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PREFACE TO SECOND EDITION

The gratifying interest shown in the present work and an ap-
parently increasing awareness of the importance of statistics in
modern scientific life has made possible a second edition at this
time. The undersigned, however, deeply regrets that the untimely
death of William F. C. Nelson in the spring of 1936 has denied him
the cooperation and the stimulating criticism of his former col-
league in emending and editing the new edition.

Although no essential changes have been made in the text of
the present edition, the opportunity has been used to correct cer-
tain errors pointed out by students and other friends, and to elab-
orate a few points where difficulties were encountered. The main
addition to the book is the introduction of a short account of the
theory of small samples and the “f-test” first introduced by “Stu-
dent.” This new material will be found in section 8 of Chapter
VIII and in Table XI.

The opportunity is taken here again to emphasize the point of
view expressed in the preface to the first edition. Statistics books
current today range from those which give an impression of the
value and use of statistics to those which present the more ad-
vanced mathematical aspects of the subject, The practical worker
in statistical material usually cannot attain a sufficient knowledge
of mathematics to make use of these advanced texts. However,
without some knowledge of mathematics and especially of the un-
derlying significance and origin of the formulas that he is using,
he is apt to fall into gross errors of interpretation. The literature
of statistics is replete with examples of the formal application of
techniques where the interpretation and significance of the results
is inaccurately, if not erroneously, stated. Only a fundamental
knowledge of the assumptions which underlie the mathematical for-
mulas can protect the worker against the pitfalls ever present in
the investigation of statistical data. The present work has striven
to interpret statistical science so far as this is possible under the
assumption that the reader is equipped only with a good knowledge
of college algebra. It is very much to be hoped that this will not
prove to be too serious a barrier to the reading of the book.

ix
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The undersigned owes a heavy debt to the many students and
friends who have helped with criticism and advice. He is especially
indebted to Dickson H. Leavens of the Cowles Commission for Re-
search in Economics, who read the entire book carefully and criti-
cally and made many helpful suggestions.

Colorado Springs, March, 1937
H. T. Davis.

PREFACE TO FIRST EDITION

In 1932 the Social Science Research Council appointed a com-
mittee! to define the place of collegiate mathematics in the social
sciences. The report of this committee urged that students of the
social sciences be prepared for the study of statistics by a six to
nine semester hour course covering logarithms, graphs, interpola-
tion, equations and forms of important curves, probability, elements
of differential and integral calculus, and curve fitting. The report
also suggested that ““illustrations from the social sciences should be
used freely, and the concepts and processes should be presented in
such a manner as to make clear their application in the social sci-
ences.” The committee concluded that statistics courses might thus
be utilized to carry the student much farther in the knowledge of
statistical methods, and their possibilities and limitations.

In the development of this book, the authors have had these
recommendations in mind, and have prepared a text suitable for a
gix semester hour course to follow such a course in mathematical
analysis as that urged by the committee. While fully indorsing the
recommendations of the committee, the authors realize that the in-
structor will in many cases be faced by the necessity of teaching
classes lacking the desired preparation in mathematics. Therefore,
this book has been designed for use in several ways. Algebraic pro-
cesses are given in full. While the proofs do not presuppose a
knowledge of the calculus, many of them are necessarily based on
its principles. Therefore, for classes which have had a survey

1This commitiee was composed of H. R. Tolley of the University of Cali-
fornia {chairman}, F. L. Griffin of Reed College, Holbrook Working of Leland
Stanford Univergity, Charles H. Titus of the University of California at Los
Angeles, and Mordecai Ezekiel of the Federal Farm Board. The report of the
committee was read at a joint meeting of the Econometric Society and Sec-
tions A and K of the American Association for the Advancement of Science at
Syracuse, New York, June 22, 1932, and published in Econometrica, Vol. 1,
(1933), pages 197-204.
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course in mathematics, or a course in calculus, the instructor may
ensily associate the proofs with the corresponding calculus proofs.

For those who have had preliminary {raining in college alge-
bra, all parts of this text may be used, but it will probably be found
necessary, in a six semester hour course, to reduce somewhat the
amount of material assigned by the omission of Chapter XII,
the application of Sheppard’s corrections to frequency distribution
(scc. 8, Chapter III), the proof of the relative magnitude of aver-
ages (sec. 13, Chapter III), harmonic analysis (sec. 6, Chapter V),
the derivation of the skew-normal probability curve from a bino-
mial distribution (sec. 5, Chapter VII), the derivation of the prob-
able error of the mean (sec. 5, Chapter VIII), the theory of the
logistic curve (sec. 9, Chapter IX), and non-linear regression ( sec.
8, Chapter X). For classes which have had no college mathematics
whatever, the text may be used as an introduction to elementary
statistics through the omission of Chapters IX and XI, as well as
the parts indicated above for those with preliminary training in
college algebra.

The illustrative materials and problems have been taken chief-
ly from data of economic significance. This lends, we believe, an
atmosphere of coherence to the development such as is not attained
when materials from a variety of disparate and unrelated disci-
plines are introduced in a capricious succession. The very pro-
nounced drift in our day to a more fully quantitative science of
cconomics would also seem to encourage such a concentration. In
addition, the authors’ connection with the Cowles Commission for
Research in Economics afforded opportunity for access to a variety
of economic materials and original research.

It need hardly be remarked, of course, that most of statistical
methodology is the same, whether it is being applied to materials
from economics or education or physies or astronomy. Thus, even
though a student of the present volume should find his major in-
terest in a field other than economics, by a study of this text con-
taining economic applications he will obtain a training in statistical
methodology adequate for his own field.

Some apology is perhaps necessary for the omission of a bib-
liography. Literature on the subject of probability and statistics
has increased with bewildering rapidity in the last few years, and
to give an adequate indication of this progress would outrun the
scope and purpose of this volume. On the other hand, a condensed
selection would do injustice by the inevitable omission of many
fine works. The reader will find an extensive bibliography to 1924
in the Handbook of Mathematical Statistics, Boston, 1924, edited
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by H. L. Rietz, and a more recent one in Studies in the History of
Statistical Methods, Baltimore, 1929, by Helen M. Walker. Con-
temporary developments are covered in such surveys as those of J.
0. Irwin in the Journal of the Royel Statistical Sociefy, Vol. 94
(1931}, Vol. 95 (1932), Vol. 97 (1934) ; W. A, Shewhart and G.
Darmois in Economelrica, Vol. 1T (1933) and 11 (1934) ; and Paul
R. Rider in the Journal of the American Statistical Association,
Vol. XXX, No. 189 (March, 1935). Pertinent references, however,
are carried in footnotes throughout the text.

The authors are under a heavy debt of gratitude to the Cowles
Commission for Research in Economics and to its Dircctor, Alfred
Cowles 8rd, for having made available to them so much of the time,
equipment, and conclusions, of the laboratory of the Commission.
To Anne M. Lescisin and Forrest M. Danson, statisticians of the
Commission, we are indebted for a multitude of helpful suggestions.
Professor Charles F. Roos of Colorado College and the Cowles Com-
mission kindly read through the manuscript and many important
additions and changes are due to his criticisms. Substantial assis-
tance has also been rendered throughout by lhe statistical labora-
tory of Indiana University, and the authors are indebted especially
to BEdward B. Morris, Richard E. Thompson, Harry . Taylor and
Mabel X. Inco. Responsibility for any errors which may appear 18
assumed by the authors alone.

July, 1935
HaroLp T. DavIs,

W. I. C. NELSON.



CHAPTER 1

PRELIMINARY ANALYSIS OF STATISTICAL DATA

1. Introduction. The value of any particular course of study
is enhanced if the student comprehends its scope and purpose and
the relationship it bears to the rest of his training. Unless his en-
deavors are thus integrated into some significant pattern, each
course becomes merely an isolated and irrelevant episode in a gen-
eral confusion, and his efforts may be rendered futile because they
lack direction. In this book it is assumed that the student’s major
interest is economics, What part does such a book as this play in
advancing him towards his ultimate objective, which is the mas-
tery of the processes and results of that science?

This volume seeks to set forth the mathematical theory of
clementary statistics and to illustrate elementary statistical meth-
odology through applications to data of economic significance. One
is obviously concerned, therefore, with mathematics, statistics, and
cconomics. The juxtaposition of these three disciplines is entirely
natural. W. S. Jevons pointed out in 1871 (Theory of Political
Ifconomy, 1st. ed.) that, “It is clear that Economics, if it is to be
a science at all, must be a mathematical one.” Economics, he con-
tended, must necessarily be mathematical, simply because it treats
of quantities, and when the elements with which one deals are sus-
ceptible of being greater or smaller, their laws and relationships
must inevitably be mathematical. In.a brilliant discussion,® Joseph
A. Schumpeter has amplified and reinforced Jevons’ thesis.

“There is, however, one sense in which economics is the most
quantitative, not only of ‘social’ or ‘moral’ sciences, but of all sci-
ences, physies not excluded. For mass, velocity, current, and the
like, can undoubtedly be measured, but in order to do so we must
always invent a distinet process of measurement. This must be
done before we can deal with these phenomena numerically. Some
of the most fundamental economic facts, on the contrary, already
present themselves to our observation as quantities made numeri-
cal by life itself. They carry meaning only by virtue of their nu-

1#The Common Sense of Econometrics,” Econometrica, Vol. T (1933), pp.
5.12.

—1—



2 ELEMENTS OF STATISTICS

merical character. There would be movement even if we were un-
able to turn it into measurable quantity, but there canuot be prices
independent of the numerical expression of every one of them, and
of definite numerical relations among all of them. Econometrics
is nothing but the explicit recognition of this rather obvious fact,
and the attempt to face the consequences of it.”

2. The Origins of Statisties. It has been only within compara-
tively recent times that the human race has realized the full im-
portance of collecting and recording data relating to the phenomena
of the physical and social universes. For many years the astrono-
mers accumulated records of the motions of the heavenly bodies,
and were thus enabled to make predictions about eclipses and to
foretell the positions of the stars. The three laws relating to the
motion of the planets, on which Sir Isaac Newton founded his
theory of gravitation, were discovered by Johannes Kepler after a
long study of the data collected by Tycho Brahe (1546-1601) . This
scientific method was adopted by men in other fields of science
under the influence of Sir Francis Bacon (1561-1626), who asserted
that a knowledge of nature could be obtained only by means of data
collected from a study of the forms of nature. When it was observed
that this method of enlarging knowledge was surprisingly fruitful
in the physical sciences, men in political, social, and economic fields
began to adopt a similar type of approach.

But, with the accumulation of data, need was soon felt for
better methods of analyzing and interpreting the figures that had
been collected. From this need the modern theory of statistics has
gradually evolved over a period of more than a century.

Many definitions of the word statistics have been given, for
example, the well known statement of G. U. Yule in his Introduction
to the Theory of Statistics': “By statistics we mean quantitative
data affected to a marked extent by a multiplicity of causes. By
statistical methods we mean methods specially adapted to the eluci-
dation of quantitative data affected by a multiplicity of causes. By
theory of statistics we mean the exposition of statistical method.”
Perhaps a good summary of the contents of the subject to be de-
veloped in the following pages may be made in the definition: “the
theory of statistics comprises an analysis and interpretation of
systematic collections of numbers relating to the enumeration of
great classes.”

The modern theory of statistics may be said to have been
founded by the Belgian astronomer and statistician, L. A. J. Quete-

19th ed., London, 1929,
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ot (1796-1874). Before his time, statistical study had been car-
rird on under the name of “political arithmetic” by Captain John
Graunt of London (1620-1674), Sir William Petty (1623-1687),
and J. P. Siissmilch (1707-1767), a Prussian clergyman. Quetelet
advanced the theory that there existed an “average man’ whose ac-
tions and ideas would “correspond to the average results obtained
lor society.” All other men would diverge in greater or less degree
rom this theoretical average, and these variations could be treated
by the method of errors in the theory of probability. Quetelet also
rmphasized the importance of the “law of large numbers” (see
soction 7, Chapter VI), which had been stated by Jakob Bernoulli
(1654-1705) in his great work, Azs Conjectandt, published eight
vears after his death, and which had also been the subject of a
paper by S. Poisson (1781-1840).

It will later be seen that the theory of statisties is highly in-
dehiled to the older theory of probability. This subject in its early
history was largely an attempt to analyze the hazards of players
i grames of chance. G. Cardano (1501-1576), who was at the same
time a mathematical genius and a gambler, wrote a trcatise on
pames, in which he set forth rules by means of which one could
nrotect himself against cheating. These rules were based upon the
solution of problems now included in the theory of probabilily.
After the real foundations of this subject had been laid in the work
of JJakob Bernoulli and that of his nephew Danicl Bernoulli (1700-
t742), who proposed the theory of “moral expectation” (sec section
'+, Chapter VI), Pierre Simon de Laplace (1749-1827) published in
1312 his great work on probability. It has been said that the theory
ol probability owes more to the work of Laplace than to that of any
other man. Professor F. Y. Edgeworth, in the Encyclopeedia Bri-
tunnica (13th ed.),remarks that, “as a comprehensive and masterly
treatment of the subject as a whole, in its philosophical as well as
mathematical character, there is nothing similar or second to La-
nlaee’s Théorie analytique des probabilités.” The book is unfortun-
ately very difficult to read, one reason being that the mathematieal
treatment is made to depend upon the theory of generatrix fune-
tions, a form of mathematical analysis now merged with what is
¢nlled the theory of the Laplace transformation.

To enumerate all who have contributed to the subject matter
of the theory of chance would be to record a majority of the promi-
nent mathematical names of the last century. A. de Moivre (1667-
1754), L. Euler (1707-1783), J. L. Lagrange (1736-1813), G. Chry-
wtal (1851-1911), P. L. Tchebycheff (1821-1894), T. Bayes (d.
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1761), I. Todhunter (1820-1884), K. F. Gauss (1777-1855}, A. De
Morgan (1806-1871), W. Lexis (1837-1914), H. Westergaard (b.
1853), C. Charlier (1862-1934), H. Poincaré (1854-1912), and E.
Czuber (1851-1925), are particularly worthy of note?

Upon the foundations laid by these men the theory of statistics
was gradually constructed. In Germany, G. F. Knapp (1842-1926)
and W. Lexis (1837-1914) made an exhaustive study of the sla-
tistics of mortality. Sir Franecis Galton (1822-1911) was the pioneer
for the epoch-making work of Karl Pearzon (1857-1936) in the field
of biometry., “The whole problem of evolution,” to quote Pearson,
“is a problem of vital statistics, --—a problem of longevity, of fer-
tility, of health, and of disease, and it is as impossible for the evo-
lutionist to proceed without statistics as it would be for the Regis-
trar-General to discuss the national mortality without an enumecra-
tion of the population, a classification of deaths, and a knowledge
of statistical theory.”

3. Statistics in Economics.? Statistics made its effective intru-
sion into the domain of economics rather late, though its primitive
beginnings date from Sir William Petty’s Political Arithmetic pub-
lished in 1690. The fact that the older classical treatises on econom-
ics were comparatively destitute of statistical materials was the
result of a compound of factors. The raw data were often scanty
and occasionally contradictory. The dominance of the deductive
method led to disinterest in the data for inductive approach, even
when lip-service was paid to the value of “statistical verification.”
Also, there probably was some disposition (to quote Wagemann®)
“to conceive (economic) premises in a complete vacuum . . . . to
avoid the rude shocks which await them in the world of facts....to
shrink in terror from anything so rude and coarse as mere figures.”
It is difficult to assess the importance of these different considera-
tions. The existence of a variety of statistical compilations and at
least the beginnings of statistical technique in such lines as index
numbers and harmonic analysis in the early nineteenth century

1For an extended account of the early history of probability, one should
consult I. Todhunter, A History of the Mathematical Theary of Probability
From the Time of Pascal to That of Laplace, Cambridge, 186G5. For more re-
cent developments, see Helen Walker, Studies in the History of Statistical
Method, Baltimore, 1929,

2¢Qtatistics and Economic Theory”, by Warren M. Persons, in the Review
of Economic Statistics, Vol. VIT (1925}, pp. 179-197, and Wesley C. Mitchell’s
Business Cycles, New York 1928, pp. 189-260, are comprehensive surveys of
this subjeet, from which much of the material in this zection is derived.

2 Economie Rhythm, New York, 1930, p. 16.
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should serve to minimize emphasis on the scarcity of materials
and dearth of methodology.

On the other hand, it is not difficult to adduce verbal evidence
of the place deductive writers allowed statistical evidence. J. S.
Mill, for example, admitted the necessity of verification for con-
clusions deductively reached, indeed, “in some cases instead of de-
ducing our conclusions from reasoning, and verifying them by ob-
servation, we begin by obtaining them provisionally from specific
experience, and afterwards connect them with the principles of
human nature by a priori reasoning.” By 1871, W. S. Jevons had
put the modern position forcibly. “The deductive science of economy
must be verified and rendered useful by the purely inductive science
of gtatistics. Theory must be invested with the reality and life of
fact. Political economy might gradually be erected into an exact
science, if only commercial statistics were far more complete and
accurate than they are at present, so that the formulas could be en-
dowed with exact meaning by the aid of numerical data.” Most of
any lingering hostility which some economists had borne to statis-
tics had, by the end of the last century, been almost completely dis-
sipated. By 1907 Alfred Marshall could write, “Disputes as to
method have ceased. Qualitative analysis has done the greater part
of its work . . ... that is to say, there is general agreement as to
the characters and durations of the changes which various economiec
forces tend to produce. Much less progress has been made towards
the quantitative determination of the relative strength of different
economic forees. That higher and more difficult task must wait
upon the slow growth of thorough realistic statistics.” In the same
year Pareto wrote, “The progress of political economy in the future
will depend in great part upon the investigation of empirical laws,
derived from statistics, which will then be compared with known
theoretical laws, or will suggest derivation from them of new laws.”

Notwithstanding the fact that economists have never been
uniformly unfavorable to the introduction of statistics into their
science, and in the last generation have been notably friendly to
the statistical approach, in running over the hames of those who
have contributed most to statistical theory it is not till Edgeworth
is reached that an economist can be listed among those who have
vitally forwarded the solution of statistical problems.

Since about 1890 two factors have combined to work a funda-
mental change in the position of statistics in economics. “The
important developments of statistical methods—of probability,
sampling, and curve-fitting; simple and partial correlation; period-
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icities and periodogram analysis; and index numbers—have oc-
curred since the eighteen-eighties.”* The improvement of statisti-
cal methods has coincided closely with the enlargement of statistical
materials. The International Institute of Statistics was founded in
1885, the Census of Manufactures for the United States was greatly
expanded in 1890, in 1902 the Census Bureau was made a perma-
nent office of the government, and the first adequate investigation
of American prices, a Senate Report, was issued in 1893. An ex-
pansion of data took place through those years which was not
equalled till the time of the World War, which, for a variety of
reasons, occasioned the publication of a wealth of fresh statistical
information.

This happy conjunction of improved methods and expanded
data about the close of the last century marks the real inception of
statistics in economics. :

For at least a hundred years, then, mathematics and statistics
have occupied some place in economics. It is hardly pure coincidence
that “most—and if we exclude historians, all—of those men whom
we are justified in calling great economists invariably display a
remarkably mathematical turn of mind, even when they arc entire-
ly ignorant of anything bevond the quantitative technique at the
command of a school-boy; Quesnay, Ricardo, Béhm-Bawerk, are
ingtances in point.” 2

The foundation of the Econometric Scciety in December 1930
was an explicit recognition of this century-old liaison among mathe-
matics, statistics, and economies, The purpose of the Society, as
officially defined, is “the advancement of economic theory in its re-
lation to statistics and mathematics...... to promote studies that
aim at a unification of the theoretical-quantitative and the empiri-
cal-quantitative approach to economic problems.” The aim of econ-
ometrics is the formulation of a larger, more precise, and more
realistic body of economie truth, Mathematics proves itself a use-
ful agent in defining and refining economic concepts, and in carry-
ing out involved processes of reasoning. It is an indispensable in-
strument of research. Statistics reduces general ideas to numerical
conclusions, validates or destroys a priori notions, and often ad-
duces unexpected conclusions which provoke fresh theoretical for-
mulations,

In the econometric program, statistics has already played, and
must continue to play, a large part. It is easily possible to envisage

1Persons, loc. cit., p. 188.
28chumpeter, loe. ¢it,, p. 6.
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a “Statistical Theory of Econometrics.,” Such a study would be an
exposition of economic theory in the measure that this theory has
been subjected to statistical treatment. A glance at ahy text on
economics would furnish a tentative outline. On Production, one
might start with such studies as Carl Snyder’s,’ 8. 8. Kuznets’?
and A. F. Burns’.? The literature of Cost Curves would be surveyed.
Value and Price raise a host of statistical problems, chief of which
is the measurement of Marginal Utility, as I. Fisher,* R. Frisch,’
and F.V.Waugh,*® for example, have attempted it. The mass of pure-
ly mathematical treatment of the problem would, of course, be out-
side the scope of a statistical study. Under Value and Price would be
treated the literature of Demand Curves,” the methods used in their
derivation, the conclusions reached, and the implications that rise
from measurement of elasticities of demand. Money and Credit are
instinct with statistics. The equation of exchange, embracing the
work of I. Fisher® and others, would fall here. Prices, their deter-
mination, their fluctuations as measured by index numbers, the
effects of these fluctuations on the level of real and dollar national
income and their distribution, would all be encompassed. Under
International Trade one would be concerned with such problems as
the effect of production on prices as it has been treated statisti-
cally, for example, in H. Schultz’s Statistical Laws of Demand and
Supply.® Under Distribution appear studies of the type of Vilfredo
Pareto’s,®® W. 1. King’s"* and A, L. Bowley's,"? with their apprais-
als of statistical formulations of income distribution. Interest
raises further problems of the sort that are treated in I. Fisher's

1 Business Cycles and Business Measurements, New York, 1927.
2 Secular Movemenis in Production and Prices, New York, 1930,
3 Production Trends in the United States Since 1870, New York, 1934.

tYA Btatistieal Method for Measuring Marginal Utility and Testing the
Justice of a Progressive Income Tax,” in Economic FEssays Contributed in
Honor of John Bates Clarlk, ed. by Jacob H. Hollander, New York, 1927.
19325New Methods of Measuring Muarginal Utility, Tiibingen, J. C. B. Mohr,

8 “The Marginal Utility of Money in the United States,” Econometrica,
Vol. IIT (1935).

7 See the bibliography “Price Analysis”, compiled by Louise O. Bercaw
under the direction of Mary G. Lacy, Econometrica, Vol. 11 (1934), pp. 399-421.

8 The Purchasing Power of Money, New York, 1913.

2 Chicago, 1928,

10 Manuel d’économie politigue (2nd edition), Paris, 1927, pp. 384 fT.

11 The National Income and its Purchasing Power, New York, 1930.

12¢The Action of Economic Forces in Producing Frequency Distributions
of Income, Prices, and Other Phenomena: A Suggestion for Study,” Eecono-
meitrica, Vol. I, 1933,



8 ELEMENTS OF STATISTICS

Theory of Interest* These topics illustrate, but naturally do not
define, the scope of such a work. Of course, a thorough evaluation
of the historic work of W. 8. Jevons,? V. Pareto,? H. L. Moore,* and
others, would be involved, not to mention some appraisal of the
current quantitative-theoretical contributions associated with t{he
names of C. F. Roos,* J. M. Keynes, G. F. Warren and F. A.
Pearson,® Luigi Amoroso,” L. H. Bean,” Mordecai Ezekiel,” Jakob
Marschak,” A. C. Pigou,” Hans Staehle,” J. Tinbergen,” Felice
Vinei,” E. J. Working,” and others, including those previously
mentioned. Such a “Statistical Theory of Econometrics” would
not be merely economic statistics, and certainly not statistical
methodology, but an exposition of economic theory as that the-
ory had becn developed, confirmed, challenged, or stultified, by
statistical evidence or processes. The topics treated would be, for
example, The Derivation of Demand Curves, The Implications of
Elasticity, The Equation of Exchange, The Theory of Prices, The
Measurement of Utility, The Effects of Protection, The Distribu-
tion of Income. Ii one compares these titles with those of this vol-
ume, Elementary Curve Fitting, Methods of Averaging, Index Num-
bers, Frequency Distributions, Elements of Correlation, something
of the distinction between economic statistics and econometrics will
be clear to him.

It does not require a violent effort of the imagination to see
how statistical methods are indispensable tools in the more precise
measurement and adequate interpretation of economic fact, and
thus vitally forward the development of economic truth. Statisti-
cal technique bears something of the relation to econometrics that
a machine tool does to an automobile. The sccond cannot be pro-
duced without the first. But the first derives its whole meaning
from the second. It is possible to conceive of a mechanic’s becoming
so entranced with the beautiful and involved precision of his tool
that he loved to manipulate it for its own sake, rather than to
make automobiles. Statisticians are not immune from such temp-
tation. Tt is important, therefore, while acquiring a mastery of
statistical methodology, that one should alwavs have his mind on

1 New York, 1930,

?See Appendix 1.

te.g., Generating Economic Cyeles, New York, 1923, and Economic Cycles,
Their Law and Couse, New York, 1914,

sDynamic Economics, Bloomington, Indiana, 1934.

Se.g., A Treatise on Money, New York, 1930.

86Prjces, New York, 1933.

TSee “Price Analysis,” loc. cit., for references.



PRELIMINARY ANALYSIS OF STATISTICAL DATA 9

his ultimate groal. Thus he can see the progress and direction of
his efforts and probably arrive at his destination more easily and
more quickly, because he knows where and why he is traveling,

In the effort to integrate mathematics and statistics with eco-
nomics, the outstanding figures have been noted chiefly as mathe-
maticians rather than as statisticians. If one may be allowed a
rather crude distinetion, it may be said that mathematical oco-
nomics is concerned with quantities, and statistical cconomics with
number. While, at first blush, it may seem odd to say thal mathe-
matics does not necessarily deal with numbers, en a moment’s re-
flection one sees that this is true. It is said, and proved, that if one
side of a plane triangle ix greater than another, the angle opposite
the greater side is greater than the angle opposite the lesser side.
Here, in ordinary mathematics, is the expression of an inmportant
quantilative relationship made without any use of numbers.

Every branch of learning has its particular heroes, men who
either founded their art or science, or whose genius so advanced
and enriched it that they have earned a peculiar measure of ven-
eration from all who followed them. Sir Isaac Newton (1642-1727)
and James Clerk Maxwell (1831-1879) in physics, Johannes Kepler
{(1571-1630) and Pierre Simon de Laplace (1749-1827) in asiron-
omy, Gregor Johann Mendel (1822-1884) and Charles Robert Dar-
win (1808-1882) in biclogy, Touis Pasteur (1822-1895) and Robert
Koch (1843-1910) in bacteriology, would come within such a cate-
gory. When we turn to econometrics, probably most of those fa-
miliar with the fleld would agree to list as its particular parasZons
A. A. Cournot, W. 8. Jevons, M. K. L. Walras, V. Pareto, and F. Y.
Edgeworth.?

4. The Scope of Statistical Science. The importance of a
knowledge of statistics in any field of applied science is shown by
the discoveries that have been made from an analysis of cmpirical
data, that is to say, data derived from experience. One of the im-
portant achievements of the prescnt century in astronomy, for ex-
ample, has been the statistical analysis of stellar velocities and
the discovery by J. C. Kapteyn (1851-1922) thai there exist great
streams of stars in our galaxy. These early researches have heen
greatly amplified and exfended by modern astronomical statisti-

Tt would seem appropriate, therefore, in a book to be studied by those who
aspire to become econometricians, to pive seme biographical notice, however
brief, of the men who first or most successfully turned the powerful appara-
tus of mathematics toward the solution of economie problems. 'Thig is at-
tempted in Appendix I,
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cians. The modern theory of the structure of the atom is highly
indebted to the discussion by James Clerk Maxwell, an eminent
English physicist, of the motion of a gas as a problem in dynamical
statistics.

Modern biology, in particular as it is concerned with the sub-
ject of genetics, owes much to the theory of statistics as developed
and applied in Biometrike, a scientific journal founded in England
in 1901. Life insurance, as well as other forms of insurance, are
familiar examples of the exact calculations that can be made when
data associated with sufficiently large populations are collected and
analyzed. It is of interest to remark that even the vagaries of such
a capricious phenomenon as the weather do not lie outside the
range of statistical methods.?

5. The Object of the Mathemuotical Theory of Statistics. It
should be clearly understood by the student of statistics at the out-
set that there are really two points of view on the subject. On the
one hand, the mathematical theory aims to set up an ideal model
which will serve as a guide to the applied worker; on the other
hand, the application of statistics calls for the actual manipulation
of empirical or experimental data which are never exact, and often
do not conform closely to the mathematical ideal. In these cases
the judgment of the statistician plays an important réle and an
uninformed use of mathematical formulas may lead to serious
error.

The aim of this book is to present the first point of view.
Grave error often results from a lack of knowledge of the assump-
tions that underlie the mathematical formulas. Moreover, one's
judgment in applied work is greatly aided by an appreciation of
the limits of the mathematical model. All series of statistical fre-
quencies are not normal, and yet many of the formulas used in
practice are derived on the assumption that such normal frequen-
cies are being discussed.

1t is of real importance, therefore, that the student of statis-
tics should review thoughtfully the mathematical foundations upon
which the theory rests. A knowledge of the differential and inte-
gral calculus is indispensable if one wishes to acgquire a thorecugh
mastery of mathematical statistics and to appreciate the work of
modern investigators. The elements of the theory, however, can

1For an instructive discussion of thiz problem consuitﬁ- “Solar Radiatioﬂ
and Weather Forecasting” by C. F. Marvin and H. H. Kimball, Journal of the
Franklin Institute, Vol. 202 (1926), pp. 273-306.
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be grasped with a mathematical background of algebra, including
especially logarithms,! the binomial theorem, a few types of series,
and the elements of graphing, It is assumed that the student has a
preliminary knowledge of these topies, which will be partially re-
viewed as need for them appears in the development of the subject.

6. The Collection of Statistical Data. No formal rules can be
set down for the collection of statistical data, since the methods
for obtaining facts about any field of knowledge depend almost
wholly upon the problem that is being studied. Thus, if one is in-
vestigating the vital statistics of a community, he must turn to
census reports and medical surveys; if he is studying a problem
involving a city’s commercial activities, he must rely upon reports
furnished by impartial companies whose business it is to make
such surveys.

In general, only two criteria need be applied to the data which
one proposes to analyze. The data must be derived from a trust-
worthy source and they must be sufficiently comprehensive to give
an accurate picture of the situation being studied.

The second criterion might be illustrated by means of an ex-
ample. Suppose that the council of some city wishes to study the
traffic problem at a busy street intersection. Would it be sufficient
to employ a man to count the number of vehicles passing the cor-
ner during a single day? It is obvious that this would not supply
trustworthy information, since the traffic varies with the seasons,
with the days of the week, and with the hours of the day. But it
is also clear that it would not be necessary to employ a man to
count the number of vehicles for every hour of the day, every day,
throughout an entire year. Semples taken judiciously at certain
hours, and upon certain days, would be entirely adequate to repre-
sent the traffic population of the intersection.

7. Sources of Statistical Data. The collection of data thus fur-
nishes a problem of its own. It will not be further treated in this
book. It may be useful, however, to know a few general sources of
relatively reliable economic data, and these are here enumerated,
together with some slight indication of lines in which each is par-
ticularly helpful: 2

1 For the convenience of students, Appendix 1I, pages 343-358 gives a thor-
ough discussion of logarithms.

2 The student should consult Sowurce-Book of Statistiea! Data (edition of
1923) prepared by the New York University Bureau of Business Research,
published by Prentice-Hall, New York, for an excellent summary of economic
source materials,
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Bradstreet’s (weekly), New York, prices and business.

Dun’s Review (weekly), New York, prices and business.*

Commercial and Financial Chronicle (weekly), New York, secur-
ity quotations and an impressive mass of miscellaneous cur-
rent statistics.

Wall Street Journal (daily), New York, security prices, corpora-
tion reports.

Journal of Commerce (daily), New York, or New York Commer-
cigl (daily), current banking, investment and business statis-
tics, prices.

Survey of Current Business (monthly) and Annual Supplement,
Department of Commerce, Washington, D. C., production,
prices, trade, finance, transportation.

Monthly Summary of Foreign Commerce of the U. S. Depariment
of Commerce, Washington, D, C., imports and exports.

Federal Reserve Dulletin (monthly), Washington, D. C., Reserve
and member bank statistics, production, prices.

Annual Report of the Federal Reserve Board, Washington, D. C.,
currency and banking statisties.

Monthly Review of Business Conditions (Each of the twelve Fed-
eral Reserve Banks publishes a review of conditions in its
district. Banking and business, in local districts).

Weather Crops and Markets (weekly), Department of Agriculture,
Washington, D. C.

Monthly Labor Eeview, Bureau of Labor Statistics, Washington,
D. C., commodity prices.

The Industrial Bulletin (monthly), Industrial Commission of State
of New York, Albany, N. Y., employment and wages.

Information Bulleting, Awmerican Railway Association, Washing-
ton, D. C., car loadings, weekly.

Interstate Commerce Commission :
(1) Statistics of Railways in U. S. (annual),
(2) Monthly Bulletins on Railway Operating FExpenses and
Traffic Statistics,
(3) Monthly Reports on Large Telephone Companies,

Federal Trade Commission, reports on various industries.

U. S. Census Publications:
(1) Decennial Census, A treasury of information about the
people of the country and American possessions.

*Tiun’s Review and Bradstreet’s weekly have recently been combined.
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(2) Five Year Census of Manufactures, Value added by
manufacture, etc.
(8) Special Bulletins (e.g., Oils, Fats, and Greases).

Agricultural Year Book, Department of Agriculture, Washington,
D. C., wheat, corn, cotton, production, acreage, yield, prices,
ete,

Bureau of Mines, Department of Interior, various bulletins on
mineral and metal products, e.g., Monthly Refinery Statis-
tics {petroleum).

Geological Survey, Department of Interior, various bulletins on
minerals, e.g., Weekly Report on Coal Production, and Sta-
tistics of Crude Petrolewm (monthly), Washington, D. C.

Statistical Abstract of the U. S. (annual), Department of Com-
merce, Washington, D. C., population, production, prices, bank-
ing, etc., etc.

Trade Papers (In each trade or industry there is a leading trade
journal, such as Iron Age, Qil, Paint, and Drug Reporter, En-
gineering and Mining Journal, ete.).

Standard Statistics Statistical Bulletin and Bese Book, published
by Standard Statistics Co., New York. Production, prices, bank-
ing, investment; both raw data and data treated for secular
trend, seasonal variation, ete. Indexes of stock prices by in-
dustries. An intelligent and valuable collection.

Review of Economic Statistics (quarterly to 1931, monthly to
March, 1935, quarterly thereafter), published by Department
of Economics, Harvard University, Cambridge, Massachusetts.
Indexes of general business conditions, manufactures, ete.

Annalist (weekly), published by the New York Times Co., weekly
business and commodity price, daily stock price indexes, pro-
duction, banking, etc.

Monthly Bulletin of Statistics, League of Nations, Geneva, Switzer-
land. General production indices, indices for separate indus-
tries, commerce and transportation, exports, imports, ghip-
ping, prices, gold reserves, interest rates, exchange rates, un-
employment, etc., for all important countries in the world.

