the impact of closing the inter-temporal substitution channel that allowed
individuals to keep driving. These strict policies decrease the total consumer surplus by e3.6 to
e12.6 million, depending on the type of instrument used.

There are also large differences in the total revenue raised by the different policies. The highest tax
revenue is obtained under the vintage-based driving restriction. The revenue is generated by the 4%
of the population that do not have an alternative to cars. Most of them have cars older than 2005,
and thus they pay the fine. But unlike the standard driving restriction, the fin has to be paid in
any case and not only 50% of the time. The standard price instruments also generate large revenue
as the tolls reach higher values than under mild policies . Yet, even under full redistribution of
the tax revenue to the individuals, all the policies are welfare decreasing and are more costly than
the mild policies. As for the mild policies, the uniform toll is close to be a neutral policy under
redistribution.. The ranking of the five policy instruments is the same for peak-only and all-day
policies.

29Results are available upon request.
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Trip durations
All policies imply a reduction in the share of individuals with a decrease in commuting time

relative to the mild policies. These policies reach very similar speeds at peak hours but generate
higher speeds at non-peak hours. Individuals who want to drive have to pay regardless of the
hour and thus prefer to drive at peak hours. Consequently, the traffic does not move from peak-
hour towards non-peak hours. Individuals unaffected by the driving restriction do not substitute
massively towards non-peak hours to take advantage of the faster speeds. This can be explained by
the large disutility of driving at non-peak hours.

Under mild policies, the average change in travel time was almost constant across regulations.
However, under all-day policies, the differences appear to be more significant. The expected trip
duration increases between 3 minutes (under the license auction) to 4.6 minutes (under driving
restrictions). The changes can be explained by the individuals with long-distance trips, who value
the driving license the most and are the ones paying for it. This, in turn, implies that most
individuals substituting to another transport mode have shorter trips and do not incur large travel
time increases.

Emission reduction
The same ranking between policies holds both for all-day policies and the peak-only policies in

terms of emission reductions. However, there is an important difference in the magnitudes: the
strict policies lead to greater reductions in emissions for all pollutants. The reductions more than
double between peak-only policies and all-day ones.

The variable toll is again the policy associated with the greatest emissions reductions. The reductions
are between 51.2% and 56.8% depending on the pollutant. Unexpectedly, but consistent with the
results for the peak policies, the vintage restriction is inefficient at curbing pollution even though it
allows only the most modern cars to stay on the road.

Average cost of regulation
We analyze the welfare costs of the strict policies with their impact on emissions by computing

the average cost of reducing emissions by one ton. Overall, we find fairly similar costs to those of the
mild policies for the three price instruments (fixed and variable tolls and the license). The ranking
across these three policies in terms of cost-efficiency is also the same for peak and all-day policies.
However, for the standard and vintage-based driving restrictions and without redistribution of the
tax revenue, we find that costs are much higher for all-day policies than for peak-only ones. This is
because individuals who do not have alternatives to cars have to pay a large fine. When the fine
revenue is redistributed to individuals, we estimate significantly lower costs of regulations. The
average cost of regulation is 30% lower when the vintage-based policy is implemented all day, while
it is 42% lower when we consider standard driving restrictions.
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E Robustness checks

E.1 Comparison to alternative demand models

Weather controls
We use historical hourly data from OpenWeather for the city of Paris to control for a possible role

of weather on individuals’ preferences. We match the OpenWeather data to the exact departure
hour and date provided in the survey. With this information at hand, we estimate the model with
temperature quintile categories, rain categories, and snow categories dummies. The dummies are
interacted with the bike and walking alternative constants, as these modes are the ones susceptible
to be the most affected by weather shocks. Average coefficients can and VOT estimates can be
seen on tables 33 and 34. From the results, we can that the inclusion of weather controls has no
significant impact on the average duration and cost estimates, as well as almost no impact on the
VOT distribution. Thus, weather conditions do not seem to play an important role in individuals’
transportation decisions.