Statistical Year Book of League of Notions (annual), Geneva,
Switzerland, cumulates and extends materials covered in the
Monthly Bulletin of Statistics.

New York Stock Exchange Bulletin (monthly), stock values by
industries, bond prices (foreign, domestic, and by indus-
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tries), volume of trading, Stock Exchange borrowings, se-
curity offerings, loan rates, volume of short sales, ete.

For the study of any particular industry, valuable data may
sometimes be secured from its Code Authority, National Recovery
Administration, Washington,

8. The Classification of Statistical Data. The data with which
one works in practical problems in statistics may usually be classi-
fied under two types:

1. Data distributed with respect to some unit of time,

II. Data distributed with respect to some physical characteris-
tic.

The first class is conveniently referred to as a time series, and
includes such items as daily figures on call loan rates, weekly to-
tals of freight car loadings, monthly totals of pig iron produc-
tion, national income by years, all series, in fact, which are ordered
with respect to time. Most economic statistics are of this type.

The second class 18 known as a frequency distribution, where
data are distributed according to eclass units which are suggested
by the character of the subject under scrutiny. This type includes
such situations as the distribution of a large number of bonds with
regard to the coupon figure, or date of maturity, etc., the distribu-
tion of wheat farms according to yield per acre, the distribution
of wage earners with respect to weekly wages received, and so
forth.

It will be observed at once that statistical distributions such
as those just mentioned can be classified under two heads. The
first of these, which will be designated by the term homograde
series, includes distributions in which all the individuals associated
with a given class possess the same characteristic in the same de-
gree, For example, in the series formed by recording the semi-
annual coupon payments of a large number of industrial bonds,
each item will generally fall into one of the classes: $20.00, $22.50,
$25.00, $27.50, $30.00, and so forth. Though there might be, there
generally are not any intermediate degrees of classification such
as $20.03, or $31.531%5 but, rather, definite jumps, as from $20.00
to $22.50. This condition is not true, however, of the second type
of distribution, which is called a heterograde series. In this
second type of distribution, the individuals associated with a given
class do not possess the same characteristic in the same degree.
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An example is found in the classification of wage-earners by in-
come. When it is said that 100 workers have annual incomes of
$1200, it is not meant that every individual draws total wages of
exactly $1200, but rather that all, in varying degrees, are between
the limiting values of $1150 and $1250. The difference between
homograde and heterograde series may be explained by saying that
one is a discrete, while the other is a continuous, distribution.?

9. Frequency Distributions. Leaving the subject of time se-
ries for later consideration, at this point the analysis that is to be
applied to frequency distributions may be developed.

When some object amenable to statistical study has been meas-
ured according to some fundamental characteristic, the crude data
for a frequency distribution are obtained. In order to make the
analysis concrete, consider the following table of 4-6 months prime
commercial paper rates, monthly, from January 1922 {o Decem-
ber 1931 :

k
Month | 1922 | 1923 | 1924 | 1925 1926 | 1927 | 1928 | 1929 | 1930
I | |
Jan. . 4.88 4.63 ‘ 4.88 3.63 4.31 4,18 2.88 5.50 4.85
Feb. 4.88 4.69 ’ 4.78 3.65 4,19 3.88 4.00 5.56 4.63
Mar. 4.78 5.00 i 4.59 3.94 428 4.00 4.15 5.69 4.19
Apr. 4.60 513 i 4.63 3.95 4,19 4.09 4.40 5.90 3.88
May 4,25 513 1 4238 3.88 4.00 4.132 4.55 6.00 3.72
June 4.05 4 .88 1 3.91 ¢ 3.88 3.88 4,18 4.70 6.00 3.50
July 3.94 494 | 3.53 3.93 2.97 4.06 518 6.00 3.13
Aug. 3.91 5.03 i 3.28 4.00 4.25 3.90 5.39 6.09 3.00
Sept. 4,25 516 1 3.18 4.25 4.43 3.01 5.59 6.13 3.00
Cet. 4.38 5.13 \ 3.18 4,44 4,50 4.00 5.50 6.18 2.00
Nov, 4.63 509 .+ 3.28 4.38 4.43 3.4 5.38 5.41 2.97
Dec. 4.63 4.98 | 3.56 | 4.38 438 3.95 5.43 5.00 2.88

Since one is concerned with the sizes of these items, as a first
step an array should be formed, that is, the items should be tabulat-
ed in order of magnitude, every item being included, These com-
mercial paper rates (X) are tabulated from a value of 2.88 to a
value of 6.13. The number of months exhibiting any one of these
varying rates is given under f.

1The terms homograde and heterograde are attributed by Helen M. Walk-
er: Studies in the History of Statistical Method, op. cit., to C. V. L. Charlier,
In this book one is mainly concerned with homograde series, since a proper
analysis of continuous distributions requires the technique of integral ealculus.
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Zf = N == total frequency.?

The immediate problem is the choice of a cluss inlerval, the
interval which sets bounds to each class of the frequency distribu-
tion. In this case it is convenient to use .50 per cent as the interval.
The class limits will then be 2.50-2.99, 3.00-3.49, 3.50-3.99, 4.00-
4.49, 4.50-4.99, 5.00-5.49, 5.50-5.99, 6.00-6.19. By class mark or
number is meant a value (generally the arithmetic mean of the
class limits) which serves to designate the class. In the example
under discussion, the class marks are 2.75, 3.25, 3.75, 4.25, 4.75,
5.25, 5.75, and 6.25 per cent,

There are no fixed rules to be applied in determining the num-
ber of classes into which a frequency distribution is to be divided,
except that the number should be sufficiently small so that the dis-
tribution is reasonably smooth and sufficiently large so that the
concentration of frequencies at an average value such as the cen-
ter of a class interval will not seriously affect the values of the
statistical averages.

Some authors suggest the use of about fifteen class intervals
for distributions whose total frequency is not less than a hundred.
H. A. Sturges? has suggested the following formula for the deter-
mination of the number (m) of class intervals:

m==1 4 log,,N/log..2 , (1/log,.2 = 3.32193)
=1 -}- 3.32193 log..N ,

where N is the total frequency.®

1The Greek letter = (capital sigma) designates summation. For a fuller
explanation, see section 3, Chapter III.

2¢The Choice of a Class Interval,” Journal of the American Statisticul
Assoeiation, Vol. 21 (1926), pp. 66-66.

$The student who is unfamiliar with logarithms may consult Appendix 1I
at this point.




PRELIMINARY ANALYSIS OF STATISTICAL DATA 17

This formula is derived from a consideration of the binomial
frequency distribution based upon the problem of penny tossing,
which, as will be pointed out in a later chapter, furnishes a good
approach to the subject of normal frequency series. Thus, if five
pennies are tossed 32 times and classified according to the number
that appear heads up, in the ideal case the following distribution is
to be expected :

0 Head 1Head 2 Heads 3 Heads 4 Heads 5 Heads
1 5 10 10 5 1

Similarly, if six pennies are tossed 64 times, the ideal distri-
bution is:

0 Head 1 Head 2 Heads 3 Heads 4 Heads 5 Heads 6 Heads
1 6 15 20 15 6 1

Thus, it is seen that for a frequency of 32 there are 1 +
log 82/log 2 = 6 class marks, for a frequency of 64 there are 1 L
log 64/log 2 = 7 class marks, etc. The generalization of this ob-
servation is expressed in the Sturges formula.

It should be observed, however, that there is no inescapable
necessity for making such a choice and m (the number of class
intervals) should always be selected so that it is suited to the data.
The Sturges rule tends, in general, to give too great a concentration
of data for large frequencies. The American Experience Table of
Mortality, for instance, which is the basis of the great structure
of life insurance, gives a very smooth curve when the data on
100,000 lives are distributed by years from 10 to 95. By applying
the Sturges foermula, however, one would have m — 18, much too
small a figure, as a proper range.

In case a high concentration is desired, that is to say, if the
data are to be distributed over but a few class marks, corrections
should always be applied to the averages calculated from them.
These corrections are discussed in section 8 of Chapter III.

Applying the Sturges formula to the data of the last table, one
finds that

m=1+4 3.32193 X log 108 ==1 4 3.32193 < 2.03342 — 7.75 .

The data are very conveniently treated by using a class in-
terval of .50 per cent, so m = 8 may be chosen. On the basis of
this choice one arrives at the following table of frequencies:
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Classes I Class
{(inclusive) Marks Freguencies
2.50-2.95% 2.75% 2
3.00-3.49 3.25 8
3.50-3.99 3.75 22
4.00-4.49 4.25 30
4.50-4.99 4,75 20
5.00-5.49 5.25 13
5.50-5.99 5.95 6
6.00-6.49 6.25 6

H
|
l

t
|
i l
'

|
|
|
i
i
|

In the column of frequencies one notices the existence of a
centrgl tendency in the data that is to say, there is a tendency for
the frequencies to cluster about a class mark near the mid-point
of the range. This characteristic of frequency distributions will
be discussed later.

PROELEMS

1. The following table! gives women’s weekly earnings (259 eases) in
Stepney (London) for 1929:

i
;

L
it

; P
|

Classes ‘ ‘ Classes ;
(inclusive) | Frequencies |  (inclusive) | Frequencies

| | |
Under 10s | 1 U 355-39s ; 48
105-14s 3 i 405-44s | 28
15s-198 7 ) 455-495 21
205245 | 29 | 50s-51s | 6
255-295 47 ' 558-508 _ 2
30s-34s l 60 ‘l 605 or more | 3

i

Does the number of intervals chesen conform to Sturges’ formula?
{log 259 = 2.41330).

2. The 168 figures contained in the following table give the Ratio of In-
vestments in U. S. Government Securities to Tolal Invesiments (All Report-
ing Federal Reserve Member Banks), and range in magnitude from 39.7 to
62.3. Choosing a convenient unit, divide this range inte a series of class in-
tervals and construct a frequency table,

1Taken fT(;I;I_ “The Actio;l of Ecbnomic Foréesﬁ in Y'reducing Frequency
Distributions of Iucowmne, Prices, and Other Phenomena: A Suggestion for
Study,” by A. L. Bowley, Econometrica, Vol. I {1933}, page 363.
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i ; ‘
Mo. | 1919 1920 {1921 1922 [1923 1924 1925 1926 | 1927 1928 1929 ‘1930 1931 | 1932
e S —— —— : e
Jan. | 58.0 |49.8] 40.9] 43.4 |55.9 | 53.8 [51.31495| 454485 51.1|49.1 | 46.7| 54.8
Feb. | 60.2|47.8|40.7| 46.3 [56.1(53.7 |50.4 | 4956 | 455 | 4911 512 | 51.9 | 477 | 546
Mar. @ 62.5 1458|409 455 |56.1( 53.2 |50.7 | 49.3 | 46.2 | 48.4 | 51.4 | 50.0 | 49.2 | 54.8
Apr. 62.1 [ 46.5 | 40.6| 45.8 | 56.0 | 52.3 50.2 | 489 ) 46.6 | 48.7 | 51.1 | 49.7 | 50.5 | 54.4
May 63.3 | 47.0 | 40.0| 46.6 | 56.1 [ 51.1 149.4 | 48.6 | 47.0 | 48.7 | 50.7 | 48.5 | 50.6 | 55.6
June 58.7 | 46.4 | 40.9 | 48.8 [ 56.5 | 50.5 |49.6 | 48.1 | 45.8 | 48.8 | 50.7 | 47.3 | 51.8 | 56.3
July 55.1 | 45.0 | 39.7 | 49.5 | 55.7 | 50.8 |49.3 | 47.6 | 45.4 | 48.8 | 49.6 | 46.8 | 52.8 | 56.4
Aug. 56.7 | 44.5 | 40.8. 51.2 | 55.2 | 50.8 '49.3 | 47.9 | 452 | 49.1| 49.6 | 46.0 | 52.8 | 585
Sept. | 55.8 |441 411} 51.8 | 55.0 | 51.7 '49.1 | 47.9 | 45.6 | 499 | 495 | 46,0 | 53.3 | 59.6
Oct. | 52.9(43.0 | 40.4| 52.0 | 54.8 | 51.5 |48.9 | 48.0 | 46.2 | 51.0 | 49.1 | 45.7 | 53.7 | 61.1
Nov. | 508|428 418|524 |53.9150.9 489 | 47.4|46.7|50.7| 493 | 45.4 | 53.7| 615
Dec. © 50.1 (429 142.7] 535 |53.9 | 51.0 149.7 1 46.4 | 475 | 50.8 | 48.6 146.0 | 54.7] 61.4

Source Standcwd Stututws Baqe Book

8. The following table gives the monthly percentage deviations from
trend of the Dow-Jones Industrial Averages for the pre-war period, 1897-1913.
Could the data of this frequency table be advantageously spread over a smaller
number of class intervals? (Use log 204 = 2.30963.)

i‘

Classes ’ Classes
(inclusive} Frequency |  (inclusive) Frequency
- e R

60-64 1 i} 100-104 36
65-69 4 | 105-109 19
70-74 10 | 110-114 17
75-79 8 115-119 3
80-84 9 - 120-124 2
85-89 20 1 125-129 10
90-94 22 130-134 3
95-99 24 N =204

4. Using the data of the table in problem 4, section 11 of this chapter,
show that the number of class marks has been ideally chosen,

5. Discuss the choiee of the number of class marks for series X and ¥
in problem 5, section 11 of this chapter.

10. The Graphical Representation of Frequency Distributions.
When the data have been collected and suitably arranged in a table,
it is often useful as a next step in statistical procedure to repre-
sent them by some graphical method. Numerous devices such as
pie charts, bar charts, maps, curves, etc., have been employed for
this purpose. For example, see Figures 1a and 1b.
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NUMBER OF PERSONS AMOUNT OF TOTAL INCOME
IN EACH INCOME CLASS RECEIVED BY EACH CLASS

FIGURE la. Pie charts comparing the number of persons in each of eight
income classes with the income received by each class. The numbers refer to
income ranges (1) below $500, (2) from $500-1,000, (3) $1,000-1,5600, (4)
$1,500-2,000, (5) $2,000-3,000, (6) $3,000-5,000, (7) $5,000-10,000, and (8)
above $10,000. For the data, see the table on page 27.

4

N + + ' 4
(=] S 10 13 20 2% 3o EL [« 5 10 15 20 4] fels] L

PER CENT OF PERSONS PER CENT OF TOTAL INCOME
IN INCOME CLASSES RECEIVED BY EACH CLASS

FIcUkE 1b. Bar charts comparing the percentage of persons in each of
eight income classes with the percentage of the total income received by each
class. The mumbers refer to the income ranges as stated for Figure la.
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Helpful as these devices sometimes are, however, in the pie-
forial representation of statistical material, none of them is so im-
portant in the mathematical analysis of data as the ordinary meth-
od of graphing.

The most common method of graphing is that of referring the
quantities involved to mutually perpendicular intersecting straight
lines called axes, just as places on maps depicting large areas are
referred to the equator and the principal meridian, or on maps of
limited scope to convenient lines of latitude and longitude.

The horizontal axis is customarily referred to as the z-axis,
the vertical axis as the y-axis, and their point of intersection as
the origin. Convenient intervals are marked off on each axis.

A point is designated by the symbol (a,b), where a indicates
the distance along the z-axis and b the distance along the y-axis.
These values are called respectively the abscissa and ordinate of
the point (@,b). The point is defined as the intersection of a line
parallel to the y-axis and at a distance a from it with a line parallel
to the z-axis and at a distance b from it. The abscizssa @ and the
ordinate b are called coordinates of the point. They are sometimes
referred to as the rectangular Cartesian coordinates, after René
Descartes (1596-1650), who first introduced them in his famous
essay on Géoméirie.

Letting x,, x., - - -, x,, denote the x values, and y., ¥., - - - , ¥n»
the corresponding y values, one may record them in tabular form:

Values of x f Xy Xy Mg rereerenven T,
Values of Y i‘ Y Yo Yz crorrrenaees Yn
The number pairs (x.,%.), (X2¥:), (@¥:), -+, (TwYs), may

then be plotted as points, and this succession of points when
connected make a graph, Assuming that there exists some exact
relationship between x and y, these points will not be entirely ran-
dom ones, but will be found to be so arranged that a smooth curve
can be drawn to approximate them,

If there is only an approximate relationship between the two
variables, the points may be joined by straight lines to obtain the
characteristic saw-toothed graph of statistics.! The method of fit-

1 See, for example, Figure 10, page 46.
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ting a smooth curve to the data thus plotted is treated in a later
chapter under the theory of least squares.

Some variation in this procedure is to be expected in the case
of frequency tables. The x-axis is then usually chosen for the rep-
resentation of the class marks, and the y-axis for the representa-
tion of the frequencies. But, since each frequency is an integer
and inecludes all the individuals within the class interval to which
it applies, the frequency is customarily represented, not by a single
ordinate, but by a rectangle whose base is the class interval and
whose length is equal numerically to the value of the frequency.
The diagram formed by these frequency rectangles is called a
histogram.

Example : Represent graphically the data of the table on page
18,

As a preliminary simplification the original class marks are
replaced by a new set composed of the numbers 0, 1, 2, 3, 4, 5, 6, 7.
In this manner the origin of the axes is included in the picture, an
inclusion which will often be found fo be advantageous. Further-
more, as will appear later, considerable reduction in the labor of
numerical calculation will result from the choice of simpler class
marks.

The histogram is then constructed by forming rectangles with
bases equal to unity, and altitudes equal to the successive fre-
quencies, as shown in Figure 2.
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The graph is completed by drawing in a smooth curve which
approximately represents the data and includes an area (almost)
identical with that of the total area of the several rectangles. The
computation of the ordinates of such a curve will be discussed in
detail in later chapters. The frequencies, which are represented by
the rectangles of the histogram, are contained in the following
table:

Class marks , 0 1 2 3 4 5 6 7

Frequencies 2 8 23 8 2 13 6 6

The dotted curve (process of smoothing by inspection) in the
above figure represents a smoothed curve, enclosing approximate-
ly the same total area as the histogram, and so drawn through the
points of the histogram that the areas gained and lost by each col-
umn are approximately equal. The top of the curve slightly over-
tops the highest plotted point in order to represent the probable
distribution of the cases within the class of highest frequency.

11. Ogives or Cumulative Frequency Curves. One type of
curve often used in the graphical representation of freguencies is
the so-called ogive or cumulative frequency curve. The ordinates
of such a curve are formed from a given frequency distribution by
the addition of successive frequencies.

For example, the ordinates for the ogive which represents the
frequency distribution given in the table on page 18 (monthly aver-
ages of 4-6 months prime commercial paper rates, January 1922
to December 1931), are the following:

Frequencies

Class Intervals Class Marks Frequencies | Accumulated
2.50-2.99% 2.75% 2 2
3.00-5.49 3.25 8 10
3.50-3.99 3.75 23 33
4.00-4.49 4.25 30 63
4.50-4.99 4.75 20 3
5.00-5.49 5.25 13 96
5.50-5.99 5.75 6 102
6.00-6.49 6.25 6 108
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The graph of the accumulated frequencies, or ogive, is given
in Figure 3. These frequencies are plotted corresponding to the
upper limits of the class intervals.
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FIGURE 3

One useful application of the ogive is found in the compari-
son of one or more groups of data with some standard norm. To
illustrate, one might be interested in comparing monthly imports
and exports of the United States over a period of years, data
which are contained in the following table (1912-1931, with unit as
$1,000,000) :

Class Class Frequency Frequency | Frequency
Intervals Marks (Imports) (Exports) | (Composite)
Under 115 7.5 0 1 1
115-189 152.5 68 21 89
190-264 22%7.5 53 26 79
265-339 302.5 62 49 111
340-414 377.5 45 58 98
415-489 452.5 7 a6 43
490-564 527.5 5 25 30
565-630 602.5 0 14 14
640 and over 677.5 0 15 15
Totals 240 240 480

To make the suggested comparison by means of the ogive,
some norm is first selected. In the present instance it will be con-
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venient to choose for this the composite frequency distribution ob-
tained by adding corresponding frequencies in each group. A sec-
ond table based on the one just given is then computed, reducing
the cumulative frequencies to percentages of the total of the fre-
quency column. This table is given below:

| : ’ Cumu- ‘ Per- Cumu- Per-
Class Class ,l (blir:uég,ﬂ:ve Percﬁlfltage lative | centage lative centage
Intervals | Marks .(Imc1 ortss)r Total Frequency of Frequency of
p (Exports) | Total (Composite) | Total
Under 115 | T1.5 0 0 1 } 0 1 0
115-189 152.5 68 | 28 22 9 90 19
190-264 227.5 121 ! &80 48 20 169 35
265-339  302.5 183 76 97 40 280 58
340-414 377.6 228 95 150 63 378 79
415-489 452.5 236 98 186 78 421 88
490-564 527.6 240 100 211 88 4b1 94
565-639 602.56 240 1 100 225 94 465 97
640-Over | 677.6 240 \ 100 240 100 480 100

Drawing two mutually perpendicular axes, X and Y (see Figure
4), per cents from O to 100 are recorded as ordinates. The ruling
for the X-axis is obtained as follows: At some convenient distance

IMPORTS

EXPORTS
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FIGURE 4
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from the origin on the X-axis, a perpendicular equal in height to
the range on the Y-axis is erected, i.e,, the range from 0 to 100 per
cent, and the origin is connected by a straight line with the extrem-
ity of this perpendicular, Then, from points on the Y-axis at the
percentage values recorded in the composite column of the table,
lines parallel to the X-axis are drawn until they cut the diagonal of
the figure. From these points of intersection perpendiculars are
dropped to the X-axis and at the extremities of these perpendicu-
lars the class limits (substituting the simple ciass limits, 0, 1, 2,
ete., for the original class limits 115, 190, etc.) aie recorded, thus
establishing a range of unequal intervals on the X-axis.

Using these new values of z, the points in the other two per-
centage columns of the above table are graphed. The resulting
diagram gives a graphic picture of the relative value of imports
and exports in the various groups, the compositc or norm being
represented by the straight line diagonal.

The ordinary ogives of the distribution as shown in Figure 5
may be compared with the ogives obtained by the method just de-
seribed, as shown in Figure 4.

Another type of ogive curve may be formed by cumulating the
variables on each axis and reducing the values thus obtained to
percentages of the total. Such ogives are called Lorenz curves and
are valuable siatislical aids in analyzing data of certain types.
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A well-known example is furnished by the figures showing the
distribution of national income in the United States. The follow-
ing summary (condensed) was published by the National Bureau
of Economic Research in 1921 to show the amount and distribution
of personal incomes in 1918:*

| Number ~ Amount | Cumulative
Income Class of i of i Percentage Distribution
(Dollars) Persons | Income | {Percentage)
. i T No | Amt, | No. | Amt.
Under zero 200,000 $ —125,000,000 .53 -.22 53 22
000- 500 1,827,564 685,287,806 4.86 1.18 5.39 .98
500- 1,000 12,530,670 9,818,678,617 | 33.35| 16.94 | 38.74| 17.90
1,000- 1,500 12,498,120 15,295,790,584 | 33.27 | 26.40 | 72.01 | 44230
1,560- 2,000 5,222,067 8,917,648,385| 13.90| 1539 | 85.91| 59.69
2,000- 3,000 3,065,024 7,314,412,994 816 | 12.62 | 94.07| 72.31
3,000- 5,000 1,383,167 5,174,090,777 | 3.68 893 | 97.75| 81.24
5,000- 10,000 587,824 3,937,183,313 1.57 6.79 | 99.32| 88.03
10,000- 25,000 192,062 2,808,290,063 51 4.85 | 99.831 9288
25,000- 50,000 41,119 1,398,785,687 a1 241 | 99.94] 95.29
50,000- 100,000 14,011 951,529,576 04 1.64 | 9998 | 96.93
100,000- 200,000 4,045 671,565,821 0t 1.16 | 99991 098.09
200,000- 500,000 1,976 570,019,200 .01 98 |100.001 99.07
500,000-1,0600,000 269 220,120,399 .00 38 [100.00 | 99.45
1,000,000-and over | 152 (816,319,219 .00 | .55 1100.00 | 100.00
Totals 27,569,060 57.954,722,341 1 1060.00 | 100.00

From the percentages given in the last two columns of the
table, the Lorenz curve of the distribution is graphed in Figure 6:

It might be noted in passing that the result shown in the figure
has been made the point of many important investigations. V.
Pareto formulated it in terms of a special theory known as the
“law of Pareto” (see section 3, Chapter IX, problem 2). The dis-
parity between the line of equal distribution and the line of actual
income is not a modern phenomenon, but has been observed in so-
cial states from the earliest times down to the present day.

PROBLEMS

1. Make a histogram and curve to represent the data as given in the
table of problem 1, section 9, of this chapter. )

2. Construct a histogram and curve for the data given in the following
table, which shows the frequency distribution of the percentage deviations from

18¢ee Income in the United States—Its Amount and Distribution 1909-1913,
National Bureau of Economic Research, Vol. I, New York, 1923, pp. 132-3.



28 ELEMENTS OF STATISTICS

100
8O .
\oe
i A
= Q\)
o) A
Q &Q'
z &0 )
= < /
[&] ?-V
T o
r_: ao - QQ’
z o/ /
w
o & /
o ~
o
ol L N
/ b
LINE OF INCOME
e I

° <0 40 &0 ac 100

PERCENTAGE OF PEOPLC
FIGURE 6

trend of Bradstreet’s Commodity Prices monthly, corrected for secular trend,
for the yecars 1897-19013:

Percentage ! 5 || Percentage ‘ \
Deviation | Class | Frequency | Deviation © Class | Frequency
from Trend { Marks | from Trend | Marks
[ | : |
-15 to ~13 \ 14| 3 0to 2 1| 58
12« 10 ; -11 G 3¢ 5 4 ! 39
g«_7 | 8 10 6« 8 7T 13
6 ¢ — 4 iHS | =1 9 “ 11 10 4
3«“-1 %—2 | 37 12 % 14 13 \ 3

3. Draw an ogive for the data of problem 1 above.

4. Compare the ogive of problem 3 with the ogive formed from the fol-
lowing table:

Class Marks 0o 1 2 3 4 5 6 i 3 9 10

Frequency 1 10 45 120 210 252 210 120 45 10 i
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5. Compare the following frequency data by the method of this section,
using the X figure as the norm:

Class Marks | 0 1 2 3 4 5 6

X

6. Construct a Lorenz curve for the following data taken from the U, S.
census for 1920, which show the relative size and value of American farms:

Size of Number Value

Farms of Percent in Percent
(Acres) Farms Millions
Under 20 796,585 12.4 2,453 3.1
20-49 1,503,732 23.3 5,864 7.5
50-99 1,474,745 22.9 11,183 14.4
100-174 1,449,630 22.5 20,902 26.8
176-499 1,006,477 15.6 26,390 33.9
500-999 149,819 2.3 5,684 7.1
1000 and over 67,405 1.0 5,698 7.2

Totals 6,488,343 100.0 77,924 100.0

7. Make a Lorenz curve for the data of the first illustrative example of
this section.

8. Construct an ogive for the data of the first problem of seetion 9.

9. Make & Lorenz curve from the ogive of problem 8.

12. Binomial Frequencies—The Binomial Theorem. One will
find as he proceeds in the analysis of frequency distributions that
a considerable number of series resemble more or less closely a
type whose frequencies are the successive terms of the expansion
of a binomial.

The frequencies of the table on page 18 (4-6 months prime
commercial paper rates, January, 1922, to December, 1931), for in-
stance, and the successive terms of the expansion of the binomial

108 (.55 + .45)7

may be compared as follows:
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Class :  Frequencies l Terms of the
Marks : (Money Rates) | Expansion

i

0 2 2
1 8 9
2 23 23
3 i 30 3L

4 | 20 26
5 | 13 13
6 ! 6 3
7 i 6 0

The general resemblance between the values in the table is
evident. The reasons why such a resemblance is not accidental, but
is to be expected in many statistical series, will be discussed at
length in a later chapter. However, it may be mentioned here that
such series are called binomial frequency distributions.

In order to prepare for a better understanding of such distri-
butions, a few of the facts concerning the expansion of a binomial
may be reviewed.

The formula representing the expansion of a binomial is called
the binomial theorem. It has been proved in algebra that this ex-
pansion takes the following form for integral (positive whole num-
ber) values of n:

(CL + b) L/ + n a"ih + _1_?'_(72'2"_:1_)__ ar b’

n({n—1) (n—2)
3!
where 2! (read “factorial two”) =1-2,and 31-=1-2- 3, and, in

general, r! =1-2-3.---17 .
The expressions

aﬂ-.’&b:{ _i_ e (1)

n(n—1) n{n—1) (n—2)
2t 31 '
are called the binomial coefficients and are conveniently repre-
sented by the symbols, .C., .C., +.C;, ete, which will be met later
in the subject of probability.
The 7th or general, coefficient is given by the formula
n(n—1) (n—2) «----- (n—r-+1)

nCr: 1 ’ (-2)
7.

ete.,
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which may be put into the following form:

¢ :n(n—l) (n—2) -+ (n—r-4-1)

7!
[{n—r) (n—r-—1) --- 3-2.1] _ 7!
[(n—7) (n—r—1) --- 3.2.1]1  #! (n—r)!

Since the numerical values of these constants for integral val-
ues® of n often occur in statistical work, a short table is given below :

7 | L2

'

TABLE OF BINOMIAL COEFFICIENTS, ,C,

H

I

~.-f~!01 & 8 4 5 6 T 8 9 10 11 12 13 1415
EAY e o
1|11

2 |12 1

3 |13 3 1

N

5 015 10 10 5 1

6 (1615 20 15 & 1

7 ,1 7 21 8 3 21 7T 1

8 |18 28 5 170 5 28 8 1

9 1 9 56 8 126 126 84 36 9 1

10 110 45120 210 252 210 120 45 10 1

11 | 111 55165 330 462 462 330 165 55 11 1

12 | 112 66220 495 792 924 792 495 220 66 12 1

13 | 113 78 286 716 1287 1716 1716 1287 715 286 78 13 1
14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
l 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 156 1

A few of the most useful values of ,C, for fractional and neg-
ative indexes are given in the following table:

1Fgr values of »n that are either negative integers or positive or negative
fractions, the binomial coefficients may be computed either from formula (2)
or by means of tables of the gamma function. By definition, the gamma
function, represented by the symbol I'(x), is equal to (x—1)! . Making use
of the difference relationship: I'(x+1) = x I'(x), that is to say, ! =2 (z—1}!,
it is possible to define the factorial symbol for all values of x except the nega-
tive integers where I'(x) becomes infinite. 1t is interesting to note the particu-
lar value of I'(3/2) = (3%)! = 3% VvV« . Elaborate tables of the gamma fune-
tion have been computed (See Davis, Tables of the Higher Moathematical
Fynetions, Vol. 1, Bloamington, 1933). Hence, for ,C, one may write,

WL, =T(n+1}/[T(r+1) T(n—r+1)] .

1f % is a negative integer, 1his expression may be evaluated by appropri-
ate limiting processes, but formula (2) is easier to apply in this case.
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BINOMIAI, COEFFICIENTS

n 7= 1 2 3 4 5

-2 -2 3 -4 5 -6

-1 -1 1 -1 1 -1
-1/2 -1/2 3/8 ~b/16 35/128 -63/256

1/2 1/2 -1/8 1/16 ~5/128 7/256
-1/3 -1/3 2/9 -14/81 35/243 -91/729

1/3 1/3 -1/9 5/81 ~10/243 22/729
-1/4 -1/4 5/32 -15/128 195/2048 -663/8192

1/4 1/4 -3/32 T7/128 ~77/2048 231/8192

A simple and interesting way of arriving at a table of binomial
coefficients is here shown:!
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iThis is essentially Pascal’s Triangle, published by B. Pascal in 1665,
.although known as early as 1303 in a Chinese tract by Chu Shih-Chieh.
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Given a set of squares, the top row of squares and the left
column of squares are each filled with ones. Then each successive
row is formed by summing the figures in the preceding row from
the left, up to and including the column where the new figure is to
be inserted. For example, the 2 in column two, row two, is the
sum of the two 1’s of the top row. Similarly, the 20 in column 4,
row 4, is the sum of the 1, 8, 6, and 10, of the preceding row. When
the table has been constructed in this fashion, diagonal lines are
drawn through it. Reading diagonally, one has the binomial coefli-
cientsas 1,1;1,2,1;1,3,3,1;1, 4,6, 4, 1; ete.

The binomial series is obtained from the binomial theorem by
replacing @ by 1 and b by z. One thus obtains the following expan-
sion:

(o) =1 L) g 2O DN R

e ) (2)

If n is an integer, this series terminates with the (n - 1)th
term. If, however, n is not an integer, the series consists of an in-
finite number of terms, since none of the binomial coefficients van-
ishes. Tt has been proved by methods of analysis which cannot be
treated here that the series converges® for all values of n, positive
or negative, provided z is a number between —1 and --1. By this
statement is meant that if any value of x less than 1 in numerieal
value is substituted in the right hand side of equation (2), the sum
of a finite number of terms of the series will approximately equal
the value of the expression (1 z)" That this is often a useful
thing to know is evident from the fact that the terms of the series
are always easy to compute, whereas the value of (1 + )" is some-

1The theory of convergent and divergent series is a very extensive and
important subject in mathematics and the student should have some aequain-
tance with it. Unfortunately the limitations of space preclude any develop-
ment of this theory here. The student should consult some standard algebra
or, if he has studied calculus, he should review the chapter devoted to series
in any standard text. The convergence and divergence of series is illustrated
by the following two examples:

1+1/2+1/3+1/4+ - - +1m+ -
1+1/441/9+1/16+ - +1/m2t -

The first series does not converge, that is to say, as terms are added to the
sum of the first n terms, the sum continues to increase without limit. Any
preassigned value may be exceeded if a sufficiently large number of terms are
summed. The series is said to be divergent. The second series does converge
and has the limiting value 72/6. As terms are added to the sum of the first #
terms, the resulting sum approximates more and more closely the limiting

value.
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times very difficult to calculate directly, as, for example, when =
equals 1/10.

Ezample 1. Expand (z-+1/x)°.

Using the table of coefficients for # = 6, one has from equation
(1):

(x - 1/x)5 = 2° - 6x* 4 1622 +20+-15/x* - 6/2* + 1/x8 .

Example 2. Calculate by the binomial series the value of
1/1.05 .

Noting that the reciprocal of the fifth root of a number is that
number raised to the negative one-fifth power, one may write;:

1/91.05 = (1.05)** = (1 4 .05)"/*

=1— (1/5) (.05) + s (2-—1_1/5'—1) (.05)% .-

= .9903 (approximately).

PROBLEMS
1. Make a histogram using the binomial coefficients for » = 10 as fre-
quencies and the values of r for the class marks.

9 Construct an ogive curve using the binomial coefficients for n = 7 as
frequencies and the values of  for class marks. Compare this with the ogive
given in Figure 3 of this chapter.

Use the binomial series to caleulate the following:

3. yiog, 4. ¥1.25, 5. 1/4/1.02 .

6. Form a table of the first five binomial coefficients for the values
n=1/21/3, -1,-2 .

7 When tables of logarithms are not available, binomial series ean be
used to caleulate roots. For example,

V30 = v25 + 5=5vV1i+1/5.

Complete the calculation.

8. Caleculate the binemial coefficients for n = 16, » = 17T.

9. Calculate ,,Cy ; ,,C; -

10. Show that the sum of the binomial coefficients corresponding to an
integral value of n is equal to 2m.

11. Expand (1 + 1/x)* ; —(1 — 1/x}*.

12. Expand (x + 2 + 1/Vz)3 . Hint: Consider the first two terms as
representing one number.

13. Expand (¢ + b + ¢ + d)2.

14. Prove that the expansion of (x, + %, + ... -+ ,)2 consists of the

sum of the squares of the «’s plus twice the sum of their products taken two
at a time.




CHAPTER ]I

THE GRAPHICAL ANALYSIS OF DATA—FELEMENTARY CURVE FITTING

1. Functions. Much of the importance of the modern applica-
tion of mathematics depends upon a knowledge of the properties
of functions. A function may be defined as follows: If two vari-
ables x and y are so related that when a value of x is given, y can
be determined, then y is said to be a function of x.

It is customary to represent a function by means of the sym-
bol f(x). For example, suppose that the function under considera-
tion is a* — 3x 4 1. Then f(a) = a* — 32+ 1, f(1) =12 — 3
+1=—1,f(2) =2 —3-2 4 1=—1, f(¥R) = (14)> — 3(¥%)
+ l=—=— ]Jél -

Functions sometimes cannot be represented by a mathemat-
ical expression, but may be defined by some characteristic prop-
erty. For example, one might say that ¥y = f(x) is zero when z
is a rational number, and y is 1 whenever z is an irrational num-
ber. Then one would have f(14) = 0, f(V2) = 1, f(14) == 0,
f(a) = 1.

Every applied field in which mathematies is used has its own
particular set of functions, and one’s knowledge of this field may
be accurately evaluated by his familiarity with their properties.
For example, the mathematical theory of finance is a study of the
relationship between money and time, and this relationship is ex-
pressed by means of functions involving a rate of interest.

Ezxample 1. Given f(x) == 9:-:1—), find £(0), f(v/2), F(1).
(z+1)
Substituting in the explicit formula, one has
_wo=n__ .
7(0) — 0rD) ;
- (V2—1) (V2 —1)2
( 2) == — = — — :f)—z 2 ;
V=i Vin TR
(11 0
V=G =z=

— 835
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In statistics, the values of a function are usually given by a
set of empirical values, that is, values obtained from experimental
observation. One might, for example, observe the minutes of day-
light for each day of the year and express these numbers as fune-
tions of the number of days from December 31. Thus, starting
with December 31 as origin, one obtains for New York City the fol-
lowing data, tabulated for intervals of five days, which represent
the number of minutes of daylight corresponding to each fifth day
in the year:!

T . - | - .
x ey | » | f(x) l e fle) e @) Le [ f(e) o | f(x)

5 561 65| 688 | 125 843 | 185| 902 | 245 787 | 305 30
10 567 70] 701 130 854 | 190 | 898 | 250 | 774 | 310 | 618
15 573 75| 715 1135 | 864 | 195| 892 {255 761 | 315 | 6O7
20 582 80| 728 | 140 | 874 | 200 | 885 | 260 748 | 320 | 596
25 591 86| 741 | 145 882 | 205 | 877 [265| 734 | 325 | 587
30 601 90| 755 | 150 | B89 | 210 | 868 | 270 | 721 | 330 578

3b 611 95| 769 155 | 894 | 215 859 | 275} 707 | 335 | K70
40 623 100 782 | 160 | 900 | 220 | 848 | 280 | 694 | 340 | 564
45 635 [105| 795 | 165, 904 | 225 | 837 | 285 | 681 | 345 | 560
50 648 1110| 808 [ 170 | 906 | 230 | 825 | 290! 668 | 350 | 557
55 661 |115| 821 | 175; 906 | 235 | 812 | 295 | 655 | 355 | 565
60 674 | 120] 833 | 180 ] 905 | 240 { 800 | 300, 642 | 360 | 555

1t should be observed that the functional relationship existing
here is defined only for integral values of x. since it would be
meaningless to ask the number of minutes of daylight correspond-
ing to x == 10.5. This is characteristic of statistical theory, as was
pointed out in Chapter I in the discussion of homograde frequency
distributions. Some authors prefer to use the word variate instead
of variable when referring to z in such functional relationships.

In order to find a value of f(x) not given in the above table,
it is necessary to interpolate.? Thus for x == 93, one has

f{93) =755+ —?;:- (769 — 755)

=755 1 8.4=—"T763.4 .

An interesting fact about the funetion just defined is that it
is periodie, that is to say, the values recur after a fixed interval,

1A slight variation in these figures will be found from year to year.
. 28ece section 4, Appendix II. For a more extensive account of interpola-
tion, refer to the introduction to the tables, Appendix IIT.
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since the value for x = 365 -~ 15 is identical with the value for
# = 15. This may be represented symbolically as follows :

He+a) =f(x) ,

where a is the period. In the example, ¢ = 365. Time series in
statistics often show this characteristic periodicity, which is called
‘““seasonal variation.”

Example 2. 1t has been discovered from statistical studies
that the inhibition effect, IF, of foreclosures on the supply of capital
available for new residential building in a large community may be
adequately represented by the function

Fe=1-—129.6/f ,

where f is the number of foreclosures per year per 100,000 families.

In times of high prosperity f is approximately equal to 120 and
in periods of deep depression f is around 840. Hence, one finds
F'=1-—129.6/120 = —.08, that is to say, approximately zero, to
be the inhibition coeflicient for a prosperous period and FF —= 1 —
129.6/840 =1 -—.15 =— .85 to be the inhibition coefficient for a
period of depression.

PROBLEMS

(If he has not already done so, the student should familiarize himself with
the exponential ¢* before working these exercises. See section 5, Appendix II).

1. Given f(x) = 22 — 3z + 1, calculate f(0), £(2), f(V2), f(—1),
f(5).

2. I8 there a value of 2 for which f(%) = 22 — 3z — b equals zero!?
Hint: Substitute various positive and negative values for z and see whether
f(x) changes sign. Why will this answer the question?

3. Given f(x) = M, calculate £(0), (1), f(—1), F(2), F(V3 ).

(x2+1)

4. If x is the number of days from December 31 and f(x) the minutes
of daylight at New York City, find f(35), f(72), f(268), and f(725).

5. The foliowing data show the population (expressed in millions) of
the United States at each census from 1790 to 1920:

Year 1790 1800 1810 1820 1830 1840 1850

Population 3.929 5308 7.240 9.638 12.866 17.069 23.192

1Taken from C. F. Roos, Dynamic Economics, Bloomington, 1934, p. 87.
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Year 1860 1870 1880 1890 1200 1910 1920

Population 81.443 388558 50.156 62.948 75995 91.972 1056.711

Letting » be the number of years since 1780, and assuming that the popu-
lation of the United States is a function of z, find f(50), (100}, f(85). Esti-
mate the population for 1930,

6. Assuming that for problem §
197.27

1+ £7.32¢—03132
estimate the population in 1780. Hint: Let = = 0.

7. If the function in problem 6 is the true law of growth for the United
States, what is the limniting value for the population? Hint: Let x become very
large.

8. If f{x) = e, calenlate f(0), f(.1), F(.2), F{(—1), f(—1,000,000}.

9. If f(x) == &%, show that f(x) - f(y) = f(z + y) .

(z—1)

10. If f(x) = , prove that
f(x) P pr

1) ) e
flatD) —f=) =)
U, ¥ f(x) = log,,m, caledlate £(.1), £(L63), F(6.43) .

fx) =

12. 'Table VI gives values for the function f(t) = — ¢~ 41" . Calculate

2ar

F(2.93) and £(2.936).

oy ra . n(n—1) (n—2)
13. The third binomial coefficient is ,C, = — Is ,C; a

function of n? Calenlate ,C., .C,, ,,Cs ,.C; -

2. Correlations. In illustrating the principles involved in
functional relationship it is usually convenient to employ examples
taken from the physical sciences because it is difficult to establish
functional relationships as simple between two economic series. One
cannot say, for example, that bond prices are a function of interest
rates alone, because other factors complicate the relationship. There
is, of course, a tendency toward a functional relationship between
time and many economic variables, where the period is a year. Cer-
tain situations are necessarily affected by seasonal changes; the
volume of shipping on the Great Lakes is an obvious instance. No
periods longer than a year have been definitely and irrefutably
established.
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On account of the striking instances in the natural sciences,
the idea of periodic functions has exercised considerable attraction
over economists. W. S. Jevons, with sunspot cycles, H. L. Moore,
with the cycles of Venus, Sir William A. Beveridge, with rain-
fall cycles, have all attempted to demonstrate their existence in
economic series. The attempts have been interesting but not con-
vincing. Seasonal variation is the simplest and nearest approach
to periodic functions in economic series. Egg prices are compara-
tively high in winter, comparatively low in summer but, due to
other factors in the equation, such as inventories and the general
price level, one is unable to say that on January 5 eggs will be
exactly 40 cents a dozen with any such assurance as he can say
that there will be 561 minutes of daylight in New York City on
that date.

The material with which statistics deals is obtained from col-
lections of items which do not, as a rule, have a complete functional
relationship with other sets of items. The following table gives
the average monthly price of eggs per dozen at New York City for
the period 1923-1931:

Month Jan. Feb, Mar. Apr.May June July Aug. Sept. Oct. Nov. Dec.

Average Price A1l .35 .28 27 27 27 27 30 .33 .36 .44 .44

It will be clear that egg prices are not, in the strictest sense
of the word, a function of the time of year, because, if one is
given any specified month, say December, he would not be justi-
fied In asserting that eggs would be selling at exactly 44 cents per
dozen for, in addition to the time of year, egg prices are affected
by several other variables. He could, however, assert strongly that
their price will very probably be higher in December than in April.
While he cannot say, then, that price is a function of the time of
vear alone, he may say that price and the time of year are corre-
lated. A mathematical measure of correlation is developed later,
in Chapter X.

From the very strictest point of view, it might be said that
all functional relations which are derived from experiment are
examples of correlation, although there are many different degrees
of correlation. One may take instances from the physical sciences,
where it is possible by controlled experiment to eliminate prac-
tically all extraneous possibilities that might bias the result, where
the possibilities of random error may be so minimized as practi-
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cally to be ignored, and where one arrives at correlations that are
practically perfect and sustained through a series of tests. When
the results in such cases are supported by @ priori reasoning, one
is justified in assuming he has arrived at true functional rela-
tionships. This happy situation does not often obtain in economic
series. Since almost every economic variable reacts in some de-
gree on other variables, it is difficult to distinguish the effect of
different factors. It is impossible by controlled experiment to
eliminate these confusing elements, for the variables the econo-
mist may be studying cannot be effectively isolated from their
economic context. There is not, as there often is in the physical
sciences, any possibility of minimizing the random element and
reducing the relative error.' Take as an example the following
illustration: It has already been shown in the table given in sec-
tion 1 that there is a fundamental relationship between the time
of year and the minutes of daylight. If the date is known, the
length of day can also be known. In this case the correlation is
perfect and one says that “minutes of daylight” is a function of the
days from December 31. Consider, however, the case of the mean
daily temperature at New York City. Is it also a function of the
time of year? One sees at once that this is not the case; for in-
stance, one cannot foretell the exaet average temperature for next
July 21. He is sure, however, that it will be greater than the
average temperature for next December 21, and from a table of
mean temperatures for July an approximate guess can be made
which will probably not be far from the true value. In other
words, mean daily temperature, while not an absolute function of
the time of year, is closely correlated with it.

The same situation prevails among economic series also. One
cannot say from the fact that it is September that pig iron pro-
duction will be 2,314,700 gross tons. He can say, however, that
it is very probable that pig iron production in the September of
any year will be greater than in the January of that year. There
is a definite association between the months of the year and pig
iron production, when one considers enough cases. But the action
of a multitude of effective economic elements such as eyclical phase,
the construction, automotive, and railroad situations, the pressure
of competitive materials, the price factor, ete., ete., prevent one
from establishing any true functional relationship between the
month of the year and the production of pig iron alone.

1See C. F. Roos, Dynamic Economics, Bloomington, Indiana, 1934, Appen-
dix I, p. 246, for a stimulating discussion of correlation of time series,
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PROBLEMS

1. The following table gives the wmonthly price of eggs in dollars per
dozen at New York Clty for the five-year period 1923-1927:

Year { Jan. Feb. Mar. Apr. May June July Aug. Sept, Oct Nov. Dec.

1923 42 37 31 .27 27 .24 285 20 35 .39 B3 AT
1924 42 3% 26 .24 25 .27 .29 32 839 44 52 AT
1525 b9 44 30 29 832 33 33 .33 A7 43 66 Bl
1926 3 31 .29 32 31 30 2% .31 8% 4D 50 48
1927 42 32 25 .26 .23 .28 .25 .28 .34 40 44 4%

Estimate the price for January, 1930; for Aprﬂ 1931 for September,
1929. (The actual prices for these dates were .42, .27, and .36, respectively.)

2. The following iable gives the monthly receipts of eggs (unit, 1,000
cases) at New York (City for the five-year per:od 1923 to 1927:

Year | Jan. Febh, Mar. Apr. M'ty June Iu]y Aug. Sept. Oct. Nov. Dec.

1923 386 447 981 924 1162 796 596 528 416 377 270 272
1924 301 410 717 1082 870 789 B99 420 405 361 221 25D
1925 325 5h0 872 1115 871 838 550 490 427 328 208 320
1926 393 471 813 860 868 871 679 502 433 344 284 400
1927 458 542 863 1094 1038 T16 521 441 386 355 319 316

Does a functional relationship exist between time and receipts of eggs in
New York City? Does a functional relationship exist between receipts of egps
and the price of eggs as given in the table of problem 17

8. The following table shows the ton-miles (in millions) of revenue
freight for the railroads in the Eastern Division from 1890 to 1922:

Year 1890 1891 1892 1893 1894 1895 1896 1887 18N8 1890 1200

Revenue Ft. 43 44 50 51 43 48 B3 51 60 67 U5

Year 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

Revenue Ft. 76 79 87 8T 94 107 118 108 10() 125 131

Year 1912 1513 1914 1515 1916 1917 1918 1918 192p 1921 1922

Revenue Ft. 135 154 144 137 179 188 191 170 189 139 151

Is the amount of revenue freight hauled by railroads a funciion of the
time? Estimate the ton-miles for 1923; for 1889; for 1930.
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4. The following table gives the percentage of persons gainfully occupied
in the United States, by age and sex, for the year 1930:

Age . Percent Gaililfuuy Occupied
n years | Men : Women
SN _ e
|
10i}13 : 3.3 1.6
9.2 4.0
15 16.3 7.6
16 329 17.0
17 49.9 2.5
18-19 70.7 40.5
20-24 89.9 424
25-29 97.0 31.0
30-34 97.6 24.4
35-39 7.7 231
40-44 1 97.6 21.9
45-49 ‘ 97.2 21.0
|
50-54 i 95.7 19.7
55-59 ! 93.0 17.3
60-64 i 86.8 14.7
65-69 : 757 11.4
70-74 I 57.5 7.6
75 and over j| 32.3 \ 4.0
|

Is there a functional relationship between the percentage of persons gain-
fully occupied and age? What is the probability that a man was gainfully oc-
cupied at an age between 20 and 24? between 35 and 397 What are the cor-
responding probabilities for 2 woman? Hint: Probability is expressed as the
ratio of the number of favorable cases to the total number of cases.

5. Problem 1, section 4, Chapter X, lists the dividend rates and prices of
the common stocks of 200 companies listed on the New York Stock Exchange.
Is there a functional relationship between dividends and prices?

3. The Graphical Representation of Functions., It is an im-
portant part of statistical procedure to represent data graph-
ically, and to fit to these data appropriate functions which are ap-
proximate representations of them.

In the first chapter, the usual method of graphing, where
points are located by referring them to mutually perpendicular in-
tersecting straight lines, has been explained. TFunctional relations
of all kinds are presented visually by this method.

A few examples will illustrate the essential features of the
graphical representation of functions:

Example 1. Graph the function y — 22 4+ 3 .
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Since only the mathematical expression for the function is
given, the first task is to form a table of values convenient for use
in graphing. Let arbitrary values be assigned to the variable z.
Unless there is some reason 1o the contrary, the first values used
may be —2, —1, 0, 1, 2. This choice does not represent a fixed rule,
because the values to be assigned arbitrarily depend entireiy upon
the character of the function.

The following table of values is thus obtained:

|
\
!i
|

|

=
|

!

|

|
|
[

When the number pairs (—2, —1), (—1, 1), (0, 3), (1, b),
(2, 7) are plotled, as in Figure 7, they are found to lie upon a
straight line, which is the graphical representation of the function.

|

-8}

FI1GURE 7

Example 2. Graph the function y == =\"2x - 3 .

Here again, one must arbitrarily assign values to the variable
# in order to obtain the table used in graphing. It will also be no-
ticed that, to each value of «, there will correspond two values of
y. As before, assume the values —2, —1, 0, 1, 2. The first, it is
found, must be discarded, since the corresponding values of ¥ will
be = /—-1, which are not real numbers. The square root of a
negative number is called an imaginary. It is also convenient to
add the number x = 3 to the arbitrary values of the abscissa. The
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following table is then used to obtain the graph, which is shown in
Figure §:

Y =1 *1.73 224 -+2.65 +3

Y

FIGURE 8

Example 8. Make a graphical representation of the data giv-
en in section 1 showing the relationship of daylight to the time of

year,

The problem presented here, which is always one met with in
graphing, is that of selecting proper units for the two axes. This
selection should be made only after a consideration of the
ranges of the two variables to be represented. In the present case,
in order to show the periodicity of the function, a range of 730
days for the X-axis should be assumed. Also, since the minutes of
daylight in a day at New York City are never less than 555 nor
greater than 906, it will be convenient to divide the y-range into
four sections of 100 units each, the origin corresponding to 500.
The data are plotted in Figure 9.

The student should observe from this example that one may
be required to chooge different intervals on each axis, and that the
lower left hand corner does not necessarily represent a zero value.

Example 4. Exhibit the following data graphically and show
that the function y — 19.40 — .07z is an approximate representa-

tion:
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MINUTES
1060

ANV
1/
\\ /

600 Y,

/ \/ X

300

[) 100 200 300 + a00 500 600 700 800
365
FIGURE 9
Year | 1500 1901 1902 1903 1904 1905
| —
Value of x |
(Class Mark) i 1 2 3 4 5 6
Price of Pig Tron '

in Dollars per Ton

1998 1587 2219 1992 1557  17.88

1906 1907 1908 1909 1910

Year E
Value of » ‘ 7 8 9 10 11
!

Price of Pig Iron 20.98 23.89 17.70 17.81 16.88

Calculating values of the function y = 19.40 — .07x, one has

x 1 3 7 9 11

¥ 19.33 19.19 18.91 18.77 18.63
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The graphs of the data and the function are shown in Figure

10.

2s
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N ===
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[ 2 a & 8 (&) 2
FIGURE 10
PROBLEMS
1. Graph the function y = — % 2 — 3.
2. Show that the graphs of the functions y = 4x + 2 and y = — % 2

-+ 1 are perpendicular to one another.
3. Graph y = 422 ,

1
4, Graphy = - + 2.
x

b.

Show that ¥ = + V25 — x? graphs into a circle of radius 5. Hint:

Use both plus and minus values of « and notice that x cannot be greater than
b nor smaller than —b5.

6.

If a box with a square base has an open top, the area A is given by

the formula

A=a+4V/e ,

where a is the side of the base and V the volume of the hox. If V is one cubic
foot, graph the value of A in terms of ¢ and show graphically that the area
is the smallest when a is equal to twice the height.

7.
8.
9.
10.
11.

Graph the data of problem 1, section 2.

Graph the data of preblem 2, section 2, for the years 1924 and 1925.
Graph the data of problem 4, section 2.

Graph the data of problem 3, section 2, Chapter V.

Graph the data of problem 5, section 1, and by continuing the curve

estimate the population for 1930, 1940, and 1950.
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12, The following table gives the values (unit, 1,000 cars) of a smooth
curve fitted to automobile produection (U.S. passenger cars) for the years
1913-1927;

o T
Year “ 1913 19314 1915 1916 1917 1918 1519 1920

Value ﬁ 83.45 42,90 5446 6838 8461 103.10 123.23 144.81

1922 1923 1924 1925 1926 1927

Year ‘il 1921

e
Value |‘ 166.59 18795  207.96  226.22 241,95 255.81 266.91

Represent these data graphically. In what years was automobile produe-
tion growing most rapidly? (The curve obtained is known as the logistic curve;
it approximates many forms of industrial growth.)

13. Make a graph of the “goodness of fit” curve, Table VIII {The Pearson
Probability P), for n = 3, using x2 as the abscissa and the tabulated value
as ordinate,

14, Make a graph of the “goodness of fit"” eurve, Table VIII, for x2 = 10,
using n as the abscissa and the tabulated value as ordinate.

4, The Straight Line. In the following sections a few typical
graphs useful in statistical work are discussed. One may begin
with the straight line.

The general equation of the straight line is

==a—+br, (1)

also sometimes written as
Y=0 1 ax ,

where @ and b are arbitrary constants. The constant « is repre-
sented in the graph as the distance from the origin, measured
along the y-axis, of a point on a straight line, namely, the dis-
tance OA4 in Figure 11. This distance is usually referred to as the
y-interecept. The consiant b is the slope of the straight line, and is
numerically equal to the ratio BC/AB. In graphing equation (1),
since it is a straight Iine, only three values of # and ¥ need be used.
Two of these values determine the line, and the third can be used as
a check. The first example of the preceding section illustrates the
problem of graphing a straight line.

5. Fitting a Straight Line to Data. In statistical work, one is
usually more concerned with the problem inverse to that discussed
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in the preceding section, that is to say, with the problem of finding
the equation of a straight line which approximately represents a
given series of data.

Y
c-/
A B

FIGURE 11

To illustrate the procedure, consider the following data:

@ 1 2 3 4 5 6

Y 2 3 4 4 5 5

If these points are represented graphically, they will be found
to lie approximately, but not exactly, in a straight line. The prob-
lem is to calculate the coefficients ¢ and & of the straight line
Y = a -} bz, determining them in such a way that the straight line
will pass as near all the given points as possible.

A method by which these coefficients may be computed is
called the method of least squares, and is discussed more fully in
Chapter IX. For our present purpose, it will be sufficient to exhibit
the process by which the line is determined.

If z and y in the equation y == a - bz are replaced by the
values given in the table, the following set of six equations is ob-
tained:

b+a=2 s
2b}-a=3 ,
3b+a=14,
b+ a=4 ,
5+ a=5,

6bta=5 .
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It will be readily seen that no values of @ and b can be obtained
which will satisfy simultaneously all six equations. Hence, one must
find one set of values which is the best* approximation to a solution
of the equations.

In order {o do this one may first obtain two equations called,
respectively, the first and second normal equations. The first normal
equation is formed by multiplying each equation by its coefficient
of b and then adding together the set thus obtained. Similarly, the
second normal equation is formed by multiplying each equation by
the coeflicient of @, (in this case by 1), and then finding the sum of
the set. For the present example, this process is as follows:

b+ a=—= 2 b+ae= 2

4b 20— 6 2b+4a= 3

9b 4 3a =12 3bto= 4

16b |+ 4a =16 4b+a=— 4
25b 4 ba =25 bbta=— 5
36D -+ 60— 30 6b--a= 5
91b I 21a =91 216 -} 62— 23

(First Normal Equation) (Second Normal Equation)

The desired values of @ and b are to be computed by solving the
two normal equations simultaneously. To do this, divide the first
equation by 91, the second by 21, and subtract the first from the
second. Then

(1) b+ 2308z =1
(2) b - .2857a — 1.0952

.0549a —= .0952
Hence, one gets,
e —1.93 .

Substituting this value in the first equation and solving for b,
one obtains

b=1— (.2308) (1.73) — .6 .

'The word best is used here in a particular sense, namely, as best in the
sense of least squares. It is not convenient at this peint to amplify the defini-
tion thus implied, but a discussion of the principle will be given in section 7
of Chapter VIII. A further amplification will also be found in Chapter IX.
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The least square straight line, ¥ == a 4 bz, is then
y=173 4 .6z ,

which is graphically represented in Figure 12.

I'Igure 12.

6. Use of Tables in Fitting a Straight Line to Data. The prob-
lem of fitting a straight line to data is one so frequently met with in
statistics that it is desirable to have a short cut for computing the
coefficients. This can be done conveniently by means of Table IX,
provided the abscissa values are the sequence 1, 2, 3, .. .. ,p, that
is to say, provided the data are given in the following form:

x ‘ 1 2 3 4 . . . . . . 0p

¥ ‘ ¥y Y, Ys Yy - = - - . e Uy

The derivation of the formulas from which Table I1X was com-
puted is given in section 5, Chapter IX, and will not be discussed
here. The use of the table is explained in the following rule:

First calculate the values mo =y, -+ Y2 + Ys -} +---+-- + ¥,
andmliy1+2y2+3y3+ ....... ._I_pyp_

Then the coefficients of the straight line, y — a - bx, which
best fits the data, are computed from the formulas:
a==Am,+ Bm, ,
b= Bm, -} Cm, ,

where A, B, C, are the values in Table IX corresponding to p.
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Ezample: The coefficients a and b for the example discussed in
the preceding section are thus easily obtained.

One first computes
My==2+4-3 -4+ 4451 5==23,
my=2 464 124+ 16 + 25 -+ 30 =91 .

Using p == 6 (the last abscissa value), it is found from Table
IX that,

A = .86667 , B =-—.20000 , C=.06714 .

Hence,
@ == (.86667) (23) + (—.20000) (91) =1.73 ,
b == (—.20000) (23) + (.05714) (91) = .6 .

PROBLEMS
1. Graphy = —2x + 3.
2, Graph2x + 3y = 6 .

3. Show that the lines 3x + 4y = 12 and 4x — 3y = 12 are perpendicular
to one ancther.

4. What are the slopes of the lines 8x — 3y = 6, 5x + ¥ = 2, 52 + @
== 6§, and 2x + 6y = 57

5. Find graphically the intersection of the lines 2x + 3y = 6 and
3x — 2y = 6.

6. Graph the lines 4x — 6y == 1 and 2¢ —~- 3y = 3, From this example
state the condition for parallel lines.

7. Graph the lines ¢ + 3y = 6, x — 2y = 4, and « + y = 6.
8. Show that the following lines meet in a point:
x+ 2y =4; 2y —ax=10; 3z — 2y = 4,
9. Calculate by the method of section 5 the straight line which fits the
data of example 4, section 3.
10. Calculate by means of Table IX the straight line which fits the data
of example 4, section 3.
11. Obtain a straight line of the form,
P=a+bM,
where M is the month and P is the average price, using the data given in sec-

tion 2 to determine ¢ and b. Hint: Replace the month class marks by the in-
tegers 1, 2,3, ..., 12.

12, Fit a straight line to the data of problem 3, section 2, for the years
from 1890-1913. Hint: Replace the years by the integers 1, 2, 3, ..., 24,
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7. The Parabola. A parabola is the locus or curve determined
by the equation
Y =0 F @ -+ a.x* , (2)

where a,, a,, and g, are arbitrary constants.

Example: For the parabola
y=2-4 3xr — 2z ,

the following table of values for z and y is determined, which, when
plotted in Figure 13, give us a picture of the curve:

x — 2 —1 0 1 2 3 4

Y -—12 —3 2 3 0 —17 —18

-204

FIGURE 13.

A parabola, in the form in which it has been written, is charac-
terized by the fact that it is a eurve that is either concave up or
concave down. In other words, it has either a mintmum, that is, a
smallest value, or a maximum, that is, a largest value. If a, is nega-
tive, the parabola is concave down, as in the example.

The value of x for which the parabola is a maximum or a
minimum is

Z = —(0,/2a;) , (3)
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and the maximum or minimum value for ¥ is given by
y = (dasa, — a.*} /4a; . (4)
In the example, a;,—2, @, == 3, @;==—2. Hence, x=-—3/(—4)

—92)(2) — _
=.70 andy =(4) ( 2;( ) Y = 285 ==3.125 . These values
are represented in Figure 13 by the lines OA and AB respectively.
Since the curve is concave down, AB is a maximum value.
The results (3) and (4) readily follow from the fact t}_lat

equation (2) can be written in the form

(4@3041 — a’zz) - 2
Y= 4a, —I"“s(‘”‘i‘z‘aa) .

If y is to reach its maximum or minimum value, the squared
term, which is variable, must be made as small as possible, that is
to say, it must equal zero. Setting it equal to zero, therefore, and
solving for #, one gets (3). The remaining term is seen to be equal
to the term in (4).

The parabola may cross the z-axis twice, may touch it, or may
lie entirely above or below it. To find where the parabola crosses
the z-axis, one sets ¥y = 0 and thus obtains the equation

0a2? - @x - @y =10 .
The solution of this equation is given by the familiar quadratic
formula:
=Y ty% — 450
o 2a,

From this formula it is readily seen that:

(a) if a,? — 4a;a, > 0, the parabola crosses in two points,
since x has two real values;

(b) if a2 — 4a,a, — 0, the parabola touches in two coinci-
dent points, since x has only one value; and

(e) if a2 — 4asa, < 0, the parabola crosses at no point,
since  has two imaginary values.

In the example,
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and hence one gets
r—2and £ =——1/2 .

8. Fitling the Parabola to Data. The method of fitting a
straight line to data, as described in section 5, is capable of im-
mediate generalization. In the case of the parabola

Y=a, 4+ t.x 4 ax?® ,

three normal equations instead of two may be used for the deter-
mination of the constants, @, a,, and a..

It will be more convenient at this time, however, to postpone
consideration of the general theory of curve fitting to a later chap-
ter and to make use of Table X which is designed to simplify the
problem in the case of the parabola.

The rule to be applied may be stated thus:

Let the data be given in the following form:

®* ’ 1 2 3 4......p

¥ | 2 Y Ys Yo © - o - Y,

Then compute the values:

Moo=+ Y +YsF+ ¥+ - - + ¥
M=+ 2043y +4dy. - - ... -+ 2%
Me =Y + 49> + s - 16y, 4 -+ - - - -+ P -

From these constants determine the cocfficients of the parabola
by means of the formulas:

, — Amo —|— Bml "f— sz ]
(LZZBmO—-l—Dm1+Em2 )
a,3:Cmn—|—Em1—[—sz ]

where A, B, C, D, E, and F, are the values in Table X correspond-
ing to the value p.

Exaemple: In illustration, a parabola may be fitted to the fol-
lowing data:

. {(a)
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Since the values of x are not the sequence of positive integers
required by the rule, although successive values differ by unity, the
positive integers will be chosen as new class marks and the table
written thus:

' 1 2 8 4 5 6 7
(b)

¥ —12 —3 2 3 0 —T7 —18

This makes it possible to use Table X and one computes:
Mmy—=-—12-—-34+2-4+34}-0—T7T—18=—35,
my=-—-12—6+6412 -} 0—42 126 =—168 ,

My =—=-—12 — 1218+ 48 4+ 0 — 252 - 882 —_1092 .

Referring to Table X for p =7, the values for A, B, C, D, E,
and F, are found to be

= 2.428571 , D= 797619 ,
B=-1.285714 , : E — - 0952381,
= .1428bH7 , F=  .0119048;

and a,, a,, and a; are computed as follows:
a, = (—35) (2.428571) + (—168) (-—1.285714)
-+ {(—1092) (.142857) = —25 ,

a. = (—35) (—1.285714) -} (—168) (.797619)
-+ (—1092) (—.0952381) =15 ,

@; = (—35) (.142857) -}- (—168) (—.0952381)
A4 (—1092) (.0119048) =—2 .

Hence, the parabola fitting the data of table (b) is
Yy =—25 -} 162’ — 2(x")2 .

In order to obtain the parabola fitting table (a) one observes
that the class marks in (a) differ by 3 from the class marks in (b),
that is to say, ¥’ =— x -}- 3. Substituting this value in the parabola

just written down, one finds
Y=-—25+15(x + 3) —2(x +3)°2
= —25 4 15x +45 — 2x* — 122 — 18
— 2 —l— 33: — 2332 .
This is, in fact, the parabola used in the illustrative example
of section 7.
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PROBLEMS

1. Graph y —= 222 — 42 + 2.

2. Graphy = — 222+ 6x— 1.

4. Which of the following parabolas cross the x-axis and which do not?
y=9x2—6x +1 ;
y=x2—2x-+4 ;
y=—3x2+2x T+ 4.

4, For what values of x do the following parabolas cross the x-axis?
y = 2«2 + 3x — 5; Yy=9x2—6x +1.
5. Find the lowest or highest points on the parabolas of problem 3.

6. Find the value of & for which the expression
S(z—2)2 1+ 5(x—3)2 + T(xs—4)2 ,
is a minimum,
7. Fit a parabola to the following data:

T 1 2 3 4 5 6

v | 1 2 9 22 41 66

8. Fit a parabola to the values in the following table:

@ 4 5 6 7 8 9

|
¥ ! 1 3 7 20 42 60

Hint: Replace the values of x by the sequence 1, 2, 3, 4, 5, 6.

9. TFit a parabola to the population data of problem 5, section 1. In order
to simplify the calculations, round off the population figures to the nearest
million and replace the years by the class marks 1, 2, 3, 4, ..., 14.

9. The Exponential Curve. A curve of great importance in
many branches of mathematics, and particularly in statistics, is the
exponential curve, whose equation is

Y=ae" , (5)

where a and b are given numbers. It can be conveniently graphed
by referring to a table of values, such as Table II.}

Example: Graph y = 3¢%/2 .

11f he has not already done so, the student should familiarize himself with
the de_xpﬁlential function e® before beginning this section. See section 5, Ap-
pendix II.
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Convenient values for ¢! are first obtained from Table II.

t —2 —1 —.5 o 5 1 2

et 13563 .3679 6065 1.0000 1.6487 2.7183 7.3801

From this table the following values of ¥ are calculated :

x ’ —4 —2 —1 0 1 2 4

Y ! 4059 11037  1.8195  3.0000 4.9461  B.1549  22.1673

The graph is given in Figure 14.

25Y

20

FIGURE 14.

The exponential curve is sometimes referred to as the “curve
of growth,” since it represents the growth of living matter under
ideal conditions. It is also called “the compound interest curve,”
from the fact that it gives the amount to which a principal a would
accumulate in time x at interest & continuously compounded.

The values ¢ and b which occur in the general formula are to
be determined from the data of the problem, namely, from given
sets of values of x and y.

Thus, suppose that y = 10 when z == 2, and ¥ = 20 when x = b.

Taking logarithms of both sides of (56) and substituting the
first set of values of x and ¥, one gets

log 10 =log a--2b log e ,
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or, since log ¢ = .434, one then has
1=—=1loga-+.868b .
Also, using the second set of values, one has

log20 =1loga -} 5bloge ,
or
1301 =loga-}-2.170 b .

Eliminating log ¢ by subtracting the first equation from the
second and solving for b, one has

1.302 b —.301 ,
b=.231 .