Unobserved heterogeneity
We consider three extensions of the benchmark specification that allow for unobserved heterogeneity

in the sensitivity to duration, cost, and the non-peak hour dummy. For all cases we estimate
a random coefficients version of the benchmark model where we assume that the unobserved
heterogeneity follows a normal distribution. Looking at the parameter estimates from table 33, we
find non-significant unobserved heterogeneity for the random coefficients model on duration and for
the one of the non-peak dummy. These results indicate that the demographic interactions that
are included in the model account for the large majority of the sensitivity heterogeneity of those
variables. VOT estimates from table 34.

Models using duration
We compare our benchmark results with those of a model using duration instead of the logarithm

of duration, as well as with a model using a third degree polynomial on duration. The VOT
estimates from table 34 indicate how the valuation of travel time by individuals is highly dependent
on the assumed functional form. Using the logarithm of duration allows for shorter trips to have
a larger disutility from additional travel. As expected, forcing all individuals to have the same
valuation of travel time regardless of how long is their trip (duration specification) considerable
reduce the average valuation of travel time. We check an alternative specification that allows for a
variable marginal disutility of time by estimating a model where individuals have preferences over
a polynomial of degree three on duration. The polynomial assumption induces the existence of
outliers in the VOT distribution but if we check the median VOT value we see it remains close to
the average VOT from our benchmark model.
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Alternative model specifications
We consider several alternative model specifications to check different main assumptions of our

model. First we consider an alternative definition of non-peak hour driving durations. Instead of
taking the average duration between the TomTom queries at 6:30 am and 9:30 am, we use only the
6:30am durations. This change has very limited effects on the average coefficients and almost no
effect on the distribution of VOT estimates. We evaluate an extension with three periods: early
non-peak hour (departure earlier than 7:00am), peak hour (departure between 7:00am and 9:00am),
and late non-peak hour (9:30 am onwards). The distribution of VOT values indicates a lower value
of travel time, with can be explained by a large increase in the sensitivity to the trip’s cost. We also
consider a model where we inverse the nest structure, i.e., we allow individuals to choose between
peak and non-peak hour for all modes and allow for correlation in the utility shocks of all the
alternatives of a same time period. The parameter estimates from table 33 show a negative nest
parameter (σ) , indicating that this nest structure is not appropriate to represent the data.

Finally, we consider two possible changes to our choice set definition. In first change we allow every
individual to drive, even those that do not have access to car. For those without a car, we input
the cot of a car with the average characteristics of those available in the sample. For the travel
times, we query the TomTom service for those trips, as with the rest of the sample. As expected,
adding a non-available alternative bias the results by making individuals less cost sensitive and
thus increasing their value of travel time. The second change we study corresponds to changing
the availability of bike to only individuals who either report having a bike or a bike-sharing pass.
While the change seems to increase the upper bud of the VOT distribution, the median of the
distribution remains close to our benchmark model.
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Table 33: Robustness checks - demand specification
Coefficients (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Log(duration) -2.26∗∗ -2.26∗∗ -1.93∗∗ -2.08∗∗ -1.92∗∗ -2.84∗∗ -2.77∗∗ -1.42∗∗ -2.14∗∗ -2.26∗∗

(0.07) (0.07) (0.24) (0.18) (0.18) (0.07) (0.06) (0.24) (0.06) (0.07)
Duration -0.75∗∗ -1.5∗∗

(0.02) (0.07)
Cost -0.51∗∗ -0.51∗∗ -0.41∗∗ -0.75∗∗ -0.41∗∗ -0.83∗∗ -1.05∗∗ -0.67∗∗ -0.76∗∗ -0.35∗∗ -0.4∗∗ -0.47∗∗

(0.02) (0.02) (0.05) (0.11) (0.05) 0.02 0.01 (0.02) (0.02) (0.03) (0.02) (0.02)
Unobserved heterogeneity -0.16 0.71∗∗ 0.1