Substituting this value of b in the first equation and solving for
log a, one obtains

loga=1—.200=.800 ,
and hence a=—26.31 .
The desired equation is then
¥ —6.31 ez

If more than two sets of values of x and ¥ are given for the
determination of the curve, then the method of least squares ex-
plained in section 5 may be employed to advantage,

For example, suppose that the following values are given:

x 2 3 4 5 6 7 8

¥ .8 2.2 3.6 6 19 19 40

and one is required to determine the ‘best” exponential curve that
will fit them.

Taking logarithms of both sides of the equation (b), one re-
duces the problem to the determination of log ¢ and b from the fol-
lowing expression:

loga - bxloge-==logy .

Substituting in this equation the tabulated values for z and Y
and remembering that log e =- .434, one obtains the following set
of equations:
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log a + (.434) (2b) =log - .8 ,
loga 4 (.434) (8b) =—=log 2.2,
loga + (.434) (4b) =1log 3.6 ,
loga + (.434) (5b) =log 6 ,
log a4 (.434) (6b) =1log 10 ,
log a-}- (.434) (7b) —=1log 19 ,
loga -+ (.434) (8b) = log 40 .

Multiplying each of these equations by the coefficient of log a,
that is to say, by 1, and adding, one obtains the first normal
equation. Similarly, multiplying each equation by the coefficient of
b and adding, one obtains the second normal equation. The explicit
calculations follow :

loga+ .868 b=-0.097 , B68loga+ .753b=— -.084
loga+ 1.302b= 0.342 , 1.302loga 4 1.695b— 445
loge 4- 1.736 b— 0.556 , 1.736loga+ 3.014b= .965
loga-t+ 2.170 b= 0.778 , 2170 loga-}- 4.709b— 1.688

-

logag + 2.604 5= 1.000 2.604)loga-4 6.78156= 2.604
loga+ 3.038b= 1.279 3.038 log o -+ 9.229b - 3.886
loga-- 3472b— 1.602 3.472 log a -} 12.055 b = 5.562 ,

- - -

Tloga 4 15190 b = b5.460 . 15.190 log « -+ 38.236 b — 15.066 .
(First Normal Equation) (Second Normal Equation)

In order to solve these equations for b and log a, one proceeds as in
section 5. Dividing the first normal equation by 7 and the second by
15.190, one gets

loga 4 217000 b = .78000
loga—+ 2561718 b= .99184

Solving for b, —.34718 b ——.21184
b= .610

Substituting this value in the first equation above, one finds
log @ == 78000 — 1.32370 = —.54370 =— 9.45630 — 10,
and hence =286 .
The desired equation thus becomes

Y = .286 e®1%* |
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Values calculated from this function are compared with the
original data in the following table:

® ‘ 2 3 4 5 6 7 8
Given Values of y ; 2.2 3.6 6 10 19 40
Caleulated Values \ 1.0 1.8 33 60 111 204 376
PROBLEMS

Graph the following functions:
y=—e* .
iy = Be?z |
y—=e* + e*

1

2

3

4, y=ef—e* ,
b, y—e?—e22
6.

Determine the cxponential curve that passes through the points
(--2,7) and (4,1}.
7. Determine ithe exponential curve that passes ithrough the points (1,
3.66), (2, 4.47), (3, 5.47), (4, 6.68), (5, 8.15).

8. Fit an exponential curve to the following data:

2 3 4 7 12 20

9. Fit an exponential curve to the first seven items of the population
data of problem 5, section 1, replacing the years by the class marks 1, 2, 3,
«++ y 7. From this curve calculate the values corresponding to the next
five items in the table. How do these values compare with the data? Does
population growth follow the exponential law?

10. According to Raymond Pearl, the following funetion represents the
population growtlh of the United States:

197.27
1 + 67.32¢-03137

where & represents the number of years since 1780. Graph this function and
compare it with the actual population statistics. (See problem 5, section 1).
Hint: Let = be multiples of twenty.
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10. The Translation of Axes. It is often convenient in the
graphical representation of equations to change the origin from one
point to another by moving the axes parallel to themselves. This
process of translating the axes will often simplify the appearance
of an equation of a curve although, of course, the curve itself re-
mains unaltered. For example, if the origin of coordinates is
changed to the point (—4, 3) the equation of the parabola
y = 22°% -+ 162 -}- 35 reduces to the simple form ¢ == 222 ,

The method of translating axes is explained by Figure 15.
Let OX and OY be the original axes and 0’X’ and 0’Y’ the new
axes. Let (&,k) be the coordinates of the new origin O’ re-

ST .(-

=
b’.’
—

....... e — X'

= Qu
e ]

FIGURE 15

ferred to the old axes. 'Then, if (a,y) denotes a point with coor-
dinates referred to OX and OY, and (&7, ') the same point referred
to O’X’ and ('Y, i8 is clear that the coordinates z, ¥ may be com-
puted from the coordinates a’, %’ by means of the following equa-
tions:
rx=x'4h,
y=y -k .
Example: Transform the equation of the parabola y — 2z -
16x - 35 by changing the origin from (0, 0) to the point (—4, 3).

In this example, h== — 4 and k — 3. Therefore, if 2’ and ¥
are the new coordinates, one has

r=u" —4 ,
y:y’—l—S .
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Substituting these in the equation of the parabola, one gets
¥+ 8=—=2(x—4)2 + 16 («'—4) -{- 35 ,
which reduces to
Y= 2" .
The relationship thus obtained is brought out in Figure 16.

¥

60

e o E—— ———————————— e

O

[FIGURE 16

PROBLEMS

Transform each of the following equations by shifting the origin to the
point indicated.

L 3z +4y=3, (—85) .

2, w?—dxtyrt6ey+9=0, (2—3).

3. y=3x*—2x+6, (1,—1).

4, oy +t2y+dx—1=0, (-=2,—-3).

5, y=ede®+3, (2,3),

6. For what values of k and k will the equation ¥ — 822 — 12x + 7

reduce to ¥’ = 3x'2? Hint: Substitute x —= &’ + k, ¥y = o' + k in the first
equation. Then set the coeflicient of x and the constant term equal to zero, and
solve the two equations thus ubtained for : and k.

7. Reduce the equation 10z — 3y + 2 = 0 to the form 10x' — 3y = 0
by a translation of axes,

8. Show that the parabola y = a.2® + a,» + @, may be put inte the

a. 4.0, — a,%})
formy = a2 ,if h=—-—2 and k =S—31——~2—~ )
2a, da,

9. Make use of the resulls of the preceding problem to compute the maxi-
mum (or minimum) value of the general parabola. Corapare with the analy-
gig given in section 7 of this chapter.



THE GRAPHICAL ANALYSIS OF DATA 63

11. The Normal Probability Curve. The equation of the nor-
mal probability curve, which will be studied in considerable detail
later, is given by the equation

P PSS 6)
o/ 2n

where N, A4, and o are constants the significance of which will be
poinfed out in a subsequent chapter.

In order to graph (6) it is usually convenient to make a trans-
lation of axes by means of the relation

_ (@—4)

(43

t (7)

Thus (6) takes the more convenient form

o N L

o V2a

Values of the function (1/v/2n)e ' have been recorded in
Table VI and this very much simplifies the caleulation of values
of 4.

Example: Assuming the values N = 131, ¢ = 6, A = .25,
graph equation (6).

First Solution: The simplest procedure is first to compute
N/o = 131/.6 = 218. Then letting ¢ assume the values —3, —2,
—1, —1%, 0, ¥, 1, 2, 3, find from Table VI the corresponding
values of (1/v/2¢)e ", These values are then multiplied by N/e.
Finally, from equation (7), written in the form x — ¢ ¢ 4 A, one
finds the values of z which correspond to the assumed values of ¢.
The following table is thus construcled:

t x Y H t % Yy
-3 —1.55 97 1% .85 76.75
—2 — .95 11.%7 1 1.45 52.75
—1 — .35 52.75 2 2.05 11.77

—% — .05 76.75 3 2.65 97
0 .25 86.97
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Second Solution: Since it is sometimes more convenient to
graph equation (6) by assuming that values of x are chosen as
multiples of o, an alternative method is given here,

In (6) first expand (x — A)* and then write the equation in
the form

Y= N e-HAIMT /o) (2/a)

— e—-ﬁ(u&‘/‘r}‘ﬂ .
o \2a (8)

Making the abbreviations
N'=N et/ gy, — et | gy (1/y27) e, t=2/0 ,

one may then write (8) in the form
Nr

Y=—14 Y. -
o

Assuming the values formerly given, one now computes
Afa=.2b/6=.42, 15(A/a)? = .088 .

From Table 1I by interpolation, the value of N’ is found to equal
N7 == 131 "% = 131 X .91576 = 120. Then let x take the values
—30, —20, —0o, —Vsw, 0, Vso, o, 20, 30. The quantities ¥, and y, are
explicitly the following:

yl J— 6~'1247/U , y2 o — e—l/a(t.’cr)‘ R
Van
Then for £ = 20, ¥y, = e**X? = ¢ — 2.3164, from Table IT; and
Yp == 1_ e %@ — 0540, from Table VI. For x = —3o,
VZan
Yy == €~43X3 = ¢712¢ == 2837, from Table II, and y, = —— e %®”
VZ2n

=.0044.

The values of y, and y. are calculated for each value of 2, and
recorded in parallel columns together with the value of N'/o .

The products of the three numbers in each row will be the
desired values of 4. The following table shows the results of these
calculations, and the final values are graphed in Figure 17.
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x N N’
; ‘; '-U1 y’2 'U = ? ylyg
-3 200 2837 .0044 25
-2 200 4317 0540 4.66
-1 200 6571 2420 31.80
-1 200 8106 3521 57.08
0 200 1.0000 .3989 79.78
1% 200 1.2337 .3621 86.88
1 200 1.5220 .2420 73.66
2 200 23164 0540 25.02
3 200 3.5254 0044 3.10
Y
8
40
X
-aq —ag -2a -1 0 r 2q aqg ag
FFIGURE 17
PROBLEMS
Graph equation (6) for the following values of N, o, and A.
1. N= 1024, o =158, A= 0.
2. N =59049, o = 1.05, A=—17.
3. N =159049, o =1.05, A= .17.
4. N= 1000, o = 2,00, A=—— 4.
5. N= 500, o == 1.00, A==— 5,
6. N= 500, ¢ = 1.00, A= 5.
7. Calculate the binomial frequencies ,,C, for » = 5, 6, 7, 8, 9, and 10;

show that they are approximately equal to the ordinates of the curve of
problem 1 for x = 0, 1, 2, 3, 4, b.



CHAPTER I11

METHODS 0F AVERAGING

1. Six Averages. In the theory of statistics there are several
averages in common use, in particular, (1) the arithmetic mean
(A); (2) the root-mean-square or quadratic mean (R); (3) the
median (M) ; (4) the mode (Mo); (5) the geometric mean (G),
and (6) the harmonic mean (H). With so many averages o choose
from, it is often very confusing to know just which one to use in
the study of a particular problem. Fortunately, however, each aver-
age has its own special uses, as will appear in the ensuing discus-

sion.

2. Illustrative Data. In order to have a common example to
which the various methods of averaging may be applied for com-
parative purposes, the frequency distribution discussed in section
9, Chapter I, page 18, may be employed. For the sake of ready ref-
erence, Table (a) and Table (b) derived from it are repeated
below:

TABLE (a) 4-6 Months Prime Commercial Paper Rates,
J anuary, 1922, to Decemher, 1831

|
|
|
|
|

{

|
Ei

I? _ }

H
Li
:

ER R T T
2.88% | 113561 "’é.fgrf 3 ’415 - kazxus—r_l 470! 1 '5.66" 11556 |1
2.97 1363 |1]3.95 1419 1 ‘444 2 (4782 (513 | 4 [559 |1
300 | 3365|1397 1\423 11150 1 {485 1 5.16'1”&69 1
3.13 I 3 H3.72 1 “ 4.00 H 485 | 4 nus' 1 ’4.88 ‘ 4,538 \ 1 | 5.90 ‘1
323 | 13886 l4.05 428 1 1 lasal 1 Isa0 1 1600
328 | 1139011406 1 H431 H o‘ 1 i4.9s‘ L |41 1116091
350 | 10391 13 40911438 463 5 I500 | 2 1543 11 1613 |2
353 | 17393 |1 |412|3 |40 1 \I409_!1 !5.93__|_1 1550 | 2 [N =108

|
!
|
|

|
|
|
|
51

t
1

TaBLE (b) Frequency Table of 4-6 Months Prime Commereial Paper Rates,
_January, 1922, to Decemher, 1931

Class Class !

Intervals 1 Marks Frequencies
2.50-2.99% ! 2.715% 2
3.00-3.49 | 3.25 8
3.50-3.99 3.75 23
4.00-4.49 | 425 | 30
4.50-4.99 4.75 20
5.00-5.49 | 5.25 13
5.50-5.99 5.75 6

6

6.00-6.49 | 6.25
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3. The Arithmetic Mean. The arithmetic mean is the most
commonly used average, and is generally what is referred to when
speaking of the average price, average rate, average income, etc.
By the arithmetic average of a set of items is meant the sum of
the items divided by their number. For the following table,

Class Marks 2, X, By weevcrrees x,,

Frequencies 1 f, fo vovvenenns Fun

the arithmetic mean is, by definition, the class mark obtained from
the formula:

A — flxl + fzxa “‘"‘ f;;x:% + "i’“ fummm

N
whereN—=fi 4+ fo+fa+-+fm .

It will frequently be convenient for us to make use of the ab-

breviation 2 fix; = fi2, -} fot. + fa: + -+ + fu%m . The symbol
2 is the Greek letter sigma (capital) and it is used throughout alil
mathematics to designate summation. Often the symbol is written

2 fix;, the lower value, 7 = 1, designating the beginning term and
=1

]
the upper value, m, the final term of the summation. Thus 2 z* =

=1
12 + 22 4+ 32 + . - . + x2 When there exists no ambiguity, it is
usually convenient to omit the limits of the summation from the
symbol.
In terms of this symbol the arithmetic mean becomes
> f Wy
N

Example: For frequency Table (a) one obtains:
13X 2.8841X 297+ 3 X 3.00----- 423X 6.13

A=

A
108
477.36
=08 = 442
For frequency Table (b),
A__2><2.75+8><3.25+ ------ 4+ 6 X 6.25

) 108

_ 28050 445

108
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It should be noticed that the two values for the average agree
very closely, as they always should if the choice of the class inter-
val has been properly made.

An alternative form, useful in calculation, can be given to the
formula for the arithmetic mean, as follows:

Zfi (ﬂ?; e X) L Efix; . XZf,
N Y N

=4 —X , since3f;=N .

Therefore,
Zfi(xi— X)
N

A=X+

By choosing for X some value close to the mean, the labor of
calculation can often be materially reduced.

In calculating the arithmetic mean, it is well to follow some
systematic scheme such as that given below. The value X == 4. 00
has been chosen.

Class Mark Frequency | i

(z;) (£ | @=X) fieeX)
2.75% 2 — )+ ; — 2.50
3.25 i 8 I ] -— 6.00
3.75 1 23 P 95 — 5.75
425 1 30 i 25 7.50
4.75 ; 20 | 5 : 15.00
5.25 | 13 1.25 : 16.25
575 ; 6 | 1.75 ; 10.50
6.25 ! 6 ; 2.25 , 13.50

i i
| i e
Totals l 108 | 48.50
48.50
A=4.00 = 4,45 .
+ 108
PROBLEMS

1. The following table shows the distribution of the percentage devia-
tions from trend of the Dow-Jones Industrial Averages for the pre-war period,
1897-19183;
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Class Mark | Frequency ‘ Class Mark ’ Frequency
(per cent) \ } (per cent)

62 1 102 36
67 4 107 19
72 10 112 17
77 8 117 8
82 9 122 13
87 20 127 10
92 22 132 3
97 24

N =204

Calculate the a\;erage pefcentage deviation for this distribution.

2. The following data give an actual distribution, obtained by tossing
ten pennies 1024 times and recording the number of heads that appeared on
each toss. What is the average number of heads per toss?

No. of Heads 0 1 2 3 4 5 6 7 2 9 10

Frequency 1 16 42 126 199 253 209 118 53 4 3

3. Problem 2, section 11, Chapter I, gives the distribution of the per-
centage deviations from trend of Bradstreet’s Commodity Prices, for the years
1897-1913. Calculate the average of this distribution.

4. The items in the table of problem 2, section 9, Chapter I, give the
Ratio of Investments in U.S. Government Securities to Total Investments (Al
Reporting Federal Reserve Member Banks). Arrange these data for the five
years 1924-1928 in a frequency table and calculate the average ratio of in-
vestments to total investments.

5. The following table gives the frequency distribution of the percent-
age weekly gains or losses of a random forecast record, divided by one-half
of the corresponding stock market gain or loss, for the 230 weeks from Janu-
ary 1, 1928, to June 1,1932:

Percentage J
Gain or Loss ; Class Mark Frequency
96.50- 97.49% 97% 1
97.50- 98,49 98 13
98.50- 99.49 99 : 32
99.50-100.49 100 ' 115
100.50-101.49 1m 45
101.50-102.49 102 14
102.50-103.49 103 2
103.50-104.49 104 4
104.50-1056.49 105 2
105.50-106.49 106 , 1
106.50-107.49 107 - 1
Total 5 230

What is the average gain or loss for this distribution?
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6. Find the average taxable income in 1921 in the United Statez from

Income Class L Number | Income Class Number
—— e e S
$ 1,000- 2,000 } 2,440,544 ¢ 40,000- 50,000 - 6,051

2,000- 3,000 | 2,222,031 “ 50,000-100,000 8,717

3,000- 4,000 702,991 100,000-150,000 ! 1,367

4,000- 5,000 ‘ 769,155 ‘ 150,000-200,000 | 450

. 5,000-10,000 353,247 | 200,000-250,000 i 205
10,000-15,000 | 80,014 H 250,000-300,000 ! 84
15.000-20,000 | 84,230 300,000-400,000 98
20,000-25,000 | 18,100 400,000-500,000 | 64
25,000-30,000 . 10,848 | 500,000-1000000 ; 63
30,000-40,000 12,047 1,000,000 and over* ; 21

; I

aThis table is condensed from a summary in Stotistics of Income from
Returns of Net Incone for 1921, Treasury Department Publication, Washing-
tion (1923).

*Use 1,000,000 as the class mark.

7. The following table shows the receipts and expenditures of the United
States Government, expressed in per eapita amounts, for the twenty-year
period, 1913-1932:

__PerCapita

Year Receipts | Expenditures
|
1913 1 $ 7.50 ‘ $ 7.51
1914 7.50 751
1915 l 7.03 ‘ 7.66
1916 7.77 7.29
1917 | 11.00 19.36
1918 . 35.38 { 122.58
1919 49.07 ‘ 176.40
1920 62.91 1 60.91
1921 51.87 51.07
1922 | 37.39 ‘ 34.54
1923 25.88 33.10
1924 | 35.28 30.83
1925 i 82.76 20.59
1926 ‘ 33.83 30.61
1927 34.81 I 29.45
1928 33.68 | 30.36
1929 \ 33.67 i 32.13
1930 34.47 32.98
1931 | 96.54 - 3376
1932 L 15.81 38.98

8. The following frequency table shows the distribution of 1110 ohser-
vations made on 149 commodity price series during ten business cyeles;!

1Source of data: Frederick C. Mills, The Behavior of Prices, Ch. I\T.,
National Bureau of Economic Research, N.Y., 1927.
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Duration of Cycle
(from low to ensuing low) | Class Mark Frequency

(in months)
7.50 to 12.49 menths 10 months T
12,50 to 17.49 15 27
17.50 to 22.49 20 61
22.50 to 27.49 25 115
27.50 to 32,49 30 139
32.50 to 87.49 35 186
37.50 to 42.49 40 167
42,50 to 47.49 45 124
47.50 to 52.49 50 122
52.50 to 57.49 b5 67
57.50 to 62.49 60 52
62.50 to 67.49 [ 65 15
67.50 to 72.49 70 15
72.50 to 77.49 75 8
77.50 to 82.49 80 2
82.50 to 87.49 85 2
87.50 to 92.49 90 0
92.50 to 97.49 95 i

Total 1110

Caleulate the average duration of the cyele for this distribution.

4. Transforming the Arithmetic Mean from One Set of Class
Marks to Another. 1t is frequently desirable in the study of statis-
tical problems to be able to change from one set of class marks to
another. Perhaps one wishes to change the origin or to increase
or diminish the breadth of the class interval. Suppose that the old
class marks, x;, are related to the new class marks, y;, by the for-
mula:

X, = aqy; —]— b . (l)

It can then be proved that the old average, 4., is related to the
new average, 4,, by the following formula:

Ac = Ay + b.
By definition,
A, — (Zfixi)
N

Substituting the value of z; in terms of ¥, from (1), one gets
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_ Zfileyi+b) (aZfys) + bZf;
T N T N N
=aA,+b.

A.

Example: Given that A, — 76.199, where the average refers
to the set of class marks (X), calculate the average for the follow-
ing data, using the second sef (Y):

Class Marks (X) 62 67 72 7 82 87 92 97

|
|

Class Marks (Y) o 1 2 3 4 5 6 7

Frequencies 14 41 56 8 52 21 7 5
|

Since for x = 62, ¥y = 0 and for & = 97, y= 7. for the deter-
mination of & and b in the transformation there are the two equa-
tions:

62=0a-+b,
M=Ta-+b.

Solving for ¢ and b one gets a = 5, b = 62.

Hence A, = (A, — b) /a == (76.199 —- 62) /5 = 2.840 .

If, for any frequency distribution, the average for the set of
class marks 0,1, 2, . ..., n, where n = m — 1, has been calculated,
this average is the Bernoulli mean and is designated by the symbol
A, . It will be found later to play an important réle in normal and
skew-normal frequency distributions. In the example just given,
Ag = A, == 2.840.

PROBLEMS

1. What is the relationship between the followiﬁg sets of class marks?

Xl'5101520253035

Y ‘ 9 19 29 39 49 59 69
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2. Given the sets of class marks:

X S S+ s S+ 2s S+ 3s S+4s ...

Y 0 1 2 3 .

show that the values of @ and b in the formula x; =ay; + b are a =s, b=S.

3. Given the following sets of class marks:

X S S-+s S+ 28 S + 3s §+4s

Y T T+t T+2t T - 8¢ T+4t ....

ealeulate the values of @ and b in the formula »; = ay; + b. Does the solution
supply a formula for transforming from one set of elass marks to another?
Apply it to problem 1.

4. Caleulate the Bernoulli mean for problem 5, section 8.

5. Caleulate the average for the frequency table in problem 2, section
3, using the class marks 10, 9,8, 7, 6,5, 4, 3,2, 1, 0.

5. The Root-Mean-Square or Quadratic Mean — Standard
and Mean Deviations. Next to the arithmetic mean, the root-mean-
square, or quadratic mean, plays the most important role in statis-
tics because of its fundamental connection with dispersion. It may
be defined as the square root of the arithmetic mean of the squares
of the class marks. In symbols this definition becomes:*

N

& fixd
= JT -

The quadratic mean gives special weight to large class marks,
since they enter into the formula as squares, and, therefore, it fur-
nishes an effective average to use in the study of the dispersion of
data.

R— \/(f1x12+fex22+fsx32+"'+fmxm2)

1A generalization of the quadratic mean occasionally used is
R = k\/ (f,2,% -+ o0 & Fyx 4 oo fu®aF)
N ?

kE>2.
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A deviation from the mean may be defined as the difference be-
tween a class mark and the arithmetic mean, i.e. (z;—4) .

The standard deviation of a frequency distribution is the root-
mean-square of the deviations of the values of the variable from
their arithmetic mean. The Greek letfer ¢ (sigma) is commonly
used to denote the standard deviation, Where A4 is the arithmetic
average as previously defined, this definition becomes in symbols

A):: + T + f.mf ("'vm_“il)z
N

g ==

\/fl(xl—A)ur f2 (@, (2)

. !Efi(xi—A)g )
=y —
In application it will usually be found simpler to use the fol-

lowing formula, rather than (2), where X is some conveniently
chosen number :

2 (xl—X)2+fz(x2—X)=;V . +fnlen— XY 4 x)e

oy ==

(3)

_ Zf; (xi-——X)2 R
N ey

In applying this formula to data, it is usually desirable to let
X be an integer differing as little as possible from A. It is some-
times convenient, however, to let X — 0.

In proving that formulas (2) and (3) are identical, one pro-
ceeds as follows:*

Squaring equation (2) and expanding, one obtains
02=2f«;($i—A)2/N:Zf‘-(xi2_...2A$1- —!—-A")/N
— 3 fix?/N —24 3 fuixi/N + A* 5 fi/N .

1To the student who knows differential calculus, this may be more easily
proved as follows:

d . —2Zf. (z,—X)
—_ — e———————
ax ! N

Hence 0,2 is independent of X. To show that ¢% is actually equal to o2, one

now need merely let X — A in formula (3) and compare the result with for-

mula (2). Why is this a proof?

— N X—AY=—24 +2X —2X + 24 =0 .
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Since 2 fix;/N=A and X f;/N =N/N =1, one has
o= .E’f.;xf/N— 242 + A= Zf,-x,-z/N-—A’- .

In the same way, from equation (3) one finds
o=2fi(x;—X)?/N — (A—-X)?=2f; (2 —2Xx; -}- X?) /N
— (A_X)z
=2 fiw;?/N —24X 4 X2 — A? - 24X — X?
=2 fix:?/N — A%,

Since the squares of the two expressions are identical, the
equivalence of the two formulas has been proved.

Example: Calculate the standard deviations for Tables (a) and
(b}, section 2.

Since A == 4.42, for the data of Table (a), it will be convenient
to let X = 4.00. One thus obtains

(2.88—4.00)2 + (2.97—4.00)* + - .-+ (6.13—4.00)*

":\/ 108 — (42)?

=/ 82.85/108 — (42)*=.77 .

As in the case of the arithmetic mean, the work of calculation
should be arranged in a systematic way. Letting X — 4.00, the
value of the standard deviation for Table (b) may be computed in
the following manner:

) fi (#,—X) |(z,—X)? filz,—X)?
2.75 2 — 1.25 1.56 3.12
3.25 8 — .75 .bé 4.48
3.75 23 — .25 .06 1.38
4.25 30 25 .06 1.80
4,75 20 .75 .56 11.20
5.25 ;13 1.25 1.56 20.28
5.75 i 6 1.75 3.06 18.36
6.25 6 2.25 5.06 30.36
Totals 108 90.98

o = 1/90.98/108 — (4.45 — 4.00)% = .80 .
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The coefficient of variability is defined as the ratio of the
standard deviation to the arithmetic mean, that is,

v=a/A ,

and is used as a measure of the uniformity of data.

If one had, for example, two sets of data whose arithmetic aver-
ages were the same, but where the items of one set varied consider-
ably in magnitude, while the items of the second set varied little in
magnitude, this would be shown by the fact that the coefficient of
variability in the first case was lorger than in the second. By it-
self, the standard deviation does not give a measure of uniformity
for a set of data which is directly comparable with the standard
deviations of other sets of data, since the magnitudes of the orig-
inal items may be very different. The standard deviation of high
grade bond yields over a period might be, say, 1 per cent, and the
standard deviation of national income, say, $10,000,000,000. It
would be palpably absurd to say that national income varied
10,000,000,000 times as much as bond yields. Only when a stand-
ard deviation is related to the arithmetic average of the series, has
one figures which are comparable measures of the uniformity of
data. And this is the function of the coefficient of variability.

Ezample: Compare the uniformity of the following data with
that of the data given in Table (b), section 2:

Class Marks 2.75 525 3.75 425 4.75 5.25 675 6.25

Frequencies 7 10 15 38 33 28 22 15

For this table, A — 4.72 and ¢ — .91. Hence, v = ¢/4 =
91/4.92 =193 . For Table (b), v = .80/4.45 — .180, which indi-
cates that the variation of the second group is somewhat greater
than that of the group represented by Table (b).

It occasionally happens in the study of the dispersion of data
that it is not only unnecessary, but even misleading, to give too
much emphasis to large deviations. In this case, the mean or aver-
age deviation should be used instead of the standard deviation. By
the mean deviation shall be understood the arithmetic average of
the absolute values, i.e., numerical values of the deviations from the
mean. If the absolute value of a number m is designated by the
-customary symbol |m/, this definition may be stated as follows:

Zfilxi—“Al

AD = 77
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Ezample: Calculate the mean deviation for the daia of Table
(b), section 2, for which A — 4.45

i
Class Mark ‘ Frequency ‘ Je,—A| J file,—A|

. S e e e S
275 ‘ 2 1.70 i 3.40
3.25 8 ‘ 1.20 | 9.60
375 23 70 16.10
4.25 30 | .20 ‘ 6.00
4.75 20 .80 6.00
5.25 : 13 1 80 ~ 10.40
5.75 6 ! 1.30 7.80
6.25 6 | 1.80 ‘ 10.80
Totals 108 l ‘ 70.10

The mean deviation of .65 is to be compared with the stand-
ard deviation of .80, the difference being due in large part to the
extra weight given in the latter to extreme items.

PROBLEMS

1. Caiculate the standard and mean deviations for the data of problem
1, section 3,

2. Calculate the standard deviation for problem 2, sectlion 2.

3. Calculate the standard deviation for the per capita receipts and ex-
penditures of the United States Government as given in problem 7, section 3.

4. Do per capita receipts or per capita expenditures show the larger
variability? (Problem 7, section 3).

5. Caleulate the standard deviation for problem 5, section 3.

6. Calculate the standard and mean deviations for problem 8, section 3.

7. Two students, A and B, toss ten pennies 1024 times, recording the
number of heads which appeared on each toss, with the following results:

No. of Heads 01 2 3 4 5 6 7T 8 9 10
Frequency (A4) 0 5 39 125 227 270 197 121 36 4 0
Frequency (B) 811 41 114 209 237 212 184 50 8§ 3

Which set of data shows the larger variability?
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6. Transforming the Standard Deviation from One Set of
Class Marks to Another. It is often important to be able to trans-
fer from one set of class marks to another as it was in the case of
the arithmetic mean. _

If the old class marks, x;, are related to the new class marks,
¥i, by the formulg

xi=ay;+b ,

it can be proved that the old standard deviation, o, is related to the
new one, gy, by the formula

or == |@oy . 4)
By definition,
u';z':Zf.;, (SU,--—A,):!/N b

where A, is the average computed for the class marks Z;. In section
4, it was learned that 4, and A, (the average in terms of the class
marks y;) are connected by the formula

Ar=ad,+ b .
If this value is substituted for A,, and the value of x; in the
formula for ¢,% one then obtains
o’ =2 fi(x:—A4;)*/N
==X fi(ayi+b—ad,—b)2/N
=& X fi(yi— A,))Y/N

Or o, == |a|ay, Which was to be proved.

Ezample: Given o, =— 7.41, the standard deviation for the set
of class marks (X), calculate o, using the second set (Y).

Class Marks (X) 62 67 72 77 82 87 92 97

Class Marks (Y) 0 1 2 3 4 b 6 T

Frequencies 14 41 56 85 52 21 7 5

Since the class breadth (i.e., the difference betweeq class lim-
its) for (X) is 5 and that for (Y) is 1, the value of a is 5/1 =5.



METHODS OF AVERAGING 79

Hence, using the formula for transforming from one set to the
other, one has

oy = 0o/ |0] = T.41/5 = 1.482 .

If, for any frequency distribution, the standard deviation for
the set of class marks 0, 1,2, ---... , , Where % == m—1, has been
caleulated, this value is referred to as the Bernoulli deviation and
designated by the symbol o5 . Its importance in the theory of
statistics will become apparent when normal and skew-normal fre-
quency distributions are studied. In the example just given,

op == ay, — 1.482 .

7. Moments. By the rth moment of a frequency distribution is
meant the sum of the products of the frequencies by the rth power
of the corresponding values of the variable, i.e., m, — 3fx;" .
Thus, for the zero-th, first, second, and third moments,* one has

M= f;=N ; my—2 fix;
My =2 fix;? my =2 fx® .
The arithmetic mean and the standard deviation are easily

expressed in terms of the zero-th, first, and second moments, as fol-
lows:

From the definitions above, since m, — X fi = N, and
my =23 fu;,
A:Zflxl/N:m-l/mo .

In formula (3) let X — 0; then

_szixiz
- N

0,2

— Az

Since m, =: X fix:® , «* then becomes

02 = My /Mo — M,? /M2 = (momy — m,?) /me?® .

1The name moment for these sums comes from mechanics. The center of
gravity of a system of masses is computed from the first moment of the masses
and the radius of gyration of the system from the second moment_of the
masses. Continuous moments both of frequency distributions in statistics and
of systems of masses in mechanies may be defined by replacing the sum sym-
bols in the formulas by integrals. The history of the introduction of moments
into statistics is given in Studies in the History of Statistical Method, by
Helen M. Walker, Baltimore, 1929, Chap. 8.
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By the rth moment of a frequency distribution about a number
X, is meant the sum

‘Z\’Tfﬁ2]‘:1'(371'_)()’r , No=N .

If one chooses X == 0, then N, =m, =23 fx;," .

It will appear subsequently that the most important class of
moments in the theory of statistics is made up of the moments
taken about the arithmetic mean, i.e.,

MrZZfi(xi—A)r »

where A is the arithmetic average.
In order to obtain the relationship between M, and N,, it is
first to be noticed that

Ni=2fix: —2fi X=N(A—X) .
By means of the binomial theorem, the following expansion

is obtained:
M, =23f(zi—A)y =2 fi[(zi—X) — (A—X)]"

= 2 fil (:—X) " — r(2:—X) " (4—X)
PO G eaa e
+ (—1)"(A—X)"]
=N, —Nea—X) + D N, 4
e (—1) NG (A—X) "

Substituting N,/N for the value (A—-X) in this expression,
one then obtains the formula:

M,—N,— N, (N:/N) + T_%T_l) Na@/Ne

— e (1) NG (NW/N)
If one lets r =1, 2, 3, 4, ---, the following identities between
the two sets of moments are calculated:

ﬂ’[o:N():N y
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M,=N,—N,=0,

M,=N,—Ng/N , (6)
M, = N;— 3N,N,/N 4 2N3/N* ,
M,=N,—4N,N;/N + 6N*:N,/N? — 3N,*/N* ,

Other additional relations can be readily determined by the student.

PROBLEMS

1. Calculate the Bernoulli deviation for the data of problem 1, section 3.

2. Calculate the standard deviation for table (b), section 2, using the
class marks .275, .825, .375, etc.

3. Calculate the Bernoulli deviation for problem 2, section 3.

4. What is the standard deviation for problem 3 if the class marks are
10, 9,8, 7,6,5,4,3,2,1, 0?7

9. Caleulate the first, second, and third moments for problem 2, section
3. From these values calculate the first, second, and third moments about the
mean,

6. Using the data obtained from problem 5, calculate the first three mo-
ments about X = 10. Hint: Remember that m, = NA and that N, =
N{A—X). Then make use of the relationship between N, and M,.

7. Express N, in terms of m,, m,, ..., m, .

8. Sheppard’s Adjustments. In the case of ordinary frequency
distributions, it is usually important to make an adjusiment in the
values of the moments to correct the error made in assuming that
all the frequencies in a class interval correspond to the mean value
of the interval. For example, if the rates on 90-day commercial

iThere is, unforfunately, no universally adopted notation for moments.
Since, however, most authors use £, to designate Sheppard’s adjusted mo-
ments (see next section), there is a strong tendency to use v, augmented by
bars and primes, to represent m,/N, M,/N and N_/N. In W. P. Elderton’s
Frequency Curvcs and Correlation, second edition, London, 1927, p. 15, the
following notation is specified:

N = total frequency ,
v, = nth unadjusted statistical moment about mean ,
»,” = nth unadjusted statistical moment about any other point ,
#, = nth mement from curve about mean ,
= nth adjusted statistical moment about mean ,
#," = nth moment from curve about other mean ,
= nth adjusted statistical moment about other point .

These all refer to moments as defined in the text divided by N .
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paper over a period of 120 months range between 2.50 and 5.00 per
cent, it would be convenient to divide the range into 25 unit inter-
vals one-tenth per cent in width. But the rates on commercial paper
do not progress uniformly by increments of one-tenth per cent,
so that in the interval between 2.50 and 2.60 one may find com-
mercial paper whose rates differ by various fractions of one per
cent.

By a method too intricate to give in detail here, W. F. Shep-
pard derived formulas to correct the moments of such heterograde
series when each end of the freguency curve makes high contact
with the x-axis, as is usually the case.! These corrections to the
maments are often referred to as Sheppard’s adjustments.

If one designates by M,, M,, M,, -+--- , M,, the various mo-
ments taken about the mean, and by po, 1, pt2, - - - - - , #r (u is the
Greek letter mu), the adjusted moments, the following formulas
for the calculation of the latter are available:

to—=M,=N , =0, =M, — M,a*/12 ,
=M, , e =M, — Yo M.a*+ TM,a*/240 ,

s == My; — bM.e?/6

e = M — ba*M,/4 + TM.a*/16 — 31M,a°/1344 ,

where @ is the breadth of the class interval.
Example: Adjust the second moment for Table (b), section 2.

Caleulating the moments about the value X = 4.00, one finds
N = 108, N, = 48.50, and N, = 90.98, Making use of these values,
the moments about the mean are calculated to be:

Mn:NZIOS 3
M]":Nl-—Nl:O »
M,—= N, — N,?/N = 90.98 - 21.78 = 69.20 .

The adjusted moments then become:

o — 108 ¥
th — 0 s
s = 69.20 — (108) (.60)2/12 = 66.95 .

If, now, one computes ¢ — v M,/N = .800 and ¢ = Vuz/N =
787, it is seen that the first value is the standard deviation obtained
in section 5 for Table (b) and that the second value is somewhat

14“The Calculation of the Moments of a Frequency Distribution,” Bio-
metrika, Vol. 5 (1906-1907), pp. 450-459.
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closer to the standard deviation for Table (a), ie, ¢ = .769. In
other words, the distortion in « caused by the concentration of fre-
quencies in Table (b) has been adjusted. This illustrates the prin-
cipal use of Sheppard’s correcticns.

PROBLEMS

1. Adjust the second moment for problem 1, section 2.

2. Express the adjusted second and third moments in terms of My, My,
m,, and m,,

3. Calculate the adjusted second moment for problem 8, section 3.

9. The Median. Another average which is of frequent use in
the theory of statistics is the median. By the median shall be meant
the value on the scale above and below which half the data lie.
When the items of the series have been arranged in order of size,
the median has the central position. Its usefulness is derived from
the fact that it is easily found, since only arrangement of the data
is necessary to determine it. When the median is the average used,
no undue weight is given to extreme items nor, indeed, need every
item in the series be explicitly known, since the position of the
item in the sequence, and not its actual value, is the knowledge re-
quired.

When the items of a series are arranged by class marks in a
frequency table, it is usually found to be necessary to interpolate
for the value of the median, since the frequency table gives only
the limits between which the median lies. This is done by means
of the formula®
ClVs (N+1)— 3fi]

F
where L is the lower limit of the median class, C is the class in-
terval, N the total frequency, 3f; the total number of items be-
low L, and F the frequency of the median class.

If the class marks of the frequency distribution, the median
of which is sought, are given merely as central values of the class
intervals, then L and € may be determined from the formulas

L=z, 4+ Vo(xy — ;)
Cx]/?.(xl—xl) ’

where zy is the class mark of the median class, x, the class mark

M=L-+4 (7)

1Some authors prefer to write N instead of N -+ 1 in this formula. This
applies also to the definitions of quantities, deciles, and percentiles as given
below.
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of the class just below the median and x. the class mark of the class
just above the median,

Example: Determine the median for the data of Table (b},
section 2.

In this case the median class is 4.00-4.49. Hence, it is seen that
L = 4.00, C == .50, N = 108, Xf; — 33, F = 30. From this

M = 4.00 4 .50 (54.5 — 33) /30— 4.36 .

When each half of the data of a frequency table is divided into
equal parts, the values representing the points of division are called
the first and third quartiles.

The values which form the division between the first and sec-
ond and the third and fourth quarters of a series of items arranged
in a frequency table are called the first and third quartiies, respec-
tively. If there are N items in the table, the first quartile is the
value of the class mark corresponding to item (N-+1) /4, the third
quartile to item 3(N-1)/4 . In the case of eleven items, for ex-
ample, the median corresponds to the sixth item and the quartiles
to the third and ninth items.

The quartiles may be computed by the median formula if one

replaces (N4+1)/2 by (N4-1)/4 and 3(N-{1)/4 .

Example: Calculate the quartiles for Table (b), section 2,

Since there are 108 items, the quartiles correspond to the items
2725 and 81.75 respectively. Using these values in place of
(N41) /2 in the formula for the median, and designating the quar-
tiles by @, and ., it is found that

@, = 3.50 -1 .50(27.256 — 10) /25 =- 3.88 ,
and
Q. =-4.50 + .50 (8175 — 63) /20 = 4.97 .

In a similar way, one may define the deciles and percentiles to
be the values of the class marks which divide the distribution into
ten and a hundred equal parts, respectively. They are calenlated in
the same manner as the median and the quartiles, except that
r(N-1) /10 and r(N-1) /100 are used in the median formula in
place of (N--1)/2 for the frequencies corresponding to the rth
decile and rth percentile respectively.

Ezample: Calculate the third decile for Table (b), section 2.
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For the third decile, D;, one has
D;=3.50 4+ .50(3x109/10 — 10) /23 —=13.99 .

The most striking characteristic of the median is found in the
fact that the sum of the absolute values of the deviations from the
median is smaller than the sum of the same deviations from any
other average. This may be proved as follows:

Suppose that 4, B, C, D, E, F, G, are successive points on a
line. Let X be any other point. If one denotes by CX the distance,
regardless of sign, between C and X, it is clear that CX -|- EX will
be smaller when X is between C and E than when it is outside this
interval, and further that CX ++ EX is constant when X lies
inside the interval. The same statement holds for any other pair
of points. Hence the total sum of deviations from X is smaller
when as many points lie on one side of X as on the other, or, in
other words, when X is the median.

The statistical importance of this statement is evident when
one considers the geographical location of centers of industry. A
business that lies at the geographical median of the district that it
serves has its most favorable loeation so far as distribution is con-
cerned.?

PROBLEMS

1. Calculate the median for problem 1, section 3.

2. What is the median for problem 2, section 37 What are the guartiles
for this problem?

3. Calculate the median for the income data of problem 6, section 3.

4. Compute the medians for the per capita receipts and expenditures of
the United States Government given in problem 7, section 3.

5. Calculate the quartiles for the data of problem 8, section 3.

6. Calculate the first, fifth, seventh, and ninth deciles for the data of
problem 8, section 3.

7. A chain store dealing in a certain group of commodities has 96 branch
stores in eight cities along a certain highway. Using eity X with 9 branch

1If the points A, B, C, D, E, F, and &, are not on a straight line, but
scattered in the plane, then the problem of finding a point, X, such that the
sum of the distances from X to the given points is a minimum is one of great
mathematical complexity. For a discussion of this question and its applica-
tion to the cenler of population of the United States, the reader is referred to
a paper by D. A, Scates: “Locating the Median of the Population in the United
States,” Metron, Vol. 9, No, 1 (1933), pp. 49-65. The problem for three points
is treated in Goursat-Hedrick: Mathematical Analysis, Boston, 1904, pp. 130-
131, where it is proved that the central angles formed by the lines from the
oints to X are all 120 degrees. If one of the angles of the triangle formed
Ey the three points exceeds 120 degrees, then X coincides with the vertex of
the obtuse angle,
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stores as a reference point, the other seven cities with their branch stores are
located as follows:

: Distance
City : Number of from X
Branch Stores (in miles)
A 10 60
B 12 33
C 5 15
D [ 6 — 25
E 15 — 65
I 20 — 85
G 19 —102

The company wishes to establish a main office for this group of stores and
is confronted with the problem of choosing the most convenient location. What
would be the most logical place for the company's main office?

8. Show graphically that the median of the values 1, 2, and 7, is the
value of = for which the following function is a minimum:

y = |z—1| + Je—2] + |2—1T7] .

10. The Mode. Nearly all frequency distributions show a ten-
dency toward the accumulation of frequencies at one or more values
of the class marks. By the mode is meant that value of the class
mark which has the largest frequency, that is to say, that value
which is the most fashionable. When a distribution has but one
mode, it is called uni-modal, when it has two modes, bi-modal, etc.

In order to calculate the values of the mode, it is necessary to
interpolate, as was done in the case of the median. The formula for
the mode is

CF

where L is the lower limit of the modal class, C the class interval,
F the frequency of the class just above the mode, and f the fre-
quency of the class just below the mode.

Example: Calculate the mode for Table (b), section 2.

The modal class is 4.00-4.49. Hence L = 4.00, C = .50, F == 20,
and f = 23. Substituting these values in the formula above, one has

Mo =4.00 -+ (.50) (20) /43 =425 .
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Frequency distributions occasionally occur where two distinet
modal tendencies are apparent. These are usually indications of
the existence of two separate distributions which for some reason
have been mixed together.

The following is an example of bi-modal distribution formed
in that manner. The table gives low prices during 1934 of 60 bonds
listed on the New York Stock Exchange, 30 of the bonds being in-
dustrial and 30 railroad. When the two classes are combined, the
composite distribution is distinctly bi-modal, as may be seen in Fig-
ure 18.

Class Interval ) Frequencies
$ Industrial Railroad Composite
under 39 1 2 3
40-49 1 2 3
50-59 2 3 5
60-69 3 l 8 11
70-79 4 | 5 9
80-89 4 i 5 9
90-99 _ 9 4 13
100 and over 6 1 7
Totals 30 | 30 60

10—

COWLES COMMISSION FOM RESEARCH 1M ECONOMICS.
AFAND- 4049 S50-539 €0-69 70-79 B80-809 90-99 100ANDH

FIGURE 18

The mode is an average that is easily obtained, but obviously
can be used only when the data show a strong modal tendency. It
is an average that is unaffected by extremes in the data.
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One important use to which the mode has been put in the
theory of statistics is that of measuring the unsymmetrical charac-
ter, or the skewness, of data. It often happens that the frequencies
in a distribution will tend to pile up at one end or the other of the
class range, instead of near the middle as in the so-called normal
distribution. In other words, the mode will not correspond to the
arithmetic mean, from which it may deviate in a significant man-
ner.

As it is convenient to have some measure of this skewness, one
may adopt as a more or less arbitrary definition the following
ratio suggested by Karl Pearson,

S (Skewness) = ﬂ . (9)

o

When the sign of S is negative, the skewness is to the right;
when the sign is positive, the skewness is to the left. Examples are
shown in Figure 19,

\ 7

MODE MEAN MEAN MODE
FiGUrE 19.

In case the data of the statistical series under consideration
are known to be skew-normal (see Chapter VII), then the follow-
ing definition of skewness should be used:

1— 2AB/’H
20p ’
where Ay is the Bernoulli mean, ¢ the Bernoulli deviation, and

n -+ 1 is the number of class marks.? When the sign of §” is positive,
the skewness is to the left as in the previous definition.

S’ (Skewness) = (10)

1The student will recall from section 6 that the Bernoulli mean and the
Bernoulli deviation are computed using the class marks, 0,1,2,3,...n .
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When an application is made of formula (10), it will be ob-
served that an exact determination of the value of n is sometimes
difficult. A more precise definition, which is, however, essentially
equivalent to (10), is found in the formula,

S” (Skewness) = »,/2¢* , {11)

where v, is the third moment about the mean divided by the total
frequency, i.e., »; = M;/N (See section 7). The class marks used in
this computation must be 0, 1, 2, 3 --- n. A positive value of §”
indicates skewness to the right. A derivation of both formulas (10}
and (11) from formula (9) will be given in Chapter VII.

In cases where the mode is not clearly defined, the skewness
as calculated by the Pearson formula would be unreliable, and one
should then use either 8’ or S”. For example, using the data of
Table (b) section 2, one gets:

g 245 —423 oo
K
. 2(340)
7
[ e ——————— T -
S — = 0089

Since the skewness is obviously very slight (see Figure 2, sec-
tion 10, Chapter 1), the value of the skewness S’ should be used in
this case. The sign of S indicates a skewness to the left. Using for-
mula (11) one obtains S” =— .0380, which again indicates a small
skewness to the left.

PROBLEMS
1. Calculate the mode, the skewness S, and the skewness &', for the data
of problem 5, section 3.
2. Calculate the mode for the data of problem 1, section 3.

3. Is there a modal income for the United States? (See problem 6, sec-
tion 3.)

4. Caleulate the mode for problem 8, section 3.

5. Calculate the skewness S and the skewness S8’ for the data of problem
8, section 3.

11. The Geometric Mean. The geometric mean of a set of N
positive numbers is the Nth root of their product. In case a number
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is repeated one or more times, it will appear in the product as many
times as it occurs in the given set. In symbols this definition be-
comes

i .
G '_—_:'\j xlfl .r]_jzfz ngu :U4f4 . ,:L'nl'u .

where f,, fo, -+ +, fuw are the frequencies of the class marks and N
is the total frequency.

The use of logarithms greatly facilitates the calculation of the
geometric mean, Thus, if logarithms of both sides of the above
equation are taken, one has

filog z, 4 folog x, +--- - f.log x.
N

log G =

In other words, the logarithm of the geometric mean is the
arithmetic average of the logarithms of the class marks, each mul-
tiplied by its frequency.

FExample: Calculate the geometric mean of the data of Table
(b), section 2.

1038

G=\[275:.325%......... 6.25° ;
log G=(2log2.75--8log 325 4 -...... -+ 6 log 6.25) /108
==69.25727/108
=.64127 ;
G=4.38 .

The gecmetric mean is useful in the averaging of ratios and
rates of interest. Suppose that A held a stock which, during five
successive years, increased 5 per cent, 6 per cent, 6.5 per cent, 4 per
cent, and 3.5 per cent. What was the average annual increase?

The total return from unit capital on the basis of compound
interest would be

S = (1.05) (1.06) (1.065) (1.04) (1.035) .

Hence, it is reasonable to assume that his average rate of in-
crease should be calculated from the equation

14-r=v¥S.

which is the geometric average of the five sums. Thus, one has
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re= VS —1=.0499 ,

or, the average return was 4.99 per cent.

One of the defects of the geometric average is the large in-
fluence exerted on the average by very small numbers. It is for
this reason that the use of this mean should be largely confined to
the averaging of rates which do not differ greatly, for which it is
most admirably suited.

An interesting application is found in the following example:
From the following data predict the total population of the United
States for the 1930 census:

Year | Population
1870 38,558,000
1880 50,166,000
1890 62,948,000
1900 ! 75,995,000
1910 1 91,972,000
1920 105,711,000

First, the 10-year increases are calculated by dividing each
census figure by the one immediately preceding. There is thus
obtained :

Ratios Logarithmg
1.3008 11421
1.2550 09864
1.2073 08182
1.2102 08286
1.1494 06047
5 ) 43800
log G= .08760
G=1.2235.

Using this average, the population for 1930 is calculated to be
(1.2235) (105,711,000) = 129,337,000, which is in excess of the true
figure 122,775,000. What conclusion may be drawn from this?

Further application of the geometric average will be made in
connection with the theory of index numbers.
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PROBLEMS

1. 'The national income of the United States, expressed in actual dollars
and in 1913 dollars, over a period of eleven years, was as follows:?

Total Income in Billion Dollars

Year Actual Dollars 1913 Dollars
1921 58.3 33.6
1922 62.1 37.6
1923 69.3 42.0
1924 71.9 43.6
1925 76.6 45.2
1926 20.3 47.8
1927 82.9 49.7
1928 84.1 50.9
1929 87.5 51.2
1930 2.9 44.5
1931 57.5 38.9

What is the average rate of increase per year, in terms of actual dollars
and in terms of 1913 dollars?

2. According to three census reports made five years apart, a certain city
had the following population:

first report, 152,762; second report, 169,804; third report, 186,981.

A water works system large enough to supply a eity of 300,000 was built
at the time of the third report. In how many years may the city find it neces-
sary to enlarpge its water system?

3. Using 1926 (1926 = 100) as the comparison year, the United States
Bureau of Labor Statistics Wholesale Commodity Price Index for preceding
and succeeding years was as follows:

Year Index Year Index
1913 70 1925 104
1919 139 1926 160
1920 154 1927 95
1921 98 1928 97
1922 97 1929 95
1923 101 1930 86
1924 98 1931 73

From this table compute the average increase in wholesale prices over
this period.

1yving Fisher, Booms and Depressions, New York, 1932, p. 200,
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4. The following table gives the monthly average of automobile produc-
tion in the United States for the years 1926-1932 (unit 1,000 cars):

Year I 1926 1927 1928 1929 1930 1931 1932
i

Production ’ 358.4 283.4 363.2 4465 279.7 199.1 1142

Calculate the average per cent of change per year.

5. The automobile production for January over a seven-year period, 1926-
1932, is given by the following table:

Year ‘ 1926 1927 1928 1929 1930 1931 1932

Production | 309.0 2389 2317 4010 273.2 1718 119.3

Calculate the average per cent of change and compare the answer with
that of the preceding problem,.

6. The following data give the weekly wage rate index of union workers,
also the retail price index of food, for the twelve-year period 1920-1931 (figures
are relatives, with 1913 as 100):

: Wages : Retail Prices
Year i Per Week 5 of Food
i
1920 188.5 [ 208.4
1921 193.3 ' 153.3
1922 183.0 141.6
1923 198.6 146.2
1924 214.3 145.9
1925 222.3 157.4
1926 233.4 160.6
1927 240.8 155.4
1928 240.6 154.3
1929 240.7 156.7
1930 243.8 147.1
1931 2429 121.3

Calculate the average per cent increase per year for each series and com-
pare your answers for the two.

12. The Harmonic Average. A sixth average occasionally used
in statistical problems is the so-called harmonic mean, which is de-
fined as the total frequency divided by the sum of the reciprocals
of the class marks multiplied by their respective frequencies. In
symbols this definition becomes
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H= N

Lyl l gl

Because of the unfamiliar nature of this average and the labor
involved in its computation, it is not used so frequently as the other
averages, although it is occasionally very useful in application,

The harmonic mean may be used in the averaging of rates and
time. The following simple examples are illustrative of the under-
lying principles:

Example 1: Suppose that an aviator flies his plane for 50 min-
utes at the rate of 150 miles an hour and then, because of engine
trouble, flies for fen minutes at 50 miles an hour. What is his aver-
age speed?

It is at once clear that his average speed is closer to 150 miles
an hour than it is to 50 miles. It is, of course, equal to 150 (50/60)
-+ 50(10/60) == 133.33 miles. Now this simple answer may be ob-
tained in another way. One may employ the familiar formula that
d (distance) equals the product of v (velocity) and ¢ (time). Ap-
plying this to the two parts of the flight, one has
d,=wit , or 125=150(50/60) ,
d: —=v:t, , or 8.33= 50(10/60) .

It is now reasonable to define the average velocity, not as the
average of », and v,, but by means of the formula,

(d, + d.) =v(ti+¢&) ,

where v is the desired average. Since t, = d,/v, and &, = d./v,, one
has

dy 4 d,
. 4

Va
125 -}- 8.33
125 8.33
150 50 T80 50

P =

=133.33 .

A second example will show the application of the harmonic
mean, to the determination of time averages.

Ezxample 2: A wholesale house has ten travelling salesmen
who make trips of essentially the same length. Of these, seven
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make their trip in 30 days and three in 20 days. What is the aver-
age time per trip?

One can argue as was done in the first example from the equa-
tion d = vt, where d is the length of the trip, {, the time, and », the
speed of the salesmen, For determining the speed of the first seven
salesmen, there is the equation

d==30v, ,
and for the last three,
d = 20v, .

It is clear that a satisfactory definition of the average time per
trip is obtained from the equation,

where ¢ is the average desired. One thus gets as the answer to the
problem :
t= (7d -+ 8d)/(Tv, + 3v.)
= 10d/(7d/30 -}- 3d/20)
= 10/(7/30 + 3/20) — 26.09 days.

It will be clear that this same argument can be used to find the
average time per trip when the trips are of varying length.

The harmonic mean may also be used effectively in determin-
ing the average price of commodities,

Example 8: Three items, ¢, b, and ¢, sell for $2.00, $3.00, and
$5.00, respectively. What is the average price per item?

It is obvious that this problem does not have precise meaning
until something is known about the volume of the sales of each
item, so it will be assumed that the total return from the sale of .
each is the same. Consider then, the equation,

R=Np,
where R is the total return, N, the number of articles sold, and p,
the price. For a, b, and ¢, one then has
(a) E=2XN,,
(b) R=38XN,,
(c}) E=5XN,;.
A reasonable basis for determining the average price is found

in the equation
3R = (N1—|—N2+N3)'p -
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Hence,
p=3R/(N:+ N:+ N:)
= 3R/(R/2 -+ R/3+ R/5)
=3/(1/24+-1/3 4+ 1/5) = 90/31 — $2.90 .

An application of the harmonic average to the theory of index
numbers will be made in a subsequent chapter.

PROBLEMS

1. The sales record of a certain firm showed the following items: 1,000
articles at 10 cents; 500 articles at 25 cents; 400 articles at 50 cents; 150 ar-
ticles at 76 cents; 100 articles at $1.00. What was the average price per ar-
ticle?

2. Calculate the harmonic average for Table (b), section 2,

3. Two hundred men of a certain industry are studied with regard
to their efficiency in making a certain article. They were classified into ten
groups according to the time they required. From the following record cal-
culate the average time it takes to manufacture the article:

Time No. of Men Time No. of Men
12 Min. b 22 Min. a7
14 12 24 25
16 17 26 19
18 20 28 14
20 42 30 9

4. A man travels 20 miles at 40 miles an hour, 10 miles at 30 miles an
hour, and 60 miles at 50 miles an hour. What was his average velocity?

5. Compute the harmonic average of the sequence, 1, 2, 3, 4, 5, 6, 7, 8§,
9, 10.

13. Relative Magnitude of the Averages of a Series of Posi-
tive Terms. It is occasionally of importance to know the relative
magnitude of the various means. If the average of the sequence
1,2, 3,4,5,6,7, 8, 9, and 10, is calculated by the methods devel-
-oped in the preceding sections, the following results are obtained:
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E (Quadratic Mean) —6.205 ,
A (Arithmetic Mean) =5.5 ,
G (Geometric Mean) = 4.529 ,
H (Harmonic Mean) —3.414 .

It is proposed to show that these relative magnitudes are not
accidental, but are inherent characteristics of the four averages.
The fundamental inequalities may be stated in the following the-
orem:

Theorem: In a series of positive terms, the quadratic mean is
greater than the arithmetic mean, the arithmetic mean is greater
than the geometric mean, which in turn is greater than the har-
monic mean, unless the terms are all equal, in which case the values
of the four are identical. Symbolically, this is expressed by the in-
equalities

R=A=G=H,

where the equality sign prevails only when all the items are equal.

Proof: Consider first the geometric and arithmetic means

G=Y2, 22 &5 Tu , = ,

in which at least two of the items are assumed to be different from
one another. Suppose that the greatest one of these items is =z
and the least is x;. Now replace ; and #; in each average by their
arithmetic mean 1% (x; 4- ;). The effect of this is to leave the arith-
metic mean unchanged but to increase the geometric mean, since

h (@i x5)2 > xamy .

This inequality is derived as follows:
Since z; is different from =x;, one has

(i —2;)% > 0,
or ¥ —2xx;-Fx;2 >0
When 4x;x; is added to both sides, this becomes
(: -} ;)% > dzizy
from which the desired inequality follows by a division by 4.



98 ELEMENTS OF STATISTICS

If the new items are still unequal, the same process may be
repeated again, replacing the largest and the smallest by their
arithmetic averages. Since this method can be contfinued as long
as we wish, it is evident that the items can be made as nearly equal
as we please, and G will approach A as a limiting value.

But the effect of this process has been to increase G while A
has remained unchanged, so G must originally have been less than

A.
In a similar way, G and the harmonic mean may be con-

sidered:

Hen/(1/g—+1/2s & Vot oo+ 1/2,) .

Replace the largest and smallest values of the items, namely,
z; and z;, by the value

2z / (X L 25) .

Now consider the inequalities:

(xl - ﬂ?}-) 2 > 0 ]
;% -} x> k25 ,
(z: + x;)* > da2; ,
xax; (2 - x;)* > dwlwy®
xix; > Axlx (X — 25)7 .
From this inequality, it is seen that the result of the substitu-
tion is to decrease the value of G while H remains unchanged,
since

1/2; 4+ 1/z; = (@i -+ x;) /Tix; -

By repeating this process, as before, the values of the items
can be made to approach equality, and hence the value of G will

approach the value of H.
But, since the effect of the process has been to reduce G while
H remained unchanged, it follows that G must have been originally

greater than H. -
To prove that B = A, it can be shown that the following in-

equality is true:
xf—i—xf—l—xf%—---—l—ﬂ:ﬁ . (x1+xz+ m3+"'+xn)2.

7 n

(1

Explicitly squaring the right hand member and multiplying
both sides by 72, this inequality becomes
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n{x® 2w e + Za*) = 2P 1t 4 xy? AR
—+ Xn? -} 22020 F 202 e .

Subtracting x,® 4 x,® -1 2,> 4 --- 4 x,2 from each side of the
inequality, there is obtained finally

+ 2z e . (2)
Recalling from the previous discussion that
2 Xt = 2w,
the following set of inequalities is formed:
T - 2% = 2oy,

x.® + 2 = 22,2,

LI A LRI I N B

In the left hand array, one notices that each z; occurs (n—1)
times, since it is associated once with each of the other {(n—1)
values. Hence, if the set of inequalities be added, inequality (2) is
obtained, which establishes the truth of the theorem.

It can also be proved in a somewhat similar way that R’, the
generalization of the quadratic mean (see section 5), is greater
than E. For proof, see Chrystal’'s Algebra, Edinburgh, 1889, part
2, page 49.

PROBLEMS

1. Prove that the preduct of the first » odd numbers is less than n». Hint:
Making use of the fact that A > G, start with the inequality

(1+3+6+...+20—1)/n>1.3.5... (2n—1) .

2, Prove that the product of the first n numbers is less than (1+n)n/2n.
For example: 4! < (1+4)4/2¢ = 625/16 = 39 + . Hint: make use of the fact
that A > G and compare the arithmetie average of the first n numbers with
their geometric average.

3. Given the fact that 1 + 1/2 + 1/8 + ... + 1/n for sufficiently
large values of n is approximately equal to C + log,n, where ¢ (Euler’s num-
ber) = .5772, show that n! > n*/(log,n + C)». For example: 41 > 44/ (log 4
+.5772)¢ = 17.2. Hint: Use the fact that @ > H and compare the geometric
average of the first n numbers with their harmonic mean.

4. IMNustrate numerically the proof of the theorem on the relative mag-
nitudes of the four averages, using the set of class marks, 1, 3, 5, 7.

5. Show that the sum of the squares of the first » numbers is greater
than n(n+1)2/4 . Hint: Compare the quadratic mean of the first » numbers
with their arithmetic mean.



CHAPTER 1V

INDEX NUMBERS

1. The Unstable Dollar. Under the normal operation of the gold
standard, the price of gold seldom changes; the purchasing pow-
er of gold seldom ceases changing. This fact is possibly the most
important in modern economic life. The réle of prices is absolutely
eentral in any consideration of the economic state. When a nation
is on the gold standard, every small change in the value of gold, that
is to say, in the price level, involves probably a change in, and cer-
tainly a redistribution of, the national income. Every major change
in the price level is a vital factor in such world-wide upheavals as
the one which began in 1929, An upward move in prices of such
magnitude as took place in Germany in the post-war years may
serve to eliminate all debt; a downward move of such magnitude as
took place in the United States from 1929 to 1932 may serve to
cripple industry and agriculture by the multiplication of debt. Curi-
ously enough, these simple facts are not adequately appreciated. To
most people a dollar is a dollar, an vnvarying and immutable entily.
A glance at an index of commodity prices (see Figure 22) will serve
to show that a 1913 dollar was something quite different from a
1919 dollar, as the 1929 dollar was quite different from the 193
dollar. A dollar derives its significance from its purchasing power,
that is, from its capacity to command commodities in exchange for
itself, and this exchange value, of course, is directly reflected in the
price level. An index of prices of commodities, therefore, is an index
of the fluctuations of the purchasing power of the dollar over these
commodities.! The concern here is not with the causes of these
fluctuations, but with their measurement. And this is a purpose
of index numbers.

By an index nuwmber 18 meant a ratio, generally expressed as
a percentage, which is designed to indicate the level at any given
date of the items of a time series. Index numbers are usually
thought of as applying to prices, but they may, of course, refer to
any other characteristic property of a series of items. Since index

1There are, of course, fixed prices in the system. Thus, prices of com-
modities may change 50 per cent during a period when transportation charges
remain fixed. If this occurs, the purchasing power of the dollar over transpor-
tation does not, of course, change,

—100-—
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numbers, however, are conveniently studied through their applica-
tion to price changes, the discussion in this chapter is limited to
this important problem.

Index numbers are a comparatively recent development. They
were forced, so to speak, on economists by the great gold discov-
eries of the mid-nineteenth century with the resultant disturbances
in prices. But even two hundred years ago, the question had been
attacked in an elementary fashion in France, and it is interesting
to note that as early as 1747 the Colony of Massachusetts initiated
a crude device to stabilize the value of contractual obligations. Wil-
liam Stanley Jevons’ publication in 1865 of a study of prices with
index numbers from 1782 up to that time, entitles him, in Irving
Fisher’s opinion, to be considered the father of index numbers. The
oldest of still current indexes is that of the Economist (London),
which started in 1869. Sauerbeck commenced his famous index,
which is still continued by the Statist, in 1886. Modern interest is
attested by the fact that Irving Fisher lists 153 indexes being pub-
lished regularly in the world in 1927. The literary landmarks of
the subject are Edgeworth’s two Memoranda for the British Asso-
ciation for the Advancement of Science (1889), the most thorough
investigation of the question up to that time: Walsh’s Measurement
of General Kxchange Value (1901), a comprehensive treatise deal-
ing with the theory of the subject, and The Making of Index Num-
bers, by Irving Fisher (third edition revised, 1927), which must
be considered the definitive work on the problem thus far.

2. The Price Index Problem. The problem to be considered is
that of comparing the purchasing power of a dollar in one year with
its purchasing power in another. To make the problem precise,
suppose that both the prices and the quantities produced of a set of
n basic commodities are known for each of the two years. Employ-
ing customary notation, the price is designated by p and quantity
by ¢, using the subscript “0” to denote the base or comparison
year, and the subscript “1” to denote the year whose price index is
desired. Thus, for the base year there may be assumed as known
the following prices and quantities:

Prices for base year: Do P’ Do eceereea-n D™

Quantities for base year: q, qf gg" cceeveeen- g™V .

1Special reference should also be made to the comprehensive report of
W. C. Mitchell, Index Numbers of Wholesale Prices in the United States and
Foreign Countries, U, S. Bureau of Labor Statistics, Bulletin 284 (1921)
{Revision of Bulletin 173 (1915)1.
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Similarly, for the year whose price index is sought, the fol-
lowing quantities are supposed known:

Prices for second year: Pr DY P e Py
Quantities for second year: ¢, @/ @7 c-cccooe- PRLSTIN

For simplicity in writing formulas, it is useful to employ
the abbreviation

P pPq =7pq ..I_ p’q’ + ?3"([” + ....... + ptn—l)q(n—l) .

To supply material for numerical examples to illustrate the
theory of this chapfer, two tables of price and production data for
ten important agricultural products are given. Table 1 gives the
prices for these products in convenient units over the twelve-year
period 1920-1931. This period is a particularly interesting one to
investigate because it includes the remarkable fluctuations due to
post-war reactions. Table 2 contains the production figures of the
ten items for the same twelve-year period.

TaBLE 1
WHOLESALE CROP PRICES:

Unit = $1.00
Corn i Wheat | Oats | Gotton | Potatoes Hay Sugar bi:?:qo Barley Rye
Year {bu.) (bw) | (bu.) | (Ib.) (bw.) (ton) (1b.) (lb.) | (bu.) (bu.)
1920 1.41 | 253 | .80 | .339 | 1.315 | 36.27 | .130 | .212 | 124 | 1.80
1921 57| 1.44 | 87 { 151 1 1.214 | 23.03 | 048 | .199 | .59 | 1.15
1922 .62 | 1.15 | .38 | .212 J753 | 22.65 | 047 | .232 | BT .83
1923 .81 1 1.09 | .43 | 293 946 | 23,90 | 070 | 199! .60 0
1924 96 ¢ 131, .50 | .287 J79 | 2494 | 060 | 207 .76 .86
1925 1.02 | 1.59 | .45 { 235 1.834 | 23.53 .043 Ag2 1 .78 | 1.09
1926 S5 1 145 | 41 A75 ] 1.420 | 23.41 043 0 1821 .64 92
1927 86 | 132 | 47 | 176 | 1.081 | 19.87 ! .047 | 212, .77 | 1.00
1928 .97 118 | .53 | .200 620 | 20.97 | 042 i 202 .78 | 1.07
1929 94 ' 121 | .47 1.191 | 1.362 | 20.40 ! .038 | 1851 .63 96
1930 .84 87 | .39 1 .136 .604 | 19.89 | .034 | 144 52 .61
1931 .53 .63 i .27 | .086 60T | 17.54 | 034 ! 127 . .46 89

The simplest method of comparing one year with another is to
form the price and production relatives. To do this, each number

tThese fizures are assembled from various sources as, for example, The
Daily Trade Bulietin, U. S. Bureau of Labor Statisties, The Grain Reporter,
U. 8. Dept. of Agriculture, Bureau of Agricultural Economics, Standard Sta-
tistics Base Book, Journal of Commerce, ete. They represent yearly averages.
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TABLE 2
CROP PRODUCTION
Unit = 1,000,000

T
: |
‘ i Po- ! To-
Year Corn | Wheat i Oats | Cotton | tatoes Hay Sugar bacco | Barley Rye
(bu.) | (bu) : (bu} | (b)) | (bu.) (ton) (Ib.) (k) | (bu.) (bu.)