(0.2) (0.09) (0.24)
Bicycle -3.48∗∗ -3.48∗∗ -3.48∗∗ -3.61∗∗ -3.48∗∗ -2.61∗∗ 0 -3.49∗∗ -3.4∗∗ 0.94∗∗ -3.59∗∗ -3.18∗∗

(0.08) (0.08) (0.39) (0.37) (0.39) 0.07 0 (0.08) (0.08) (0.3) (0.08) (0.08)
Public transport, peak -4.89∗∗ -4.84∗∗ -4.91∗∗ -5.27∗∗ -4.89∗∗ -0.81∗∗ -0.49∗∗ -4.85∗∗ -4.92∗∗ 0.01 -5.05∗∗ -4.82∗∗

(0.2) (0.22) (0.54) (0.54) (0.54) 0.09 0.13 (0.2) (0.2) (0.02) (0.19) (0.2)
Public transport, non-peak -5.52∗∗ -5.47∗∗ -5.55∗∗ -5.97∗∗ -5.52∗∗ -1.36∗∗ -2.96∗∗ -5.34∗∗ -5.74∗∗ 0.53∗∗ -5.72∗∗ -5.45∗∗

(0.4) (0.44) (1.22) (1.22) (1.22) 0.17 0.19 (0.4) (0.4) (0.06) (0.39) (0.4)
Motorized 2-wheel -7.35∗∗ -7.31∗∗ -7.38∗∗ -7.91∗∗ -7.36∗∗ -3.06∗∗ -1.4∗∗ -7.42∗∗ -7.3∗∗ 0.64† -7.66∗∗ -7.3∗∗

(0.23) (0.24) (0.54) (0.51) (0.54) 0.13 0.07 (0.22) (0.21) (0.36) (0.23) (0.23)
Car, peak -6.22∗∗ -6.17∗∗ -6.25∗∗ -6.75∗∗ -6.22∗∗ -2.06∗∗ -1.74∗∗ -6.19∗∗ -6.13∗∗ 0.04 -6.8∗∗ -6.16∗∗

(0.21) (0.23) (0.85) (0.85) (0.86) 0.1 0.15 (0.21) (0.21) (0.21) (0.21) (0.21)
Car, non-peak -7.29∗∗ -7.24∗∗ -7.32∗∗ -7.92∗∗ -7.29∗∗ -2.92∗∗ -3.82∗∗ -7∗∗ -7.28∗∗ -0.83∗∗ -7.91∗∗ -7.22∗∗

(0.21) (0.23) (0.68) (0.68) (0.68) 0.1 0.12 (0.21) (0.21) (0.07) (0.21) (0.21)
σ 0.8∗∗ 0.8∗∗ 0.81∗∗ 0.89∗∗ 0.8∗∗ 0.7∗∗ 0.47∗∗ 0.61∗∗ 0.56∗∗ -0.31∗∗ 0.85∗∗ 0.79∗∗

(0.06) (0.06) (0.07) (0.08) (0.07) 0.06 0.06 (0.05) (0.03) (0.1) (0.07) (0.06)
No. observations 12,975 12,975 12,975 12,975 12,975 12,975 12,975 12,975 12,975 12,975 12,975 12,975
Log-likelihood -13624 -13615 -13623 -13561 -13624 -13421 -13442 -13587 -15823 -14991 -14679 -13547
Notes: Walking is the baseline alternative. The reference categories are individuals with age < 18, the first wealth quintile and independent workers. Duration
measured in minutes. Cost in e. Column (1) shows the benchmark model. Column (2) adds weather controls. Column (3) corresponds to the benchmark
model with random coefficients in the log of duration. Column (4) corresponds to the benchmark model with random coefficients in the cost. Column (5)
corresponds to the benchmark model with random coefficients in non-peak indicator. Column (6) model with duration (in minutes). Column (7) model with
third degree polynomial of duration (in minutes). Column (8) benchmark model with alternative duration for non-peak hours. Column (9) Three period
model. Column (10) model inversing the nest structure. Column (11) car availability for everyone. Column (12) alternative definition of bike availability.
Standard-errors are computed using the delta-method.
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Table 34
Value of travel time (VOT) for the demand robustness specifications