1920 3209 | 833.0!1496 6720 | 403.3 , 105.32 | 10,795 | 1582 1 189.3 | 60.49
1921 3069 | B14.9 | 1078 ; 3977 | 36L.7 | 97.77 | 11,101, 1070 ;1549 | 61.68

1922 2906 | 867.9 | 1216 | 4881 | 453.4 | 112.01 | 10,463 | 1247 | 182.1 | 103.40
1923 3054 | 797.4 1306 | 5070 | 416.1 | 106.61 | 10,044 | 1515 | 197.7 | 63.08

1924 2309 | 864.4 | 1503 | 6814 | 421.6 | 112.63 | 11,552 | 1251 | 181.6 | 65.47
1925 2917 | 676.4 | 1488 | 8052 | 323.5 | 99.42 | 13,527 1757 | 213.9 « 46.46
1926 2692 | 831.0 ' 1247 | 8989 | 354.3 | 96.07 | 12,952 | 1298 | 184.9 | 40.80
1927 2763 | 799.3 | 1183 | 6478 | 402.7 | 122.83 | 12,540 | 1212 {265.9 | BS8.16

1928 2819 | 914.9 | 1439 | 7239 | 465.4 | 106.47 | 11,617 | 1375 |357.5 1 43.37
1929 2535 | 812,6 1 1118 | 7413 | 329.1 | 87.30 | 13,830 | 1537 |280.2 | 34.95
1930 2060 | 858.2 | 1278 | 6966 | 333.2 | 74.21 | 13,1691 1635 |304.6 | 45.38
1931 2557 | 8923 | 1112 | 8548 | 376.2 | 72.36 | 9,157 ! 1610 |199.0 | 32.75

in each column of the preceding tables is divided by the number cor-
responding to some base year, that is to say, the ratios p,/p, and
¢:/q. are calculated. In making index numbers for the post-war
period, the base year is often chosen to be 1926. The relatives for
Tables 1 and 2 referred to 1926 are given in Tables 3 and 4, respec-
tively.

TABLE 3
CROP PRICE RELATIVES
1926 = 100
Crops 192¢ 1921 1922 1923 | 1924 | 19256 [ 1926 | 1927 | 1928 | 1929 7 1930 1931
- b —— - -
Corn 188 | 76| 83 108 ‘ 128 1136 (100 | 115 |129 (125 1112 | T1
Wheat 1741 99 79| 75| 90 |110 |100 ] 91| 81| 83| 60 | 43
Qats 195| 90| 93| 105|122 |110 (100|115 (129 |115| 95 | 66
Cotton 194 | 86 (121 167 | 164 | 134 {100 | 101 | 114 | 109 78 | 49
Potatoes 95| 8| b3 67 55 129 |100 ! 76 | 44 | 96| 64 | 43
Hay 166 98 | 97102 | 107 {101 |100 | 83 | 90 | 87| 8 | 75
Sugar 302 | 112 {109 ; 163 | 140 (100 | 100 ;109 | 98 | 88 79 | 79
Tobaeco 116 | 109 | 127 ) 109 ; 114 ! 100 | 100 | 116 ;111 1021 79 | 7O
Barley 194 92 89 94 | 119 ;122 {100 | 120 | 122 98 81 72
Ryve 196 | 126 | 90; 76 | 93 |118 [ 100 (109 |116 {104 | 66 | 42
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TABLE 4

CROF PRODUCTION RELATIVES

1926 = 100
Crops 1920 1921 1922 | 1928 | 1924 | 1925 | 1826 | 1927 | 1928 | 1929 1930 1931
Corn 119 | 114 | 108 {113 86| 108 |100 | 103 | 105 | 94| 77| 95
Wheat 100 98 (104 | 96, 104 81 |100| 96| 110 ! 98} 103| 107
Oats 120| 86 | 98 [105| 1211 119 |100{ 95| 115 90| 102| 89
Cotton 75| 44 | 54 | 56 76| 90 |100 | 72| 81| B2| 77| 95
Potatoes 114 | 102 | 128 {117 119 | 91 [100 (114 131 | 93| 94| 106
Hay 110 | 102 1117 [111 | 117 1103 |100 (128 111 | 91| 77 76
Sugar 83| 86| 81| 78! 89104 |100 | 97| 90 |107( 102] Tt
Tobacco 122 1 821 96 | 117 | 96 | 135 |100 | 93| 106 | 118 126| 124
Barley 1027 84 | 98 | 107! 98 | 116 [100 | 144 | 193 | 152 165 108
Rye 148 | 151 253 | 155 | 160 | 114 |100 i143 106 | 86| 111| 80

The complex nature of the problem presented by the subject
of making a price index is illustrated in the accompanying figures
(Figures 20 and 21), which are formed by the composite graphing
of the price and production relatives given in Tables 3 and 4. How-
ever, the price graph very distinctly shows a peak for 1920 due
to the inflation of the war, with a substantial decline by 1931,
although the production remained essentially uniform.

T

|

|

CROP PRICE RELATIVES

FIGURE 20
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8. Price Index Formulas, After the data have been secured,
the first problem that presents itself is to find a formula which will
give an adequate index. That this is not an altogether simple mat-
ter is seen from the fact that Irving Fisher in his treatise on The
Making of Index Numbers (1922) lists 134 formulas that have been
proposed for the solution of this problem. For the sake of showing
the steps by means of which he arrived at the “ideal” index num-
ber, a few of the formulas that have been proposed may be noticed.
Using the notation of the preceding section, these may be written :

(1)

(2)

3)

(4)

Dy
2

n

n

e

1

e
Do
Py

2,

E >< pl”

>< p()’ pﬂ”

(simple arithmetic mean)

(simple harmonic mean)

(simple geometric mean)

(simple aggregative)
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5
(5) Pido | (weighted aggregative)
E’Dqu
2 1
(6) M , (Edgeworth-Marshall aggregative)
) (QO”J[*Q1)I90
2D1G0 , & .
(7) 0d X LAy (ideal)
2PoG0  2Poqy
2 . .
(8) , (harmonic aggregative)

ZPOQ'O zpDQ'1
2110 27
2P1q,
200 ) .
(9) - (Walsh’s cross-weight aggregative)
Z(potp) s
Z(pet+p1) Qo

(10) V (Formula 6) > (Formula 9} ,

(crossed cross-weight aggregative)

These ten examples are typical of the many formulas that have
been proposed., The question is how to discriminate among them
and determine which index most nearly represents the true aver-
age of prices. In order to solve this problem, Irving Fisher pro-
posed two fundamental tests, the time reversal test and the fae-
tor reversal test. These criteria will be discussed in the next two
sections.

In order to make comparisons, the index numbers of the ten
crop prices for the year 1930, using 1926 as base, have been calcu-
lated by several of the above formulas.

For this purpose Table 5 has been computed, the values of
Ppq being expressed in millions of dollars.

Example 1. The index of prices for 1930 with 1926 as base,
according to the simple arithmetic formula (1), is at once obtained
from price relatives, Table 3:

(112460495 | eennnn +.814.66)
10

I 799 .
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TABLE 5
VALUES OF pg FOR YEARS 1926 AND 1930
Crops Py P, o ’ a9 Podp " Poy P,
Corn Jb 84 2692 2060 2019.0000 | 1730.4000 | 1545.0000 | 2261.2800
Wheat 1.45 B7 { 831.0 | 8582 12049500 { 746.6340 | 1244.3900 | 722.9700
Oats A1 0 .89 1247 1278 511.2700 | 498.4200| 523.9800 | 486.3300
Cotton A75 0 136 8989 6966 1573.0750 | 947.3760 | 1219.0500 | 1222.5040
Potatoes 1.420 | 904 | 3543 | 333.2 503.1060 | 301.2128 | 473.1440 | 320.2872
Hay 23.41 | 19.89 | 96.07 | 74.21 2248.9987 | 1476.0369 | 1737.2561 | 1910.8323
Sugar .043 | 034 | 12052 | 13169 556.9360 | 447.7460 | 566.2670 | 440.3680
Tobzacco JA82 1 144 1298 1635 236.2360 | 235.4400 | 297.5700 | 186.9120
Barley 64 52 1 1849 | 304.6 118.3360 | 158.3920 | 194.9440 96.1480
Rye 92 .61 | 40.80 | 45.38 37.5360 27.6818 41.7496 24,8880
Totals 9009.4437 | 6569.3395 | 7843.3507 | 7672.5195

Example 2. In terms of the reciprocals of the price relatives,
Table 3, the index for 1930 is calculated by the simple harmonic
formula (2) to be

10 10
= =774 .
12.9145

=
1 1 1 1 1
e eTs T

Example 8 . Using formula (5), the price index for 1930 is
found to be:
7 _7672.5195

©9009.4437

Example 4. Using Fisher’s ideal formula (7), one finds

I-—\/7672'5195 6b669.3395
" V'9009.4437 7 7843.3507

= /.851609 < 837568 — .845 .

PROBLEMS
In problems 1-4, calculate the price index for 1930, with 1926 as base:

1. Using formula 6.
2. By the harmonic aggregative formula.
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3. Using formula 9.

4. Using formula 10. Compare this result with the value of the ideal in-
dex as given in example 4.

5. Make a price index for each of the twelve years from 1920 to 1931
using some one of the above formulas. Graph your results and compare with
the general commodity price index of Figure 22. Select your own base.

4. The Time Reversal Test. It is quite obvious that with so
many formulas to choose from, some reasonable test must be de-
vised by means of which good index numbers can be detected from
inadequate ones. The time reversal test is such a criterion, and may
be defined as follows:

If I, is the index number computed for year b with year o as
base, and if [, is the index number for year a with year b as base,
then I, and I, should satisfy the equation

I.XIi—=1,

If the product I, > I, is greater than 1, then it is said that an
upward bias exists; if the product is less than 1, the bias is
downward.

It will be clear from this definition that the time reversal test
reduces to a study of the product of an index number by the same
number in which the subseripts “0” and “1” of p and ¢ have been
interchanged.

Example 1. Does the simple arithmetic index, formula (1),
satisfy the time reversal test?

That it does not is easily proved by the following computation.
The value of I for 1930, using 1926 as base, has been calculated as
799 . Changing the base to 1930 and calculating I for 1926, one has
I =1.29 , The product of the two numbers equals 1.03, indicating
anh upward bias.

Consider the geometric mean of the relatives, formula (3) :

Jo— :/p_‘?ﬁ:pl” ......... P
Do Po’ Po” o

It is easily seen that this index number satisfies the time re-
versal test, since the product of I, by the same formula with the
subscripts “0” and “1” interchanged clearly reduces to 1. But it
‘has already been proved in section 13 of Chapter III that the arith-
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metic mean of a set of positive numbers always exceeds the value
of the geometric mean of the same numbers. Hence, since no bias
exists for I, the arithmetic index must always show an upward
bias.

Example 2. Prove that formula (6) satisfies the time reversal
test.

Changing the base by interchanging the subscripts as explained
above and forming the product of the two index numbers, it is
seen that

E(Q'o—l— ) P, Z(QI‘I‘ Q'o)Po —
g+ a)p0 (g q0) o1

PROELEMS

1. Ezxplain why the time reversal fest is a reasonable one to make.

2. Show that formula (2} always has a downward bias, Hint: How are
the geometric and harmonic means related? Use an argument similar to the
one in the first example.

3. Apply the time reversal test to formula (5).

Show that the “ideal” formula fulfills the time reversal test.
Apply the test to the harmonic aggregative.

Does formula (9) fulfill the teqt"

Give numeriecal values to p and g in formula (5) to show that it may
have elther an upward or a downward bias.

B e

5. The Factor Reversal Test. A second fundamental test to
which index numbers may be subjected is that to which the name
of the factor reversal test has been given. This may be illustrated
as follows: Suppose that an index of prices and an index of
quantity change have been constructed. It is then reasonable to ex-
pect that the product of the two, that is, price change by quantity
change, would equal the ratio of the total value — the product of
price by quantity — in the second year over the total value in the
base year. In order to state this algebraically, one may designate the
price index by I, and the quantity index by I,. The factor reversal
test then requires that
200y
ZPHQn

Since the quantity index is obtained from the price index
merely by interchanging p with ¢, leaving the subscripts unchanged,

IPXI(I:
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the factor reversal test consists in showing that the product of the
price index formula by the same formula in which the p’s and ¢’s
have been interchanged is equal to the total value in the second
year divided by the total value in the base year.

The meaning of the test is best clarified by examples.

Ezample 1. Apply the factor reversal test to formula (5).
Making use of the data given 1n Table 5, one calculates the price

index to be,
2P 7672.5195m

Speqs 9009.4437

Similarly, interchanging the p’s and ¢’s, the quantity index is
calculated to be

I,

I

. 2q:P0 o 7843.3507_M
Sqpe  9009.4437

The product of these two numbers, I, X I, == .852 % .871 =
742, is seen to differ somewhat from the ratio

Ip.g, _ 65693395 .
Spoqe  9009.4437

It is also obvious algebraically from the formulas for I, and I,
that the factor reversal test is not, in general, fulfilled.

Example 2. Prove that the “ideal” formula meets the factor
reversal test.

This is proved by forming explicitly the product of I, with I,.
It is found that

I!'><Iq':\/‘2plq° /2171(11 \/ 2@ Po . 2 . Zp.q:

Epoe P, Sqp. Zap | Epoq,

PROBLEMS
1. Show by numerical examples that neither formula (1) nor formula
(2) satisfies the factor reversal test.
2, Apply the factor reversal test to formula (86).
3. Show that formula (10) satisfies the factor reversal test.

4. Show that the criterion of this section is fulfilled by the index number
made up of the square root of the product of the simple arithmetic index

Ipg, | 2q,/q,
Zpods n

number by
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6. Fisher's Ideal Index Number. Formula (7) has already
been referred to as the “ideal” index number. This formula was ob-
tained by Irving Fisher after an examination of 134 possible formu-
las, many of which had previously been used by economists and
others. Fisher first applied the time reversal test to this group and
from the total obtained 41 formulas which satisfied this test. From
this smaller set, he then eliminated all that did not meet the factor
reversal test and thus obtained 13 formulas which met both the
time and factor requirements. In order to make a final choice from
the field as thus limited, Fisher then examined the formulas from
the practical point of view of simplicity and ease of caleulation, and
in this respect the ‘“ideal” easily led the rest.

On the score of practical caleulation, however, the use of
formula (6) is strongly urged, since it gives results that, even in
extreme cases, are very close to the results obtained by the “ideal”.
The following considerations will show that the discrepancy be-
tween the two formulas® is, in general, small.

Making use of the following abbreviations, I, for formula (6},
I, for the “ideal”, Zp,q, == A, Zpog. = B, Zp:qo—C, Zp.q. =D,
the following identities are obtained by straightforward algebra

C+D 1-4+D/C
TALB 1+B/A
14 D/C
T 1+B/A
1--+BD/AC\/AD/BC
~ 1+ vEBDJAC VBC/AD
When the further abbreviations Xz — AD/BC, Y2= BD/AC,
are employed, this identity reduces to the following:
[ 1EXY

X+Y

It will be readily seen from this equation that the value of the
multiplier of I, is less than 1, provided either of the following sets
of inequalities is satisfied:

X<1i<k?Y,

Y<1<X.

C/’A

[

VvDC/AB -\/CB/AD

.1, -\CE/AD .

1With variations in notation, from I. Fisher, The Mdking of Index Num-
bers, 1922, pp. 428-430.
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Similarly, the coefficient is greater than 1 provided both X and
Y are either greater than or less than 1. The two index numbers
are equal when X and Y are each equal to 1.

In order to show the range of error, Fisher calculated tables of
the coefficient of I. for values of X2 from .90 to 1.10 and for values
of Y* from .50 to 2.00. The maximum range of the coefficient was
thus found to be from 983 to 1.016. This means that under all usual
conditions formula (6) will give an answer that is within four per-
cent of the value caleulated by the “ideal” formula.

7. Types of Bases. In the discussion of index numbers, it has
thus far been assumed that the comparison of a price leve] in a
given year is being made with the price level in a base year. This
is not always desirable and the expedient of broadening the base
is often resorted to. This is done by using the arithmetic average of
the prices covering m years, (p, + 9. -+ ps - -+ --- -+ pn)/m, as
the base, instead of referring all prices to a single year. Such a pro-
cedure often minimizes or eliminates distortions that may rise from
using a single year as a base.

Another method is that of employing a moving base. In this
case chain or link relatives, namely, p,/Ds, D2/D1, Do/ D2y Pa/Da, -+ ,
are used instead of the fixed base relatives such as were caleulated
in section 2. A series of index numbers, using a2 moving base, is
called a series of chain index numbers. From a series of such chain
index numbers, one is always able to compare the price level of one
year with the price level of another by multiplication of the inter-
vening numbers. Thus, if the index number of the second year in
the chain with the first year as base is designated by I,., the index
number of the third year with the second year as base by I.., cte.,
then the index number of the nth year with the first year as base is
given by the product,

L=l Iy Iy o- - I”“-“ :

Of course, this value will not agree exactly with the index num-
ber calculated by a direct comparison of the price level of the nth
year with the price level of the first, but experience shows that it
will be sufficiently near for most practical purproses.:

Un this connection E. E, Day in his Statistical Analysis, New York, 1925,
has suggested that a perfect index number should meet the cireular test, which
he describes as follows (see p. 361) : “Suppose an index number is computed
by the ‘ideal’ formula for each successive pair of years from 1914 to 1924;
thus for 1915 on the base of 1914, 1916 on the base of 1915, and so on, to the
index number for 1924 on the base of 1923. Suppose these individual index
numbers, first obtained as a series of year-to-year links, are welded together
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Example: The following calculation is based upon the figures
of Tables 1 and 2 and illustrates the method of chaining. For sim-
plicity, price index formula (5) is used. The years 1926, 1927, 1928,
and 1929, are compared. Letting p,, p., s, 4, represent the prices
for the years 1926, 1927, 1928, and 1929, respectively, and ¢,, ¢., ¢,
g4, the quantities or production for the years 1926, 1927, 1928, and
1929, respectively, one gets the following values for pg (expressed
in millions of dollars).

TABLE 6
VALUES OF pg FOR YEARS 1926, 1927, 1928, AND 1929

Crop 7.9: P, P39, P4, D3, D05 D,y

Corn 2019.0000 | 2315.1200 | 2376.1800 | 2680.1100 | 2784.4300 | 2649.8600 | 2530.4800
Wheat | 1204.9500 | 1096.9200 | 1055.0760 | 943.1740 | 1079.6820 | 1107.0290 | 1005.5100
Oats 511.2700 | 586.0900 | 556.0100 | 626.9900) 762.6700 | 676.3300 | 586.0900
Cotton | 1573.0750 | 1582.0640 | 1140.1280 | 1295.6000 | 1447.8000 | 1382.6490 | 1716.8990
Potatoes | 503.1060 | 382.9983 | 435.3187 | 249.6740| 288.5480| 633.8748 | 482.5566
Hay 2248.9987 | 1860.8759 | 2888.9021 | 2536.2301 | 2232.6759 | 2171.9880 | 1959.8280
Sugar 556.9360 | 608.7440 | 589.3800 | 526.6800| 487.9140 | 441.4460 | 492.1760
Tobacco | 236.2360 | 2751760 | 256.9440 | 244.8240 | 277.7500 | 254.3750 | 240.1200
Barley 118.3360 | 142.3730 | 204.7430 | 207.4020 | 278.8500 | 225.2250 | 116.4870
Rye 37.5360 |  40.8000 58.1600 62.2312 |  46.4059 41.6352 | 39,1680
Totals | 9009.4437 | 8891.1612 | 9060.8418 | 9422.9153 | 9636.6259 | 9584.4120 | 9169.3246
Lo l e — i
Crop 9, Dy, P3q, g, r.4, 2,9, P9,

Corn 2072.2500 | 2424.3400 | 2458.9500 | 1901.2500] 2382.9000 | 2611.2400 | 2597.2200
Wheat | 1158.9850 | 1207.6680 | 958.8680 | 1178.2700/ 983.2460 | 980.5800 | 967 1530
Oats 485.0300 | 676.3300 | 592.5400 | 458.3800| 525.4600 | 660.9100 | 556.0100
Cotton | 1133.6500 | 1274.0640 | 1482.6000 | 1297.2750| 1415.8830 | 1797.8000 | 1237.2980
Potatoes | 571.8340 | 503.0974 | 204.0420 | 467.3220 448.2342 | 219.6660 | 548.4774
Hay 2887.1563 | 2062.3239 | 1830.6810 | 2043.6930| 1780.9200 | 2014.5879 | 2515.9320
Sugar 539.2200 | 545.9990 | 580.8600 | 594.6900| 525.5400 | 543.9840 | 476.5200
Tobacco | 220.5840 | 291.5000 | 210.4740 | 279.7340| 284.3450 | 262.1960 | 224.2200
Barley 170.1760 | 275.2750 | 218.5560 | 179.3280| 176.5260 | 144.2220 | 167.5170
Rye 53.5072 43.3700 37.2965 32.156407 33.5520 | 43.6560 | 55.8338
Totals | 9292.3915 | 9303.9673 | 8674.9675 | 8432.0960 8556.6062 | 9278.8419 | 9848.6834

50 as_to make a chain for the full period of eleven years. The question may
then be raised: how far is the result thus obtained for the vear 1924 on the
base of the year 1914 consistent with the result obtained by comparing 1924
with 1914 by direct application of the ‘ideal’ formula for these two years?”
If the results are consistent then the formula meets the circular test. Rigor-
ously stated the eriterion would read: “Any index number meeting the circu-
lar test will give for a final year n which the data are identical with the
initial year, a result identical with the index number of the initial year”. The
“ideal” index of Fisher does not meet this test.
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Using the above data, one obtains the following chain of index
numbers:

12 == 8891.1612/9009.4437 — .9869 (index for 1927 with
1926 as base),

I3 =9422.9153/9060.8418 — 1.0400 (index for 1928 with
1927 as bhase),

55 = 9584.4120/9636.6259 =— 9946 (index for 1929 with
1928 as base),

To compute the value of the index for 1929 with 1926 as base,
these three numbers are multiplied together to yield

1142112 ><I23><Is4: 1.0208 .

This index is seen to compare favorably with the one computed
directly, namely,

I,,=—9169.3246/9009.4437 = 1.0177 .

PROBLEMS.

1. Using formula (1), calculate the price index for 1928 with the average
of the preceding five years as base,

2. Using formula (5), compare the price levels for 1922 with the average
of the two preceding years.

3. Make a chain of index numbers from 1926 to 1929 using the “ideal”
formula. Caleulate the index of 1929 with 1926 as base, by both the chain and

[

the direct metheds. Is the agreement closer using the “ideal” formula or for-
mula (5)? Explain.

8. Some Practical Considerations Concerning the Making of
Index Numbers. In the preceding sections, the making of index
numbers has been considered only from the standpoint of the
mathematical formula. As a matter of fact, the practical applica-
tion of the theory of index numbers rests in a very fundamental
way upon the actual data. For the solution of the problem of how
to obtain the desired data and how many items to include, no mathe-
matical formula, of course, exists, and, thus, this question is outside
the scope of the present work.

It may be of interest, however, to note that in a comprehensive
article on the subject,® Carl Snyder gives the following sources of

14The Measure of the General Price Level,” Harvard Review of Economic
Statisties, Vol. 10 (1928), pp. 40-51.
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material, with assumed weights, for the construction of the general
price index.

1. Industrial commodity prices at wholesale, U. S.
Department of Labor (Weight 10).

2. Farm prices of 30 commodities, UJ.S. Department
of Agriculture (Weight 10).

3. Forty-three articles of food in 51 cities, U. S. De-
partment of Labor (Weight 10).

x

4. Cost of housing in 32 cities, U. S, Department of
Labor (Weight 5).

5. Cost in 32 cities of clothing (weight 4), fuel and
light (weight 1), home furnishing goods (weight 1), mis-
cellaneous (weights 4), U. 8. Department of Labor.

6. Transportation costs, Federal Reserve Bank of
New York. Railway freight rates per ton mile, U. S. In-
terstate Commerce Commission and U, S. Department of
Commerce (Weight 5).

7. Realty values—Urban, Federal Reserve Bank of
New York (weight 8), Farm, estimated value per acre,
U. S. Department of Agriculture (weight 2).

8. Security prices. Preferred stocks (weight 1),
common stocks (weight 4), yield on sixty high grade
bonds (weight 5), Federal Reserve Bank of New York
from data of the Standard Statistics Company.

9. Equipment and machinery prices: (a) Railway
equipment, (b) electric car costs, (¢) farm machinery,
(d) telephone equipment, (e) electrical appliances, (f) el-
ectrical machinery, (g) heating appliances, Federal Res-
erve Bank of New York (Weight 10).

10. Hardware prices, index of National Retail Hard-
ware Association (Weight 3).

11. Automobile prices, weighted price index of six
malkes of cars (Weight 2).

12. Composite wages, Federal Reserve Bank of New
York (Weight 15).
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The United States government in forming its general index
considers the following items:

1. Commodity prices at wholesale, Bureau of Labor
(Weight 20).

2. Cost of living, Bureau of Labor (Weight 35).

3. Composite wages, Federal Reserve Bank of New
York (Weight 35).

4. Rents, Bureau of Labor (Weight 10).

In Figure 22 is given the index of wholesale commodity prices
published by the United States Bureau of Labor Statistics.! In
1932 this index comprised 784 prices of different commodities, in
carlier years this number was, of course, smaller. Indexes are also
calculated by the Bureau of Labor Statistics for various groups of
commodities such as raw materials, semi-manufactured articles,
finished goods, farm products, foods, cereals, hides and leather pro-
ducts, textile products, metals and metal products, ete,, ete.

| | |
o i é‘[
80— R J(‘ WHOLES.“\LE TOMWOITY PRACE IRDEX ™ ]
' U5 BJREAU OF LAEOR STATISTICS
Y N T

140

120

'::'m

1934
80 =
4ot ——
1795 8C5 1815 18‘5 1835 1B45 1855 1865 1875 1835 8T gcs @b o [EEL

Figure 22

1Indexes for the Vears 1797 1889 hdve been prepared by Profosaors G F.
Warren and . A. Pearson, of Cornell University. From 1890 to date, the in-
dexes are by the U. 8. Bureau of Labor Statistics,
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9. Miscellaneous Applications. So far the discussion has been
limited to index numbers of prices. It will be clear, however, that
the theory for the comparison of one section of a time series
with another applies to other statistical units as well. The follow-
ing problems illustrate this point.

PROBLEMS

1. Make a set of index numbers to compare the number of bank suspen-
sions in the United States, for the varicus kinds of banks as well as for all
banks, from 1927-1932. (The statistics of bank suspensions relate to banks
closed to the public either temporarily or permanently on account of financial
difficulties, by order of supervisory authorities or directors of the bank. They
do not include banks closed temporarily under special or “moratorium” holi-
days declared by civil authorities.) The data are given in the following table:

_ Number Deposits
T Non-
Al ¢ Member Banks | Member | ($1,000,000)
Year Banks | National State Banks All Banks
1927 662 | 91 | 33 538 | $ 193.9
1928 491 57 ' 16 418 138.6
1929 642 ‘ 64 ‘ 17 561 234.5
1930 1345 161 26 1158 864.7
1931 2298 409 ¢ 108 1781 1691.5
1932 1453 276 : 54 1123 730.5

2. Compare the bank suspensions in 1932 with the bank suspensions in
1927 using the “ideal” formula. Hint: Consider the deposit column as the
product of p by g.

3. The following data give the number of wage earners in manufacturies
in the United States and their total yearly wages. Make an index comparing
wages with 1923 as a base.

Year : Wage Earners | Total Wages
1914 6,896,190 $ 4,067,718,740
1919 9,000,059 10,461,786,869
1921 6,946,570 8,202,324,339
1923 8,778,156 11,009,297,726
1925 8,384,261 10,729,968,927
1927 8,349,755 10,848,802,532
192¢ 8,838,743 11,620,973,254

4. TUse the “ideal” formula to compare wages in 1929 with wages in 1914.
Hint: Consider total wages as the product of p by ¢.
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5. Study the growth of the life insurance business in the United States
from the following data: .

Year No. of Policies Amount

1900 3,136,051 $ 7,093,152,380
1905 5,621,417 11,054,255,5624
1910 6,954,119 13,227,213,168
1015 9,890,264 18,349,285,339
1920 16,694,561 35,091,538,279
1925 23,881,758 54,519,175,903
1930 83,498,958 79,774,840,870




CHAPTER V

THE ANALYSIS OF TIME SERIES

1. Historical Note. The analysis of time series furnishes a
problem of engaging interest to the economist and statistician.
Since it is only by careful study and interpretation of the past that
one can hope to foretell the future, it becomes a matter of major
importance to have statistical methods applicable to the analysis
of conditions of the past through which some knowledge may be
gained as to probable conditions in the future. The history of the
development of “business cycles,” a term applied to the more or
Iess periodic alternations of business between prosperity and de-
pression, is the story of this attempt. It is possible here to give
only the briefest outline of this development.

Like many other scientific problems, a consideration of busi-
ness cvcles, then limited to their most spectacular phase of crisis,
was forced on students by events.! The South Sea Bubble and Mis-
sissippi Scheme culminated in erises of the first order. The Na-
poleonic Wars led to grave commercial perturbations. But eco-
nomists, by and large, were more interested in “the normal state”,
in the “conditions of equilibrium”, that hypothetical Utopia of the
theorist, when all parts of the economic machine function in per-
fect balance with faultless smoothness, than with the harsh ac-
tualities of rhythm, and perturbation, and crisis. To them crises
were unwelcome and disruptive intruders on a theoretical “nor-
mal,” and were treated, therefore, as mere addenda of the eco-
nomic state, instead of one of its most notable characteristics. But
economic heretics, notably Sismondi, raised the problem, and it
has not yet been solved. The Nouveoux Principes d’Economie Poli-
tique of J. C. L. de Sismondi (1773-1842) was published in 1819,
when the crisis of 1816, a year after Waterloo, was fresh in the
minds of men. This first comprehensive explanation of crises set
forth, however tentatively, many, if not most, of the theories still
current in regard to the origins of crises.

Possibly Clement Juglar’s Des erises commerciales et de lour
retour périodique, which appeared in 1860, marks a turning point
in cycle theory, for the reason that Juglar gave to exact observa-

18ee Wesley C. Mitchell, Business Cycles, New York, 1928,
—119—
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tion and description of the phenomena a prominence they had not
hitherto had., He also raised the question of inter-crisis cycles.
As early as 1833 some notice of rough periodicity in criscs had
been made, and by 1837 some descriptions of the phases of the
cycle. These paved the way for diversion of emphasis from “cri-
ses,” which were thought of as sporadic, discrete accidents, to
cycles, the continuous ebb and flow of business fortune through
typical patterns. Given, on the one hand, a recognition of the con-
tinuity of commercial phenomena and, on the other hand, an em-
phasis on precise observation and description of these phenomena,
the way was paved for statistical studies.

Here again one encounters the redoubtable William Stanley
Jevons, who was the most effective pioneer in this effort. Cournot
had, it is true, noticed the necessity of distinguishing between sec-
ular trends and periodic variations. Although one or two papers
had appeared some half dozen years before, Jevons’ “On the Study
of Periodic Commercial Fluctuations” {1862) marks the real be-
ginning of work on seasonal variations. He was the father of the
indispensable index number, wrote on sccular trend, and analyzed
British prices over a long period of ycars. Although William Play-
fair' justly elaimed chariing as his invention in 1787, Jevons first
used the vertical ratio scale in his studies of trend in 1863, a prac-
tice which, despite its many advantages, did not win wide adherence
till 1917, Studies made on index numbers by Jevons were not ma-
terially forwarded lill Edgeworth’s work. Meantime, correlation
analysis was invented by Sir Francis Galton (1889) and refined
by Karl Pearson.

Therefore, “by the time writers on business cyeles began to
make systematic use of statistics-—say in the decade . . . ... be-
ginning in 1900-—they could use many methods already developed
by mathematicians, anthropometrists, biologists, and economists,
and many data already collected by public and private agencics,””

In 1884 J. H. Poynting, in 1901 R. H. Hooker, used moving
averages to determine secular trend. In 1899 G. Udney Yule, in
1901 R. H. Hooker, applied Pearson’s method of eorrelation to eco-
nomic data. In 1902 Dr. J. P. Norton in his Stafistical Studies in
the New Yorlk Money Market fitted exponential curves to his data
to measure secular trend, considered the dispersions as well as the

1The student should by all means ‘read the intercs%iﬁéA;&icic, ‘V‘Playfair—
and His Charts,” by H. G. Funkhouser and Helen M. Walker, in Economic His-
tory (A Supplement of The Eeonomic Journal) Vol. I1I, February 1935, pp.
103-109.

2Mitchell, Bustnesg Cycles, p. 199,
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averages of seasonal variations taken as percentages of his trends,
and employed lines of regression and coefficients of correlation. In
1914 H. L. Moore applied harmonic analysis to time serieg; in 1915
Warren M, Persons made the first of his business barometers, and
in 1917 began his work at Harvard on business cycles which has
been so widely influential both at home and abroad.

2. Secular Trend. The first step in the analysis of time series
is to obtain a homogeneous series of items, so that an item at one
date is strictly comparable with an item of another date.

The second step is to determine the secular trend of the series,
namely, that characteristic of the series which tends to extend con-
sistently throughout the entire period. This is done by fitting a
curve to the data under consideration. It is usually sufficient for
this purpose to fit a straight line, but occasionally instances
arise, particularly if the series is taken over a long period of time,
when it may seem desirable to fit a parabola or a polynomial of
higher degree to the given data, or even to fit different curves to
different parts of the series. This last situation applies particu-
larly to the analysis of business conditions before and after the
World War.

TABLE (a)
MONTHLY AND ANNUAL AVERAGES OF MEAN WEEKLY
FREIGHT CAR LOADINGS

{(unit, 1,000 cars)

Jan.! Feb| Mar.i April ’ May| June July ! Aug.| Sept. Oct.! Nov. | Dec.

. | B! U R —
! |

728 687 697 | TI5 | 759 ’ 809 858 : 892 960 | 967| 807 | T58

820 776 | 848 | 731 | 862| 860 901! 968 | 969 [1005! 884 | 723

705| 683 | 692 | 706 | 757 765 7hl i 810 | 841 ; 929| 761 | 683 ;

7021 765 | B26 | 723 ¢ 787, 842 825 | 877! 935 | 992! 944 | 838 |
845 | 842, 917 = 941 ' 975| 1011 986 ; 1041 | 1037 1078 | 978 | 826 |
858 | 908 | 916 = 875 | 895\ 906 894 | b74 0 1037 i1091 97h | B4T

9211 905 924 ' 941 j 9681 989 986 : 1080 | 1074 1107 | 1024 | 888 |
9231 919 | 969 . 958 ,1037| 1028 | 1049 ; 1104 | 1148 | 1205 | 1068 | 904
946 | 956 | 1002 | 975 ,1024! 999 979 : 1062 : 1097 | 1115 956 | 834

: ‘ \ i ‘
862 | 897 | 951 . 935 1002 | 085 986 | 1058 | 1117 | 1175 | 1061 | 833 ,
931 | 950 | 798 | 680

719 | 709 7355 7H2 | T40 | T48 738 | 747\ 737 | V59 655 | bb5

B77 | 634 | 549 | 485 |

An-
nual
Av

803
862
757

38
956
931

984
1026
995

993

879

716
543

809 | 816 | 849 | 837 | 878 | 887 884 | 942

893|942 | 962 996 1051 | 1052 | 1038 | 1117 ]1135 1169 | 978 | 835 1014
|
!
| 971 [1013] 888 | 767 | 878
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In order to illustrate the phenomena exhibited by 2 time series
and to show the method of analysis, a simple example will be em-
ployed. To begin with, consider the data of the table on page 121,
which shows the monthly and annual averages of mean weekly
freight car loadings in the United States from January, 1919, to
December, 1932. It would be difficult to say confidently a priori
whether freight business had gained or lost over this period. The
factors which would tend to increase freight business would be
the increase in population and the increase in production and dis-
tribution. The major factors tending towards a decrease would
be the development of pipe lines and motor truck transportation
and the fact the sericg ends in the depths of a depression. As Dbe-
tween this balance of forces, we should be undecided, Which judg-
ment will the table confirm? The question is to be answered finally,
of course, by determining the secular trend of the series.

In order to answer the question propesed, it will be suflicient
in the present case {o fit a slraight line to the lime series obtained
by using the mean annual freight car loadings as ovdinates and
the years as abscissas. In general, in ealculating the trend line,
it is desirable to usc all the data instcad of annual averages but
in this case, for purposes of simplicity, we shali use annual aver-
ages.

‘MOA—*—TJ_—TW — _r_ [_ 1 - 7,_i

550
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FIGURE 23

Employing the method of section 6, Chapter I, one finds that
m, = 12,297, and m, =-: 91,109. Since there are 14 items in the
series of annual averages, one refers to Table IX for p -= 14, and
finds A - = .31868, B == —.03297, and C == .004396. The (ollowing
computations are then made:
ay == A, 4 Bm, = (12,297) ((31868) +- (91,109) (—-.03297)
== 914,94 ,
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@, = Bm, |- Cm, = (12,297) (—.03297) -} (91,109) (.004396)
——4.92 .

Hence, the equation of the straight line trend is
y=914.94 — 492z ,

which is graphed in Figure 23. Since the coefficient of z is small
and negative, the conclusion is reached that there is indication of
a slight tendency to decline in freight car loadings since 1919,

PROBLEMS

1. The following table gives the annual yield of wheat per acre for the
65 vears, 1866-1930. Calculate the trend line for these data.

Yield of Wheat Yield of Wheat‘ Yield of Wheat
Year (per acre) Year (per acre) Year {per acre)
Bushels ) Bushels | Bushels

1866 9.9 1888 111 1910 13.9
1867 11.6 1889 13.9 1911 2.5
1868 12.1 1890 11.1 1912 15.9
1869 13.6 1891 11.5 1913 15.2
1870 124 1892 13.3 1914 16.6
1871 11.6 1893 11.3 1915 17.0
1872 12.0 1894 13.1 1916 12.2
1873 o120 1895 13.9 I 1917 14.1
1874 12,3 1896 12.4 | 1918 15.6
1875 11.1 1897 13.3 1919 12.8
1876 10.5 1898 i 151 h 1920 13.6
1877 13.9 1809 | 121 [ 1921 12.8
1878 13.1 19040 11.7 L1922 13.9
1879 13.0 1901 15.0 11923 134
1880 18.1 1902 14.6 1924 16.5
1881 10.2 1903 12.9 1925 12.9
1882 13.6 1904 12,5 | 1926 14.8
1883 11.6 1905 149 1927 14.9
1884 13.0 1906 15.8 . 1928 15.7
1885 10.4 1907 14.1 i 1929 13.2
1886 12.4 1908 140 : 1930 14.4
1887 12.1 1909 15.4 i

2, Fit a trend line to the following data on electric power production
(unit, mean daily output in 1,000,000 kilowatt hours) :

Year | Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1928 | 234.4 236.8 233.6 228.2 229.6 233.3 230.4 242.3 242.5 255.5 258.4 255.2
1929 | 265.8 265.8 257.7 262.7 260.8 258.9 258.5 269.5 268.7 280.9 274.8 274.5
1930 | 279.5 272.4 264.1 267.3 260.1 259.5 254.8 255.0 2569.7 264.4 256.4 261.5
1931 | 256.2 255.0 253.6 255.2 245.9 250.5 249.4 246.0 251.1 2505 246.9 250.7
1922 | 243.3 241.4 235.5 226.0 214.0 218.3 210.5 217.4 224.6 227.2 231.2 229.9
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3. Determine from the following data whether or not the per capita in-
come in the United States, expressed in 1913 dollars, is increasing or de-
creasing ;1

\ !
| Per Capita Income Per Capita Income
Year (1913 Dollars) Year (1913 Dollars)
1909 | $322 1921 $310
1910 | 327 1922 342
1911 332 ‘ 1923 377
1912 341 i 1924 384
1913 346 i 1925 392
1914 335 i 1926 403
1915 335 T 419
1916 367 . 1928 423
1917 ; 368 L 1929 i 421
1918 ; 360 1930 ‘ 365
1919 334 ;1931 314
1920 322 i 1932 \ 228 (est.)

3. Scasonal Variation. The last section dealt only with the
mean annual freight car loadings and no account was taken of the
fact that in the complete data there is a typical movement having
a period of cne year, that is to say, the amount of {reight hauled
tends to conform to a certain pattern at intervals of twelve months.
This phenomenon is known as seasonal variation and is an impor-
tant characteristic of many economic series. Of course, it is sel-
dom so well defined and regular as the seasonal variation of cer-
tain meteorological phenomena, such as temperature, but similar
seasonal movements are distinctly marked in many time series en-
countered in the study of business and economic problems. For
example, the average monthly price of a commodity such as eggs
would tend to follow the scasons, being higher in winter than in
summer, although relatively few price series show such a move-

- ment,

Usually the first step in the study of seasonal variation in a
series is to calculate the link relafives,® that is, the ratio of each
item in the series to the one just preceding. These link relatives
are then arranged in order of magnitude in a table with the twelve
monthly ratios as class marks, and the median value for each ratio
determined. In general, the average value will serve as well as the
median value, unless there are a number of exceptional ratios in
the series. .

For the year 1920, the link relatives for freight car loadings
would be determined as follows:

Trving Fisher, Booms and Depressions, New York, 1932, Appendix V.

2This method is given in detail because of its historic importance. The
reader is warned that it is subjeet to considerable criticism. See, for example,
H. Hotelling, American Mathematical Monihly, Vol. X111, No. 3, March 1955,
p. 170,
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}I)fc] ratio =$—§é9=1-08, f:ﬁ ratio = .95 , %-&g_:ratio = 1.09
ﬁiﬁi ratio — .86, i[;f, ratio =118 , i;;:ratio =1.00
:;3111); ratio =1.05 , ?—ul-lig?"ratio =107 , i?ll: ratio =1.00
g:;'t-ratio =1.04 , g((:tv ratio = .88 1?123. ratio =—.82

For the freight car data that are being considered, the table
of link relatives, expressed as percents and arranged in order of
magnitude, follows:?

Jan. Feb.; Mar. | Apr.! May I June | July]| Aug.| Sept.. Oct. | Nov.| Dec.

Dec.| Jan,| ¥eb. | Mar, | Apr. | May | June!| July Aug.| Sept, | Oct.| Nov.

Ratics

T . — S o — be ) } 26 Aumitde—"

109| 109| 109 | 104| 118 | 107 | 106 | 110 | 110 | 110 | 95 | 94
108| 106 | 109 103 | 109 | 107 | 105 | 109 | 108 | 110 | 93 | 90
106 105| 108 | 103 | 108 | 104 | 102 | 109 | 107 106 | 9t | 89
105| 105| 106! 103 | 107 | 102 | 100 | 108 | 106 | 105 | 90 | 88
104! 104 | 105 | 102 107 | 102 | 100 | 108 | 106 (105 | 89 | 87
] !
1041 100| 105 102 106 | 101 { 99 | 107 | 104 | 104 | 89 | 87
, 103[ 101} 104 102! 106 | 101 | 99 | 108 | 104 1105 | 88 | 87

Link 103| 101| 102, 99| 105 ;101 | 99 ' 108 | 103 ' 105 | 87 | 85
Relatives | 102| 99| 102, 99| 104 | 100 | 98 | 106 | 102 (103 | 86 | 85
101 99| 101, 98103 | 100 | 98 | 106 { 100 |03 | 86 | 85

101 98| 101; 97| 102! 99| 98 | 105 [ 100 | 103 | 84 | 85
100 97101 96| 100| 98 | 98| 105 | 99 (102 | 84 | 84
981 95 101 i g8, 98' 98| 98| 104 | 99 102 | 83 | 83
—| 941101, 8 94, 94 | 96101 | 99 |101 | 82 82

S —— | —

Median | 104 | 101 | 103 | 100 106|101 99 | 108 | 104 |105 | 88 | 86
Average | 103 | 101 | 104 | 99 105!101 100 | 107 | 103 [105 88 | 86

From the above table, it is seen that the medians and arithme-
tic averages compare very closely. In the present case the medians
are used as the mean values of the link relatives in each column. In
order to refer these to some month as a base, set the link relative
for January equal to 100 and “chain” each median to this standard.
To do this, multiply the median of each link relative column by the

11t will be noticed that, if the available data begin with January, the num-
ber of link relatives for the Jan./Dec. ratioc will be one less than the number
of link relatives for the other ratios,
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value of the median preceding it. Thus, if the medians of each of
the columns, expressed as decimals, are represented by the symbols
My, Mg, Ma, -+ -, M2, then the chain relatives will be ¢, — 100, ¢, —=
100m,, ¢s=—=Coms, -+, €12 == €1;My.. For freight car loadings, these
values are easily calculated to be the following:

Median Mo. ‘\ Chain Relatives
1
my, 104 | Jan. | e, 100
m,, 101 Feb, | ¢, 101
My, 103 Mar. c,, 104
m,, 100 April c, 104
my, 106 . May | ¢, 110
m,, 101 June e, 111
m,, 99 July ¢, 110
mg, 108 Aug. | ey 119
m,, 104 Sept. ! ¢, 124
My 105 QOct. | Ciav 130
m,,, 88 Nov. E ¢, 114
m,, 86 Dec. |

€. 98

It will be noticed that these values are not entirely consistent
for, if the December chain relative is multiplied by the median of
the January link relative, one will not have the value with which
the series started, since ¢;» — 98 and e¢,.m, — (98) (1.04) — 102
instead of 100. To remove this diserepancy, an adjustment is made
according to the following scheme: A quantity d is calculated from
the equation

100(1 4 d) 2 == ¢pum, ,

and the chain relative ¢; is replaced by the adjusted values
¢:/(14-d)**. One thus derives for the new chain relatives the fol-
lowing values:

Ca Cs Cia

(1 ,i;.z) aA+-d: (1 Jmn .

€1,

From the example,
100(1 |- d)2 = c,om, = 102 .

Taking logarithms of both sides, it is found that

21
log (1 d) = 2810 — 100 ooo7167
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from which 14+d=192017 ,
and, therefore, d= .0017 .
The adjusted values are easily calculated by means of log-

arithms. For example, to find the adjusted chain relative for ¢, the
procedure is as follows:

. . 4
adjusted relative ¢g=—--—

(1-+44d)®
log (adjusted relative ¢;) ==log ¢, — 5log (1 4 d)
=log 111 — 5 log 1.0017
= 20453230 — .0035835
=2.0417395 ;
adjusted relative ¢, =110 .

The adjusted values in the example are given in the first
column of the following table:

Adjusted Chain 5 Index
Relatives i Seasonal Variation?
,, 100 | 92
€, 101 ; 93
€y 104 i 95
€y 103 ‘] 04
s 109 i 160
Cer i10 i 101
C 109 i 100
g 118 : 108
€os 122 : 112
- 128 ! 117
Cas 112 103
€10 96 ‘ 88
Total 1312 | 1203
Average 109 ; 100

15, Kuznets has prepared a very valuable book on this subject: Seasonal
Variations in Indusiry and Trade, New York, 1933, in which he gives an ex-
tensive table of seasonal indexes, pp. 372-415. He gives the following figures
for freight car loadings:

1918-24: 89 92 97 92 98 101 104 108 113 114 102 90

1925-29: 90 92 96 96 102 100 100 108 111 115 101 87
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As a check, it will be noticed that the final adjusted value, ¢,.,
multiplied by m./ (1 -{- d), is equal to 100, within a small approxi-
mate error, that is,

cimy 96 X 104
(I+dy  1.0017

= 99.67 .

As a final calculation, the adjusted chain relatives are now
further adjusted by using their arithmetic average as a base and
letting it be 100. The items in the new series are called the index
numbers of seasonal variation. For the given data, the arithmetic
average of the adjusted chain relatives is 109, and adjusting to this
base as 100, by dividing each of the adjusted chain relatives by 109,
one gets the indexes of seasonal variation, These are given in the
second column of the above table. They give a clear indication of
the seasonal variation of the freight car loadings data that are
being studied.

PROBLEMS

1. Calculate the index numbers of seasonal variation for the electric
power production data as given in problem 2, section 2, of this chapter. Alse
determine whether seasonal disturbanee is shown.

2. The following table gives the total new orders (expressed in 1,000
short tons) of fabricated steel over a five-year period, 1927-1931. Calculate
the index of seasonal variation and show the seasonal fluctuations.

1927[ 36 59 55 47 381 28 35 48 38 47 27 35

Jan, | Feb. | Mar. | Apr.| May | June | July | Aug. | Sept. | Oct. | Nov, | Dee,

1928 | 51 64 55 56 49 1 40 41 51 43 b9 62 52
1929 | 40 70 69 b4 68 | a7 58 51 52 45 52 29

1930 | 57 34 46 45 38| 41 38 36 41 30 33 26

1931 | 27 24 31 29 26 22 27 24 33 20 18 16

3. The following figures show the net earnings of public utilities over
an eight-year period, 1923-1930 (Unit = $1,000,000)}. Is there seasonal varia-
tion in the net earnings? Calculate the index of seasonal variation.

Jan. Feb. Mar. Apr May June ‘ July Aug. “ Sept Oct. Nov. Dec
1923 | 47.4 44.5 | 44.9 | 449 | 420 | 409 186.1 | 84.2 | 382 | 42.0 | 46.3 | 48.0
1924 | 510 | 482 | 473 | 458 | 437 | 41.6 |36.6 | 36.8 !42.0 | 46.1 | 50.4 | 56.6
1925 } B8.7 54.1 525 | 51.0 | 48.9 | 478 1443 | 44.8 | 49.1 56.1 | 605 | 654
1926 | 66.9 | 61.6 | 60.7 e‘ b9.5 | 54.9 55.7 1492 | 49.2 | 569 60.9 | 65.8 | 73.0
1927 | 744 { 66.9 65.4 | 649 | 612 | 59.2 1539 | b36 | 619 | 663 | 70.2 | 78.9
1928 | 79.0 | 743 72.8 } 689 | 67.7 | 675 623 | 61.8 | 682 737 814 | 91.0
1929 | 92.0 | 86.0 | 85.0 | 83.0 825 |[790 710 [ 73.0 1 80.0 | 83.0 | 92.0 1100.0
1930 | 92.0 | 90.0 | 83.0 | 895 |86.0 |83.0 T0.6 | 715 i 80.8 [ 84.1 | 88.3 | 89.0
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4. Correction for Seasonal Variation and Secular Trend. In
the analysis of time series, it is often desirable to eliminate seasonal
variation and secular trend from the data. This is conveniently
done by first calculating the deviation of each item of the series
from the normal, and then representing graphically the new values
thus obtained.

Any method by which this is done must, of course, be an en-
tirely arbitrary one, but must satisfy a certain criterion dictated
by common sense. If y; represents an item in the original series, s;
the corresponding index of seasonal variation, and y the corres-
ponding ordinate of the secular trend curve, then the relative devia-
tion of the item from the established normal may reasonably be
represented by the formula

Yi—3SY Y
8y 8y

If the values of D; are calculated and plotted, the graph thus
obtained will furnish a representation of the original data referred
to a normal situation from which seasonal variation and secular
trend have been eliminated. The values above and below the time
axis will represent the positive and negative deviations from the
normal situation of the various items of the series.

As an example, corrections for seasonal variation and secular
trend may be made on freight car loadings for the 14-year period,
1919-1932. The values of y are computed from the equation of
secular trend, ¥ =— 914.94 -— 4.92z, as given in section 2. The values
of the indexes of seasonal variation are given at the end of the last
section and should be used as ratios in the above equation, i.e,, .92,
.93, .95, ete.

Combining these values with the values obtained from the
table of freight car loadings, the following values for D, are caleu-
lated :

D=

Relative Deviations of Freight Car Loadings from Normal

1919
1920
1921
1922
1923

1924
1925
1926
1927

1928
1929
1930
1931

1932

Jan, | Feb, | Mar, | Apr. | May |June | July | Aug. | Sept. | Oct. | Nov. | Dec.
14 [ -19 | -20 | -17 -17 1 =12 | —06 | —0% —06 1 09 { —14 | —-.0b
-02 | —08 | —02 —14 —.05 -06 | -.01 ; —.01 —.05 -05 | —05 | —09
-1 | -19 ! 19 | 17 -.16 ~16 | =17 i =17 -17 | =12 -18 | =14
15 | =09 03| 14 -12 | -07 | —08 | -.09 -07 | —05 02 .06
.03 .01 08 A2 09 112 10 08 04 .03 07 05
.05 10 .08 056 01 .01 01 .02 04 05 07 .09
13 10 10 .13 .10 a1 A2 13 09 07 .13 156
.14 12 .16 16 .18 16 19 .16 A7 A7 18 A7
AT A7 .21 19 A7 13 12 13 A2 09 07 09
.08 A1 a5 A4 5 12 14 .13 A5 .16 19 16
12 A7 A7 .23 22 21 .20 .20 .18 .16 .10 10
.06 09 .08 .13 06 07 05 .01 —-.03 -05 | —10 | -.10
09 | =11 | =10 | —-.06 -13 [-13 |-14 |-.19 -23 | -24 | -25 | —-26
-28 | -29 | -30 | =30 | -39 |-43 |-43 |-.48 -39 | -36 | =37 | -35
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These values are graphically represented in the following
Figure 24. It is obvious that the graph tells a great deal more about
a particular year than does the yearly average, which may have been
greatly influenced by one or two unusual months although the year
as a whole may have been practically normal.

PER CENT

N DEVIATIONS FROM NORMAL! [ |
| T OF . ; s
FREIGHT CAR LOADINGS I

N
o I NJ‘ M _i_ _T i
NG R Y
- 40— — : e — —— £ e i J i \\
1 | T T
] i L J_ COwLES COMWM SO FOA RESEAR. M Ih FZSNGH Uy
1919 1820 1923 922 1923 1924 192% 1826 1927 1920 1920 1930 193 1932
FIGURE 24
PROBLEMS

1. Correct for seasonmal variaticn and secular trend the data of fabri-
cated steel, as given in problem 2, section 3.

2. Among the clichés of the market place is the expression “the spring
rise.” From the following table of New York Times Daily Stock Price Aver-
ages determine whether there is a seasonal variation in stock prices. Logically,
whny would there not be such seasonal variation?

_ - — | — JE— j——— — i ‘,, o .
! Jan. ~‘1'eb {Ma.r ‘Am May.June July iAug l%r_pt Oct. Nov. Dec.

[V (U P [ DI . | . I
1928 183 {180 | 194 | 196 201 198 192 203 (207 (218 229 2 31
1929 | 248 [ 251 | 252 | 249 | 254 | 265 | 280 \ 304 |331 (301 | 227 221

1930 | 220 {228 | 240 245 | 238 229 (207 |204 207 [186 ;165 161
1931 | 156 | 178 {169 | 155 | 143 144 | 142 |129 l123 100 | 105 5 83
1932 i 80 { 81 BN 65 52 44 | 47 | 6R k ’72 ("' 62 ' 58

3. Correct for seasonal variation and secular trend the following datsa,
which give the average price per dozen of eggs in New York City during a
nme—vcar pnnod 1923 1931:

== = o e S ———_— r T - M
Jan. |Feb .Mdr 'Apr ‘May Junc July Aug bcpt ] Oct.{ Nav.| Dee.

e e e . ﬁ| - - . _ - .
1923 l 42 \ a7 | 31 \ 27 ‘ 27 \ 24 |25 |29 |3 1 89 | 53 | 47
1924 42 | 30 1 25 1 24 1 25 ;27 120 |33 |39 [44 | 62 | 57
1925 | 59 l 44 | 30 ‘ 29 | 32 ' 33 (83 |83 |87 ;43 | 56 | 51
1926 | o8 121 ) 29 1 a2 a1 30 20 In1 T38 Tap | 50 | 48
1927 | 42 | 32 | 25 | 26 | 23 23 |25 [ 28 (34 |40 | 44 | 45

|

1928 ¢+ 45 ' 82 ' 20 | 38 130 | 29 |80 {31 |33 132|387 !37
1920 | 36 | | 33 ‘ 28 [ 31|31 |52 |4 |36 140 |48 |51
1920 | 42 135 26 |27 123 ' 24 |22 2% 25 l2g 131 129
1931 | 24 ; 20 | 22 | 20 |19 | 19 | 20 ) |22 | 24 |24 | 28 | 27
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As a check on your work, compare your results with Figure 25, which
gives the original data and the line of secular trend, and Figure 26, which
shows the deviations from “normal” of egg prices.

W
z
° E£GG PRICES
60 PER DOZEN AT NEW YORK CITY
50 N
A . \
TV IV ARIVAME ALY,
20 Nud
1923 1924 1929 1926 1927 1928 1929 1330 193
FIGURE 25.
PER CENT
DEVIATIONS FROM NORMAL
+40 QF
EGG PRICES
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—d40

COWLES COKMISSION FOR RESEARCH 1IN ECONOMICS
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FIGURE 26.
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5. The Correlation of Time Series. An important problem
connected with the study of time series is that of the correlation of
two scries which seem to exhibit similar movements. It may be
observed, for example, that industrial production tends to vary
with the Dow-Jones Industrial Stock Price Averages, This variation
is not usually synchronized, since one scries will, in general, lag a
few months behind the other. Thus, industrial production may
decline in July as the conditions discounted by an April decline in
stock prices finally materialize.

This subject is, of course, an unusually complicated one and
only a brief outline can be profitably considered here. A very
simple example will serve to illustrate the method of analysis em-
ployed.

It is a matter of common observation that fluetuations in stock
prices usually precede by a distinct interval the fluctuations in
industrial production. Can one, by analysis of the two series, cal-
culate the precise magnitude of this lag? The problem that pre-
sents itself is a problem in the correlation of time series, and the
analysis that will be employed is identical with that used in the
correlation of any two time series found in problems in business
Or economics.

Since this is essentially a problem in cyclical fluctuations, it
is often desirable to eliminate from the series the effects of season-

L/
% PERCENTAGE DEVIATION FROM NORMAL
QD OF N
~— INDUSTRIAL PRODUCTION b
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FIGURE 27.
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al change and secular trend.! To facilitate the computations, the
items of these two series may be expressed in comparable units as
percentage deviations from trend; to these series the correlation
process is then applied. The two series to be correlated are graphi-
cally represented in Figure 27.

At this point it is necessary to anticipate a formula which will
be studied in detail in Chapter X. This formula defines a statistical
constant called the correlation coefficient, which gives a measure of
the linear relationship between two sets of class marks, namely,

Xy, mﬁ) Xzy v xN;

Yy Yoo Yay -+ Un ,

provided such a relationship exists. By this statement, it is meant
that, if the pairs of points (z. ¥1), (22 ¥2), (Fs ¥e),----- , (2 Yy)
when graphically represented, lie approximately along a straight
line, the correlation coefficient is a measure of this approximation
to linearity. If the correlation coefficient is numerically equal to
one, the points all lie upon a straight line; if the correlation
coefficient is zero, then no linearity exists.
The correlation coefficient is calculated from the formula

_Z@—X) (5 —Y)
NU’#O’V

s

or from the formula
22
AT 6 ¢

= N N (1)

T2y

where N is the total number of items, X and e, the arithmetic
average and standard deviation, respectively, of the z series, and
Y and o, the same constants for the y series.

Example: As an illustration, » may be calculated for two series,
industrial production (corrected for seasonal variation and secular
trend) and stock prices (expressed by the Dow-Jones Industrial
Averages and corrected for trend), for the pre-war period 1897-
1913, where industrial production values will form the z series,
and stock prices the y series.

For the industrial production series, it is found that
X = 09.4688 and ¢, — 15.9527; for the stock price series, these

10n this point, and the problems incident to it, consult Dynamic Eco-
nomics, by C. F. Roos, Bloomington, 1934, Appendix I.
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values are Y = 100.3229 and ¢, — 15.5350. From the data, one has
N =192, and Zz;¥; — 1,940,428. Substituting these values in equa-
tion (1), one arrives at the value for 7,

1,940,428

Tgy —  (99-4688) (1003229) o 5

= ==.,b141 .
(15.9527) (15.5350) 247.8252

Since the object of this discussion is the determination of the
magnitude of the lag of industrial production behind stock prices,
the next step is to shift the items of the industrial producticn series
both to the right and to the left and calculate the correlation coeffi-
cients for each combination thus obtained. By means of the maxi-
mum value of the correlation coefficient, one can then define the lag
between the two series.

By making 12 shifts at intervals of one month in the industrial
production series to each side of the stock price series, with the
inclusion of the original data the 25 correlation coefficients tabulat-
ed are obtained. 'The constants used in the calculations are also
shown. These coefficients may be designated by the symbols

Poyzs Poryy o0y Py Tos Ty om0y Tiy Tho.

The arithmetic average and standard deviation for each series,
as well as the cross product of the two series, is, of course, slightly

ol

1.0

12 MO, (1)

[ COWLES COMMISSION FOR RESRARCH Iy ECONOMICS

FIGURE 28.
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altered by the shifting of the items, as shown in these values given
in the table from which the correlation coefficient for the various
lags is computed. The minus sign before the lag indicates that
industrial production precedes stock prices, i.e., is ahead ¢ months
of stock prices; the plus sign indicates that industrial production
follows stock prices, i.e., lags ¢ months behind stock prices.

(t)
Mo, Lag

X,
Average
x series

Y,

Average !
¥ series |

For -12 lag
-~11
-10

I A N A

LU NMa N O W RS-0

99.4688
99.4688
99.46388
99.4688
99.4688
99.4638
99.4688
99.4688
99.4688
99.4638
99.4688
09.4688
99.4688
99.63b4
99.7969
99.9271
100.0781
100.2240
100.3542
100.4740
100.5573
100.6146
100.6510
100.6042
100.5104

100.7188

100.7240
100.7240
100.7292
100,7396
100.7760
100.7708
100.7500
100.6667
100.5781
100.4792
100.4063
100.3229
100.3229
100.3229
100,3229
100.3229
100.3229
100.3229
100.3229
100.3229
100.3229
100.3229
100.3229

100.3229

1

|

Correlation

(t)
e, o, Zay Coefficient | Mo. Lag
(ry)

15.9627| 15.0151| 1,915,080 —.1837 -12
15.9527| 15.0105 | 1,916,006 —.1658 -11
15.9527| 15.0105 | 1,917,536 -.1325 -10
15.9527| 15.0060 | 1,918,969 —-1035 -9
15.9527| 14.9987 | 1,920,243 0797 -8
15.9527| 14,9838 | 1,922,315 ~.0502 -1
15.9527| 14.9888 | 1,924,512 -0002 -6
15.9527! 15,0146 | 1,926,662 . 0552 -5
15.9527 15,1289 | 1,928,691 1329 -4
15.95271 16525241 1,931,626 2287 -3
15.9527| 15.3749 | 1,934,324 3264 -2
15.9527! 15.4573 | 1,937,304 | 4170 -1
1595271 15.5850 | 1,940,428 | 5141 0
15.9160( 15,6350 | 1,947,597 5987 1
15.8831) 15,5350 | 1,953,828 . .6658 2
15.8306) 15.5350 | 1,957,234 6870 3
15.7881| 15.5350 | 1,959,255 6700 4
15.7586 15.6350 | 1,959,885 | .6249 5
15.7190) 15.5350 | 1,959,656 5681 6
115.6814 15.5350 | 1,958,793 | 5016 7
15.6576| 15.5350 } 1.957,188 4337 8
15.6536| 15.5350 { 1,955,270 3691 9
15.6537| 15.5350 | 1,952,669 | .2983 10
15.6626| 15.5350 | 1,948,270 | 2233 11
15.6961| 15,5350 | 1,942,515 .1385 12

The computation of the above table can be illustrated by an
example. Thus, for r_,,, the various values in the row for { —=—10
months lag are used, and the following value obtained

T1o=—

The remaining »'s are computed in a similar way.

1,917,536
o (99.4688) (100.7240) | _s17289 a2
(15.9527) (15.0105) T 2894580 ' ’

From the above correlation coefficients it is seen that the maxi-
mum value of # is .6870 and this occurs with industrial production
lagging three months behind stock prices. Figure 28 gives a pic-
ture of these correlation coefficients with a smooth curve drawn
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through them. Such a curve is often useful in determining the point
of maximum correlation where the results are not very clearly

defined.?

PROBLEMS
1. Graph the following indexes and test for correlation and lag:

(a) WHOLESALE PRICES
(unit, 1926 = 100)
Nov. Dec.

Year | Jan. Feb. Mar. Apr., May June July Aug. Sept. Oct.

1927 97 96 9 94 94 94 94 95 97 97 97 97
1928 9 96 9 97 99 98 98 99 100 98 97 IV
1929 97 97 98 97 96 96 98 98 98 96 94 94
1930 93 92 91 91 89 87 84 84 B4 83 80 78
1931 7% 77 76 75 73 72 72 72 71 70 70 69
1932 67 66 66 66 64 64 65 65 65 64 64 63

{b) WAGE LEVEL—MANUFACTURING INDUSTRIES
{unit, monthly average, 1926 — 100)

Year | Jan., Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1927 95 101 102 101 100 97 93 95 94 95 92 93
1928 90 94 95 94 94 94 91 94 95 99 96 08
1929 95 102 104 105 105 103 93 102 103 102 95 92
1930 88 91 91 90 83 8 76 T4 T4 T3 68 67
1931 64 68 70 69 68 64 60 60 57 55 53 b2
1932 49 50 48 45 43 39 36 36 38 40 3% 38

1The subject of time series presents one of the most perplexing and con-
troversial problems in the field of applied statistics. This is made evident by
the fact that little predictive skill has been developed by students of economic
time series, as has been demonstrated by Alfred Cowles III in “Can Stock.
Market Forecasters Forecast??, Econometrica, Vol. 1 (1933), pp. 309-324,
where the records of professional forecasters were subjeeted to analysis and
found to average slightly worse than forecasts based on random predictions.
G. U. Yule in a paper, “Why Do we Sometimes get Nonsense-Correlations be-
tween Time Series?”, Journal of the Royal Statistical Society, Vol. 89 (1926),
pp. 1-84, has east doubt upon the validity of correlating the residuals of time
series from which trends and seasonal variations have been removed.

One of the major diffieulties in dealing with timec series is found in the
fact that ordinary probability considerations are often submerged by the ef-
fects of current events. For example, the frequency distribution of the resi-
duals from a straight line trend of rail stock prices in the period around the
Civil War is U-shaped instead of bell-shaped as in ordinary statistical dis-
tributions.

Unfortunately, this subject is toe technical to disecuss in an elementary
text, but the reader will find an appraisal of the problems thus presented in
Appendixes I and II of C. F. Roos’s Dynamic Economics, op. cit.
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2. Correlate the following index with Table (a) of problem 1.

{(¢) COST OF LIVING
(unit, 1923 = 100)

Year| Jan. Feh. Mar, Apr. May June July Aug. Sept. Oct. Nov. Dec.

1927 103 102 102 102 102 102 101 101 101 101 102 101
1928 101 100 100 100 100 100 100 100 101 101 1061 100
1929 100 100 99 99 99 99 100 101 101 101 101 100
1930 9¢ 99 98 98 97 97 95 9 095 95 94 93
1931 91 90 8 88 87 87T 8 B6 8 8 84 83
1932 81 80 & 7% 77T 7T T 77T 7T M6 6 U5

3. Study the correlation between Table (¢) of problem 2 and Table (b)
of problem 1. Is therc a lag?

4. Correlate the following index with Table (b) of problem 1. Compare
your answer with the answer to problem 1. Why the similarity and why the
difference? :

(d) PURCHASING POWER OF THE DOLLAR
(unit, 1926 — 100)

Year | Jan, Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dee.

1927 104 104 106 107 107 107 106 105 104 103 103 103
1928 104 104 104 103 101 103 102 101 100 102 103 103
1929 103 103 103 103 104 104 102 102 103 104 106 106
1930 107 109 110 110 112 115 119 119 119 121 124 128
1931 128 130 182 134 137 139 139 139 140 142 143 146
1932 149 151 152 158 155 157 1556 153 153 1556 157 160

6. Hormonic Analysis. In preceding sections, the problem of
determining the seasonal fluctuations in time series has been dis-
cussed. This problem, as one may readily apprehend, is only one
aspect, although an important one, of the study of the cyclical varia-
tion of such series, a study which is referred to in mathematical
literature as the problem of harmonic analysis. By harmonic analy-
sis is meant the technique of discovering the constituent periodici-
ties which enter into the construction of a given series of data ar-
ranged in a time sequence.

This problem dates back a century and a half, one of the
earliest memoirs being published in 1772 by J. L. Lagrange (1736-
1813). Although it was known to I. Euler (1707-1783) that an
analytic function could be represented by means of a series of sines
and cosines, the full significance of this development and its appli-
cation to problems in physics was not realized until the epoch-mak-
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ing work of J. B. J. Fourier (1768-1830). The work in which these
results are incorporated is the celebrated Théorie Analytique de
la Chaleur (1822), one of the great classics of mathematical physies.
The application of the methods of harmonie analysis o statistical
data may be said to begin with a series of papers published by Sir
Arthur Schuster (1851-1934), who applied his method to the study
of sun spots, the periodicity of earthquakes, terrestrial magnetism,
ete.r E. T. Whittaker and G. Robinson have somewhat modified
Schuster’s method.?

Schuster’s method depends upon the construction of what is
known as a periodogram, and may be described as follows:

The equation,
y=—Asin 2at/T) + B cos (2nt/T) , (1)
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This is the graph of the equation

2t 2
Y =10 sin T + 10 cos

The period is thus 45 and the amplitude 14.14 |

1“0On Interference Phenomena,” Philosophical Magazine, Vol. 37(5) 1894,
pp. 506-545. “On Lunar and Solar Periodicities of Earthquakes,” Proc. Royal
Soc. of London, Vol. 61 (A) 1897, pp. 456-465 “On the Periodicities of Sun
Spots,” London Philosephical Transactions, Vol. 206 (A) 1906, pp. 69-100.
2 The Caleulus of Observations, London, 1924, Chapter 13. See also
gﬁwrgefr’ss Theorem and Harmonic Analysis, by A. Eaple, London, 1925,
apter 8.
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when graphed as a function of ¢, will be found to repeat itself at
intervals equal to t =T, and will fluctuate between the limits o =
LR and y = —R, where K = /A*+ B? , as shown in Figure 29.
Hence T is called the period of the funclion and R the amplitude.