Min Q1 Mean Median Q99 Max
log(Duration) models
Benchmark 0.44 1.35 15.96 10.29 81.2 388.87
Benchmark + weather controls 0.44 1.34 15.98 10.29 81.34 390.99
Random coefficients models
log(duration) - normal distribution 0.43 1.34 15.99 10.31 81.58 388.84
Cost - normal distribution 0.29 0.84 9.43 5.99 47.67 236.54
Dummy non-peak - normal distribution 0.44 1.35 15.96 10.28 81.24 388.77
Duration models
Duration (in min) -0.27 -0.27 5.39 5.83 13.73 15.74
Polynomial duration -3.6 -2.95 55.22 17.71 483.79 2032.89
Alternative specification
Alternative non-peak duration 0.44 1.31 15.86 10.22 81.51 387.15
3 period model 0.21 0.76 13.7 8.59 72.4 335.01
Inverse nest 0.89 2.7 21.8 15.61 110.39 587.11
Alt choice set - car 0.76 1.82 19.58 12.14 97.75 528.59
Alt choice set - bike 0.49 1.47 17.14 11.09 87.78 422.9
Note: VOT in e/hr

E.2 Sensitivity to public transport level of congestion

Table 35: Shares of transportation modes under different overcrowding levels

No policy Driving restriction Uniform toll Variable toll
Mode (1) (1) (2) (3) (1) (2) (3) (1) (2) (3)
Bicycle 2.09 2.42 2.43 2.44 2.42 2.42 2.44 2.21 2.22 2.24
Pub. Transport, peak 30.28 32.08 31.91 31.58 32.36 32.19 31.85 32.94 32.77 32.43
2 wheels 2.07 2.45 2.46 2.49 2.47 2.48 2.5 2.6 2.62 2.64
Walking 15.78 17.56 17.58 17.63 17.8 17.82 17.86 15.88 15.9 15.94
Car, peak 23 14.01 14.04 14.1 14.01 14.04 14.11 14.01 14.03 14.09
Car, non-peak 12.22 16.14 16.18 16.26 15.48 15.52 15.59 16.53 16.58 16.66
Pub. Transport, non-peak 14.56 15.34 15.39 15.5 15.47 15.53 15.64 15.82 15.88 16
Total car share 35.21 30.15 30.22 30.36 29.48 29.56 29.7 30.54 30.61 30.75
Total PT share 44.84 47.42 47.3 47.08 47.83 47.72 47.49 48.76 48.65 48.44
Notes: In km/hr. (1): No improvement. (2): 15% increase in overcrowding. (3): 30% increase in overcrowding

82



Table 36: Speeds under different overcrowding levels

No policy Driving restriction Uniform toll Variable toll
Area (1) (1) (2) (3) (1) (2) (3) (1) (2) (3)

Peak Highways 65.7 84.3 84.2 84 83.5 83.4 83.2 93.5 93.4 93.4
City center 13.7 17.3 17.2 17.1 18 17.9 17.8 19.3 19.3 19.2
Ring roads 28.4 44.1 43.9 43.4 46.4 46.2 45.6 63 62.9 62.6
Close suburb 15.8 19.4 19.4 19.3 19.6 19.6 19.5 20.5 20.4 20.4

Non-peak Highways 84.8 75.7 75.6 75.3 77.7 77.6 77.3 70.4 70.2 69.9
City center 18.4 17.8 17.7 17.6 17.9 17.9 17.8 17.7 17.6 17.5
Ring roads 45 42.3 42 41.5 42.9 42.7 42.2 38.9 38.6 38.2
Close suburb 20.2 19 19 18.9 19.2 19.2 19.1 18.7 18.6 18.6

Notes: In km/hr. (1): No improvement. (2): 15% increase in overcrowding. (3): 30% increase in overcrowding
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