Now the object of periodogram analysis is to determine how
many components of the kind just described are present in a sta-
tistical series. This problem Schuster undertook to solve by con-
structing amplitudes for all values of T which might be expected
to correspond to periods in the series. The value of this amplitude
funetion would show a significant increase in the neighborhood of
a genuine period.

In order to represent the matter analytically, let the data be
arranged in a set of equally spaced items:

where £, t, 1s a constant.

Then the function,

R (n) :-&- VAR(u) - B (u) (2)
where one writes,

N
Ay == Z Xesin(2nt/u) ,

t=1

N
B(n) ==Y X,cos(2at/u) ,
t=1
will reveal the presence of a period T by an increased value in the
neighborhood of 4 — T, provided the data actually contain an ap-
preciable component of the form (1).
The graph of the function,

y:R('LL) ’

obtained by erecting ordinates for the values % == 5, 6, 7, ---, is
called the periodogram associated with the series. The method as
applied to statistical data is of doubtful value for periods smaller
than 5.
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The practical procedure is to arrange the data as follows:

X1 Xz Xg X4 X:—', e Xu
Xu+1 Xru-z Xu+3 Xu+4 Xu+5 ot qu
X3u+.l X'm+2 Xswrs X2u+4 X2u+5 e Xsu
Xnuﬂ Xnu+2 X-rm+3 Xnu+4 Xnu+5 T X(nﬂ)u
SHU'IS:MI Mg 1‘13 M4 M5 A Mu

where (n+1)u is the largest multiple of « in the total frequency N.
The functions A () and B (u) are then computed as the sums,

A(u) — i M, sin(2at/u) ,

t=1

B(u) = )}, M, cos(2at/u) .
t=1

Whittaker and Robinson have somewhat modified Schuster’s
method in the following manner:

The means of the values M; in the above table are first com-
puted and the standard deviation, ox , of these averages found.
Similarly, the standard deviation, ¢, , of the elements of the data
is computed. The square of the correlation ratio (see Chapter X,
section 8),

oy

3

R(u) =17 (u) =

o

LU

is then taken as the ordinate of the periodogram.! Since the signifi-
cance of the periodogram is found in the variations between neigh-
boring values of u, it is clear that the standard deviations of the
sums, M,, themselves can be used as the ordinates of the periodo-
gram, instead of 2. In the case of most of the series of economic
data, where unnecessary refinements of technique are not profit-
able, it is possible to get a satisfactory idea about the variations
between neighboring values of u by constructing a periodogram in
which R (u), as given above, is replaced by the difference between
the greatest and the least values of the M; . Much of the labor of
computation, which in harmonic analysis is always large, is thus
saved.

1For a justification of this technique, the reader is referred to Whittaker
and Robinson, ep. cit., pp. 346-349.



THE ANALYSIS OF TIME SERIES 141

Ezxample: In illustration the periodogram difference method
will be applied to the monthly averages of freight car loadings,
1919-1932, using the data as given in section 2 of this chapter.

The items in the series are first arranged in horizontal rows
for each value of u, taking #-—=15, 6, 7, ---, 25, and sums found for
each column. Thus, for u = 15, one gets the following arrange-
ment:

Columns

1 2 3 4 3] 6 7 8 9 10 11 12 13 14

15

728 687 697 715 759 809 858 B892 960 967 807 758 820 776
731 862 860 901 968 969 1005 884 723 706 683 692 T06 757
751 810 841 920 761 683 702 765 826 723 78T 842 825 877
992 944 838 845 842 917 941 975 1011 986 1041 1037 1078 978
8§58 008 916 87% 895 906 894 974 1037 1091 975 BAT 921 905
941 968 989 986 1080 1074 1107 1024 838 923 919 969 958 1037 1028
1049 1104 1148 1205 1068 904 946 956 1002 975 1024 999 979 1062 1097
1115 956 834 862 897 951 935 1002 985 986 1058 1117 1175 1061 882
§93 042 962 996 1051 1052 1038 1117 1135 1169 978 835 837 876 888
912 914 930 895 938 931 950 798 680 719 709 736 752 T40 748
738 747 737 759 655 K55 567 B6L 565 557 522 491 483 525 BT

848
765
935
826
924

Sums: {M;} ; 9708 9842 9752 9968 9914 9751 9943 9948 9812 9801 9503 9322 9534 9594 9514

To fill the 15 columns and 11 rows in the above table requires
only 165 values of the series; the last 3 values are dropped, since
there are not enough values to complete another row. In a periodo-
gram analysis, each column must have the same number of items.

After 21 arrangements have been obtained, fashioned after
the above table, for =25, 6,7, - -, 25, the sums, M;, for each « are
tabulated in the manner shown in the table on pages 142 and 143.
The largest value and the smallest value in each column is then
noted and the difference between them is recorded at the bottom of
the table. As has already been stated, however, a better though
much more laborious procedure is either to compute A{u) and
B (n) by the Schuster formula or to evaluate the standard devia-
tions of the M; as required by the method of Whittaker and Rob-
inson.

Taking the differences as the ordinates and the #’s as the ab-
abscissas, the periodogram shown in Figure 30 is obtained for
freight car loadings.

From Figure 30, it may be seen that there is a pronounced
period at 12 months and a secondary period at 6 months, which
indicates that the amount of freight hauled tends to conform
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PERIODOGRAM ANALYSIS, FREIGHT CAR LOADINGS, 1919-1932

M, u—Monthly Periods
Column 5 6 i 8 9 10 11 12 13
Totals
1 28962 23695 21228 18657 16312 14430 13235 11326 10320
2 29107 24619 21284 18890 16031 14417 13079 11426 10891
3 %9234 25482 20923 18121 15398 14366 13205 11887 10651
4 293874 25893 21171 17849 16087 14262 132566 11717 10758
5 29229 24731 20986 18557 16069 14195 13179 12293 10742
6 23154 20935 18127 16128 14010 13399 12415 10853
Vi 21087 18573 15719 14199 13414 12369 10972
8 7800 15555 14385 13367 13193 11046
9 16027 14587 13385 13595 10967
10 14457 13278 14176 10891
11 13109 12438 10760
12 10738 10793
13 10904
14 ;
15 !
16
17
18 :
19 :
20 !
21
22
23
24
25
Difference
(A)* 412 2739 301 1387 833 597 335 3437

405

*The difference is obtained by subtracting in cach column the smallest
value from the largest value. The figures in italics designated these values.
(See continuation of this table on page 143)
to a certain pattern every 6 and 12 months. These conclusions
agree very closely with the following indexes of seasonal variation

for freight car leadings:

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Tndex of
Seasonal 9 92 96 96 102 100 100 108 111 115 101 87
Variation

as brought out by Simon Kuznetz in Seasonal Variation in Industry
and Trade, to which reference has already been made.

The reader will observe from this brief introduction that the
problem of harmonic analysis is one of great significance but of
equal difficulty from both the computational and the mathemati-
cal points of view. One question which immediately challenges at-
tention is that of determining whether a significant variation
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PERIODOGRAM ANALYSIS, FREIGHT CAR LOADINGS, 1919-1932

#—Monthly Periods

Column | 14 15 16 17 18 19 20 21 22 23 24 25

Totals |
1 10721 9708 9047 8022 8041 7334 7264 7261 6266 6587 5757 534!
2 10486 9842 9150 8191 8300 7216 7440 T0T5 6215 6465 5724 532t
3 10623 9752 8895 8245 &§7371 7206 7085 6947 6317 6246 5920 546t
4 10533 9968 8789 8334 8417 7388 6816 7033 6228 G085 6026 566(
5 10622 9914 9083 sS4t 8041 7233 7084 7019 6819 5914 6274 5856
6 10759 9751 9398 8242 'T68C 7205 7185 6927 6397 5960 6375 5766
7 10618 9943 90159 8186 7892 7073 7086 17080 6533 6202 6336 5602
8 10507 9948 8788 8121 8069 7245 7071 7103 6520 6268 6749 5506
9 10447 0812 0088 8254 8418 7286 7373 T060 6545 6500 6881 5493

10 10548 9801 9249 8230 8271 7211 2507 7250 6518 6637 7124 5257
i1 10402 9503 8743 8152 7731 47256 Y7166 7098 6295 6624 6159 5136
i2 10864 9322 8LS5 8164 7662 7307 6977 7050 6314 6519 5379 5186
13 10475 9534 8807 7985 T6T0 7470 7281 7249 6309 6540 5569 5391

14 10469 9594 9095 5012 8028 7413 7446 7023 6321 6325 5702 5394
15 9514 B865 8139 8448 T2v5 7111 6864 6367 6221 5958 5418
16 8527 8025 7827 7281 6825 6798 6205 5959 5691 5462
17 8314 7486 T255 T113 6974 6445 5772 6019 5769
18 7609 7266 7314 6804 6359 5780 6042 5780
19 7432 7214 6917 6356 5990 6033 5761
20 6950 7058 6354 6115 6444 5664
21 6984 6235 6247 6714 5442
22 6237 6419 7052 5419
23 6455 6279 5313
24 5360 5211

Diﬂ'erfnce 395 646 871 468 1245 397 691 463 B33 865 1764 726
() :

*  The difference is obtained by sublracting in each column the smallest
value from the largest value. The fizures in italics designate these values.

exists in R (%). Answers have been given to this question both by
Schuster and by R. A. Fisher.” Excellent summaries and examples
of the problems involved in a determination of significant periods
will be found in papers by E. B. Wilson? and B. Greenstein.? Un-
fortunately, the discussion of these tests is beyond the scope of an
elementary book and must be omitted here.

It will be obvicus to the reader that periods, once they have
been detected, can be removed from the data by the method of link
relatives previously employed in the case of seasonal variation.

" 18ee Schuster’s original papers and R. A. Fisher “TPest for Significance
in Harmonic Analysis,” Proc. Royal See. of London, Vol. 125 (A) (1929), pp.

54-59,
2K, B. Wilson: The Periodogram of Business Activity. Quarterly Journal

of Economics, Vol. 48 (1934), pp. 375-417.
s“Periodogram Analysis with Special Application to Business Failures,”
Econometrica, Vol. II1 (1935), pp. 170-198.
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PROBLEMS

1. Carry out the computations for « = 10 using the data on freight car
loadings given above.

2. The following values are the ordinates of the Schuster perigdogram
for the Dow Jones industrial stock price averages, corrected for trend, from
1897 to 19131

% R I u R ” n 1 E | u } RO ow R

5| .71 H 20 | 327 ‘ 85 | .. 50 i €32 | 65 | 10.34
6 | A4y 21 | 381 ¢ 36 | 493 | 51 586 1 66 | 10.51
7| .96 ll 22 | 5.02 | a7 e | B2 | TH2 067 |
8 (109 23, 472, 38 957 | 53 | . . , 68 | 10.48
9 | 124 | 24 | 281 39 | 1roo | 54| 861 69 | 1823
10 | 143 1 25 ' 233 40 1169 | 55 | . tor 17.76
11 | 227 | 26 ° 188 | 41 | 1472 | 56 | 9.29 e
12 ' T2t 17.06

2 A boar oo 142 | 1460 ' 57 | 973
13 | 117 “ 28 | 58 | 1011 § 73 ‘ ........
14 | 1330 29 1 9 93 ! e 74

15 | 262 | 30 | 440 ) 45 (1206 | 60 | 1045 | }

16 | 266 | 31 | ﬂ ; !

17 (227 32, .. 47 | e 62 | 10.49
18 1227 | 33 | 295 | 48 | 805 | 63 | ... ] ]
|49 | B4 | o

19 | 2.13 341 1.25

Construct the periodogram and determine the periods. Is there evidence
of a seasonal movement in stock prices?

1See note at end of problems.
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3. The: following values are the ordinates of the Whittaker-Robinson
periodogram of the stock prices mentioned in problem 2. Construct the period-
ogram and compare with the periodegram of problem 2. Do you find the same
periods?

DOW JONES AVERAGES CORRECTED FOR TREND 1897-1913

U R % R 7 R " g R
T | e 16 27.98 a1 21.30 46 34.70
2 2,00 17 22.90 32 23.00 47 31.50
3 6.68 18 21.30 33 19.20 48 27.60
4 45.90 19 19.40 34 15.60 49 23.90
b 2125 20 @ 27.30 356 24.50 50 19.90
6 12.21 21 ' 26.80 36 22.80 b1 19.90
7 21.47 L 22 37.70 3 29.30 52 19.70
8 3092 | 23 27.70 38 35.00 53 20.10
9 23.92 | 24 1 2240 39 42,20 54 21.30
10 23.04 25 i 18.80 40 44,00 | 55 21.70
11 28.88 26 | 14.10 41 4530 | 56 23.20
12 1790 + 27 | 14.60 42 44,70 b7 23.60
13 17.91 28 | 1170 43 48.10 58 25.80
14 17.16 29 | 17.90 44 4070 § 59 27.30
15 26.75 30 | 22.60 45 38.10 [ 60 27.30

4. The following values are the ordinates of the periodogram of the
Cowles Commission Index of Investment Experience (public utility and indus-
trial common stocks combined) from 1880 to 1897, Construct the periocdogram
and compare with the periodogram of problem 2. Does there appear to be a
persistence of periods in these two time intervals? What conclusions would
you draw?

COWLES COMMISSION INDEX OF INVESTMENT EXPERIENCLE®

1880-1897
U R U R U R 4 R U B
5 .50 20 1.51 35 | .- 50 2.40 65 10.80
6 91 21 1.44 36 5.62 51 2.58 66 5.65
7 .36 22 2.46 37T | e 52 3.96 67 | .
8 | 1.06 23 2,79 38 | 627 53 63 577
9 .62 24 1.26 39 ! 6.46 54 3.92 69 8.19
10 | 1.35 25 3 A0 6.21 56 | ... 70 | e
11 73 26 3.7 41 7.50 56 5.31 1|
12 31 27 42 7.20 67 5.83 72 8.62
13 .66 28 2.83 43 6.81 58 6.15 T8 | e
14 | 3.07 29 1.75 44 6.21 59 T4 | .
15 | 1.58 30 1.19 45 5.54 60 6.64
16 | 1.48 31 291 46 4.75 61
17 | 2.62 32 | .. 47 1 . 62 6.54
18 .86 33 4,92 48 : 2,566 63 | ...
19 | 2.00 34 5.62 49 | ... 64 | ...

eNoTE: In the above tables, it will be noted that some of the values for B
have not been computed. This is due to the manner in which the u’s were
sepregated in carrying out the computations on the Hollerith tabulating ma-
chine in the laboratory of the Cowles Commission for Research in Economies.
In making the periodogram, points between which a gap occurs should be con-
nected by a dotted line. This procedure is often followed in actual practice
to reduce the computing. The approximate location of a period usually can
be detected, and then all the values in this neighborhood subsequently com-
puted to determine the location more exactly.



CHAPTER VI

ANALYSIS OF ARTIFICIAL DATA—PROBABILITY

1. Definition of Probability. In the preceding chapters, data
obtained from sources beyond our control have been studied, such as
the fluctuations in prices, the distribution of income, the growth of
productive activity. In this chapter, on the contrary, various types
of artificial data, obtained by methods that are more or less under
our control, will be discussed. These data will then be analyzed in
order to study the nature of the statistical laws that produced them.
These laws constitute a chapter in mathematics which is called the
theory of probability.

The following definition has been generally adopted as a mathe-
matical, or a priori, measure of probability:

Definition. If an event can happen in m ways and fail in n
ways, and cach of these ways is equally likely, the probability, or
chance, of its happening is p == m/(m - n), and that of its failing
to happen is ¢ =— n/(m -+- n). This is frequently expressed by say-
ing that the odds are m to = that the event will happen.

For example, if a coin is tossed, the probability that it will
fall a head is 1/2. If two coins are tossed, the probability that both
will fall heads is 1/4. Tt has been argued that the answer should
be 1/3, since the coins could fall in only three ways, namely, heads,
tails: heads, heads; tails, tails. But the fallacy in this is seen to
lie in the fact that all these events are not equally likely, since
“heads, tails” can happen twice as often as either of the other two.
If the student doubts this, he should verify the fact empirically by
tossing two coins a number of times and making a record of the
cases. This remark applies to other statements made in this chap-
ter, because the most convincing proof that can be offered of the
reality of the theorems of probability is that of actual empirical
trial.

It is often difficult to be sure that all the events of a series are
equally likely. Take, for example, the following case: suppose that
one urn A contains 2 black balls and 3 white balls, while a second
urn B contains 2 black and 7 white balls. It is required to find the
probability that a blind-folded person in one draw shall obtain a
white ball.

-—146—
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Since there are 4 black and 10 white balls in the two urns, it
might seem that the probability is 10/14 — 5/7. But the incorrect-
ness of this reasoning becomes apparent if one considers the case
where A contains 1,000 black balls and B only one white ball. On
the first argument, the chance of obtaining a white ball would be
1/1001, but the real answer is seen to be 1/2, since the probability
is merely that of whether A or B is chosen. The correct answer {o
the first case is

p=1/2.3/541/2.7/9=231/45 ,

or approximately 2,3, since the chance of getting A, with a prob-
ability of 3/5, is 1/2, and the chance of getting B, with a probabil-
ity of 7/9, 18 1/2.

One can derive immediately, from the definition, the following
facts:
(a) ¢g=1—p,
(b) If success is certain,p —1 ,
(c) If failure is certain, p =0 .

PROBLEMS

1. What is the probability that a letter selected at random in an English
book is a vowel? Hint: Take a random page in & random English book and
count the number of letters and the numhber of vowels.

2. What is the probability that a vewe] selected at random in an English
book iz an e? an o? an i? an a? a u? Show that the sum of these probabilities
equals 1.

3. Toss & coins 128 times and estimate the probabilities that in a single
throw one should get: 0 Head, 1 Head, 2 Heads, 4 Heads, and 5 Heads. From
these probabilities estimate the chance of getting 8 Heads in a single throw.

4, A group of scientific men reported 1705 sons and 1527 daughters. 1f
this is a fair sample from the general population, what is the probability that
a child to be born will be a boy? Do you think that this probability differs
sufficiently from .5 to be significant? In order to answer this question toss 10
coins 323 times (10 X 323 is approximately equal to the total frequency
1705 + 1527) and keep a record of the total number of heads. From these data
calculate the probability that a head will appear in a single throw and com-
pare the difference between this number and .5 with the difference previously
obtained.

5. Write down at random 100 pairs of numbers. Find in how many of
these the numbers are prime to one another. From these data calculate the
probability, P, that two numbers written down at random will be prime to one
another, If you have done your work accurately, you should be able to calecu-
late the value of = 3.1416 to one or two decimal places, by means of the

formula © = V6/P.
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2. Formulas from Permutations and Combinaiions, Since for-
mulas in the theory of permutations and combinations are often
useful in ealculating probabilities, some of the most important of
these are recorded below. They are all derived by an application
of the following fundamental principle:

If one operation can be performed in m ways and, having been
performed in one of these ways, a second operation can then be
performed in » ways, the number of ways of performing the two
operations will be m. . n.

(a) The number of permutations or arrangements of » dis-
similar things taken » at a time is

WPy = n(n—1) (n—=2) .-+ (n—r-+1) mn!/(n-—fr) N

(b) The number of combinations or groups of n dissimilar
things taken r at a time is

Cr= P/ =nl/rI(n—r)! .

(¢) The number of ways in which x, -+ x. + - - - -+ %, things
can be divided into n groups of z,, &, - - -, &., things, all of the
2;’s being different, is

(x1+m2+"‘+xn)!

N =
TR b R
If the 2’s are all equal. #, = x, == --- — ., = xr, this formula
must be replaced by
1
N (mo)l
(x)"n!

The reason for introducing factorial »n into the denominator is
that there is now no way of differentiating between groups, as in
the first case.

(d) The number of ways of permuting # things when =, are
alike, z. are alike, ------ x, are alike, is given by the formula
n!

1wty

Example 1. How many two-digit numbers can be formed from
the digits 2, 3, 5, 7 without repetition?
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This is a problem in permutations, since the number 23 is dif-
ferent from the number 32. The answer is thus

LPr=41/(4—-2)1=12 ,

Example 2. How many products of two numbers can be .
formed from the digits 2, 3, 5, 7 without repetition?

This is a problem in combinations, since 2 X 8 is the same as
3 X 2. Hence, the answer is

Lr=41/[(4—2)121] =6 .

Example 3. How many triangles can be formed by connecting
7 points, no three points being on the same straight line?

If one numbers the points 1, 2, 8, 4, 5, 6, 7, then it is clear that
(1,2,3), (3,4,5), ete., will form triangles; but (1,3,2) and (3,2,1)
will be the same as triangles (1,2,3). Hence the problem is one in
combinations and the answer will be

Ca==T1/(8141) =35 .

Fxample 4. In how many ways can the letters in the word
combination be arranged?

If all of the eleven letters were different, it is clear that the
answer would be 11! But the two o’s can be permuted with one
another without altering the number of arrangements, and so also
can the two ¢'s and the two #’s. Hence, the answer will be, accord-
ing to principle (d),

111/(212121) = 4,989,600 arrangements.
Ezxample 5. There are four book shelves which can hold 15,

20, 35, and 50 books, respectively. In how many ways can 120
books be allotted to the shelves?

There are four different groups to which 120 things are to be
assigned. Hence, from the first formula in (c) above, there follows
N=120!/(15120135!50!) .

Ezample 6. 1f all of the book shelves of example 5 were iden-
tical, how many arrangements could be made?

Since there is now no way of differentiating between the
groups, the answer will be, using the second formula in (¢) above,

Q= (4>¢30) I/[(301)* 411 =1201/[(30!)+4!] .
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PROBLEMS

1. How many numbers of 4 digits can be formed from 1, 2, 3, 4, 5, and
6, allowing no repetition of digits in any one number?

©. What is the total number of numbers of three digits that can be
formed from 1, 2, 3, 4, 5, if repetitions are allowed?

3. Tn how many ways can six people be seated in a circle in numbered
chairs? Unnumbered chairs?

4. In how many ways can the letters in the word statistics be arranged?

5. How many commitfees of 5 representatives and 4 senators can be
formed from 12 representatives and 10 senators?

6. In how many ways can 11 bonds be chosen from a group of 16 bonds?

7. In how many ways can four coins of different denomination be placed
in one stack?

8. In how many ways can four coins of different denomination be placed
on a table, attention being devoted only to the question of which side of the
eoin is up?

9. Tn how many ways can four coins of different denomination be stacked
go that at least one of them has the head up?

10. In how many ways can five coins indistinguishable from each other
be stacked?

11. In how many ways can 12 different objects be divided equally among
four persons? In how many ways can they be put into four equal groups?

12. In how many ways may 10 different things be distributed among three
persons A, B, C, so that A shall receive 5, B shall receive 3, and C shall re-
ceive 27

13. In how many distinct ways can 4 dimes and 6 quarters be distributed
among 10 persons if each person is to receive a coin?

14, How many different sums of at least three coins each can be formed
from a penny a nickel, a dime, and a quarter?

15. In how many ways may 14 stocks be distributed among 4 sharehold-
ers, so that the oldest shall receive 5, the next 4, the next 3, and the youngest
27

2. Examples Illustrating the Calculation of Simple a Priori
Probability. The following examples will illustrate the application
of the definition of the first section to simple problems in proba-
bility.

Example 1. What is the probability of throwing less than 6
with two dice?

There are altogether 36 ways in which the two dice can fall.
Of these only the combinations (1,1), (1,2}, 2,1), (1,3), (3,1),
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(L4), (4,1), (2,2), (2,3), (3,2), are less than 6. Hence, the de-
sired probability is 10/36 = 5/18 .

Example 2. In a bag there are four white and three black
balls. What is the probability that if they are drawn out one at a
time, the first will be white, the second black, the third white, the
fourth black, ete.?

There are altogether 7! possible arrangements of the seven
balls. Of these, there will be 4! arrangements of the white balls in
the odd numbered places and 31 arrangements of the black balls
in the even numbered places. By the fundamental principle of per-
mutations and combinations, there will thus be 41« 3! different ar-
rangements of the balls. Hence the desired probability is

41 31/71=1/35 ,

Ezample 3. A has five shares in a lottery in which there are
two prizes and ten blanks. B has two shares in a lottery in which
there are five prizes and ten blanks. Which has the better chance
to win a prize?

A will draw a prize unless all of his five shares are blanks.
Five tickets can be chosen from the twelve in ,,C; — 121/5! 7!
= T92 ways. But, five blanks can be drawn in ,,Cs; = 101/5!5!
— 252 ways. Hence, the probability that A will draw a blank is
252/792 == 7/22, and the probability that he will draw at least one
prize is 1 — 7/22 = 15/22 . Similarly, the probability that B will
win g prize is 1 — ,,C./+:C: = 1 — 45/105 = 4/7. Since the first
value is larger than the second, it is seen that A has a better
chance than B to win a prize.

PROBLEMS

1. Three coins are tossed simultaneously, What is the probability that
they will fall two heads and one tail?

2. 'What is the probability of throwing 8 with two dice?

3. Eight balls numbered from 1 to 8 are placed in a bag and two drawn
at random. What is the probability that they are numbered 1 and 27

4. Seven balls numbered from 1 to 7 are in a bag. Three are drawn at
randem. What is the probability that they are b, 6, and 7°?

5. Of ten balls in 3 bag, three are red. What is the probability that there
will be at least one red ball in a draw of two balls? What is the probability
that both will be red?
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6. A has three shares in a lottery in which there are three prizes and
five blanks. B has two shares in which there are two prizes and four blanks.
Which has the better chance to win a prize?

7. In problem 6, which has the better chance of winning exactly one prize?
Which of winning two prizes?

8. A hag contains four black marbles, two white marbles, and seven red
marbles. What is the probability that if three marbles are drawn at random,
all arc red?

9. Compare the chances of throwing 4 with one die and 8§ with two dice.
10. There are two works consisting of two and three volumes, respec-

tively. If they are placed on a shelf at random, what is the probability that
velumes of the same work are all together?

11, Show that the chances of throwing six with 4, 8, or 2 dice, respec-
tively, are as 1:6:18,

12. If n people are seated at a round table, what is the probability that
two named individuals will be neighbors?

13. What is the probability of receiving a hand of 13 cards all of the same
suit from a deck of playing cards? What is the ratic of this probability to the
probability that 12 are of one suit? 11 of one suit?

14. What is the probability that each of four people hold 13 cards of the
same suit?

15. 1If three dice are thrown, what is the probability that the sum is 117

4. The Multiplication of Probabilitics. When two or more
events ¢an occur in connection with one another, the joint occur-
rence is called a compound event. If these events are independent
of one another, then the following theorem is to be used in calcu-
lating this joint probability:

Theorem 1. If the respective probabilities of n independent
events are p, P, - + -, Pa, then the probability that all of them will
happen is the product

P=D1Da-Pn .

Considerable reflection should be given to this theorem, since
errors are casily made in application. It is important always to
ask oneself the question: “Are all the events independent?”

As an example, consider the problem of throwing 3, 4, with
two dice. The probability that either die will come down 3 or 4
is clearly 2,6 or 1/3, but the probability sought for is not 1/3-1/3
= 1/9 , since the second probability is affected by the first even if
the events in question, the falls of the two dice, are independent
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of one another. Thus, if the first die shows a 3, the number on the
second must be 4. The answer to the problem, is then,

1/3-1/6=1/18 .

This answer can be verified directly by considering that two
dice can fall in 36 different ways, and, of these, only two will ful-
fill the required conditions.

The proof of the theorem is evident from a consideration of
two such events whose respective probabilities are a/A and b/B.
Since, by assumption, the two events are independent, and in the
first case there are A possibilities and in the second B, then by the
fundamental theorem in permutations there is a total of A ~ B
possible events. In a similar way, one sees that there are a X b
favorable cases, so that the total probability is ab/AB.

5. The Addition of Probabilities. If a set of events is of such
a character that, when one of them happens, the other cannot hap-
pen, the set is said to be mutually exclusive. Thus, if three runners
enter a race, any events contingent upon the winning of the race
are mutually exclusive, because if the first runner wins, the other
two cannot. The theorem of probability connected with mutually
exclusive events is the following;

Theorem 2. If the probabilities of » mutually exclusive events
are P, Po, -ereere , Pn, then the probability that some one of these
events will occur is the sum

p2p1+p2"|“"'+pn .

Proof: Suppose that all the probabilities have been reduced
to a common denominator N, so that

p1:a1/N , pzzaz/N R p;.;za,a/NJ ...... y Pn= H/N .

Then the event can happen a, times out of N in the first way, «.
times out of N in the second way, ete. Thus, the total number of
cases favorable to the event happening in any of the n ways, since
they are mutually exclusive, must be

O Qe+ @y .

Hence, the probability that the event will happen in one of these
ways is

(a,l-}-a,z—{----—|-an)/N:— (L-J/N—;—CLZ/N-l—----—I—CL,,/N
Pt pat et Do
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As in the case of the theorem of the preceding section, the ap-
plication of this theorem is fraught with danger. The questions to
be kept constantly in mind are these: “Will the occurrence of one
event of the series prevent the occurrence of all of the others? Are
the events mutualiy cxclusive?”’

An example will help to clarify the meaning of the theorem,
Suppose a problem is given, and it is estimated that A’s chance of
solving it is 1/2, B’s chance is 1/3, and C’s chance is 1/4. What is
the probability that the problem will be solved?

An error frequently made is that of assuming that the solving
of the problem by A, B, and C, forms a set of mutually exclusive
events, so that the answer would be 1/2 4- 1/3 - 1/4 == 13/12,
which is greater than unify and thus absurd. The case is not like
that of a race, because all three might solve the problem, while, in
a race, only one could be the winner. Hence, the following mutually
exclusive cases must be considered:

A, B, and C all succeed, p,=1/2.1/3-1/4 —1/24
A, B succeed ; C fails, pe=—1/2-1/3. (1—1/4) = 3/24
A, C succeed; I fails, py=1/2.1/4- (1—1/3) = 2/24
B, C succeed ; A fails, p.=1/3-1/4.- (1—1/2) — 1/24

A suceeds; B, C fail, ps=1/2. (1—1/3) - (1—-1/4) =6/24
B succeeds; A, B fail, p,=—1/3. (1-—1/2) - (1 —-1/4) =3/24
C succeeds; A, Bfail, p,—=1/4. (1—1/2) - (1—1/3) =--2/24

An easier way of gefting the answer is first to calculate the
probability that all three would fail to solve the problem. Then,
since success in solving the problem and failure to solve the prob-
lem form a mutually exclusive system, the total probability of which
is one, it follows that

p=1—q=1— (1—1/2) - (1—1/3) - (1—1/4)
—1—1/4-==8/4 .

6. Examples Illustrating the Multiplication and Addition of
Probabilities. The following examples will serve as illustrations of
the application of the theorems of the last two sections.

Example 1. A bag contains four red balls, five black balls, and
three white balls. Three balls are drawn at random. What is the
probability that they are all red?
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The probability that the first is red is 4/12 = 1/3, that the
second is also red is 3/11, and that the third is red is 2/10 = 1/5.
The desired probability is then 1/3 -3/11-1/5 = 1/55 .

This method may be compared with the following: There are
altogether ,,C; — 220 possible drawings of three balls. Of these,
there are ,C,; == 4 possible drawings of three red balls. The answer
is thus 4/220 = 1/55 ,

Frxample 2. A, B, and C, in order, toss a coin. The first one
who throws a head wins. What are their respective chances?

If A is to win, a head must be thrown on either the first, or
fourth, or seventh, - - - toss and on no other. The sum of these prob-
abilities is A’s chance of winning, Similarly, if B is to win, a head
must appear only on the second, fifth, eighth, - - - toss; and if C is
to win, the head must appear on the third, sixth, ninth, - - - toss.

These respective probabilities then appear as the following
geometrical progressions:

A 1/2-1+-1/16 +1/128 - -.

1/2
— et AM,
1—1/8 /T
B: 1/4-41/32 +1/256 L.
1/4
::——--—"—*—”'2 »
1—1/8 /7
C: 1/8+-1/64-1-1/5124-..
1/8
1—1/8 /

Example 3. Fourteen quarters and one five-dollar gold piece
are in one purse, and fifteen quarters are in another. Ten coins are
taken from the first and put into the second, and then ten coins are
taken from the second and put into the first. Which purse is prob-
ably the more valuable?

The purse containing the five-dollar gold piece is the more valu-
able, so the problem is to compare the probability that it is in the
first purse with the probability that it is in the second. The prob-
ability that the gold piece was taken from the first purse and put
into the second is 10/15. Similarly, the probability that, being in



156 ELEMENTS OF STATISTICS

the second, it was again returned to the first is 10/25. Hence the
probability that the gold piece remained in the second purse is
(10/15) (1 — 10/25) == 2/5. The conclusion is thus reached that
the first purse has a larger value than the second.

PROBLEMS

1. A and B alternately throw a die. The first one to throw a six wins.
Show thal A’s chance of winning on the third throw is 25/216.

2. Tind the probability of throwing an ace at least once in Lwo throws
‘with a single die.

3. Two whole numbers taken at random are multiplied together. What
is the probability that the last digit in the product is 1, 3, 7, or 97

4. A bap containg 5 white, 3 red, and 6 green balls, Three balls ure
drawn at random. What is the probability that a white, a red, and a green
ball are drawn?

5. In problem 4 enumerate the different kinds of draws of two balls that
could be made and calculate the probabilities for each. Should the sum of the
probabilities equal 1?

6, A and B toss a die; the first one to throw a six becomes the winner.
If A throws first, what are their respective probabilities of winning?

7. A bag contains five balls, A person takes one out and replaces it.
After he has done this six times, what is the probability that he has had in
his hand every ball in the bag?

8. If five coins are tossed, what is the probability that at least three are
heads? That exactly three are heads?

9. What is the chance of throwing 6 with a single die al least once
in four trials?

10, What is the most likely throw with two dice?

11. What is the probability of throwing 7 at least twice in 3 throws with
two diee?

12, How many tosses may one be allowed in order that the probability
may be .90 ihat he gets at least one head? Hint: Consider the equation
1 —(%)z = .90 . Use logarithms to solve for =z.

13. A man throws ten coins, removes all that fall heads up, tosses the re-
mainder, and again removes all that fall heads up, continuing the process until
all of the coins are removed. llow many times should he be allowed to throw
in order to have an even chance of removing all of the coins? Hint: 1 -— (%)?
is the chance that a coin falls heads at least once in x trials, and [ 1 — (%2} *]°
the chance that all ten coing will have fallern heads at least once.

14. A, B, and C, in order, draw from a pack of cards, replacing their card
after each diaw. If the first man to draw a heart wins, what are their respec-
tive chances?

15. A man draws from an urn containing twe balls, one white and one
black. If he draws a white ball, he wins. If he fails to draw a white ball, the
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draw is replaced, another black ball is added and he draws again. If he fails
to draw a white ball in the next draw, the process is repeated. What are his
respective chances of winning in 2, 3, 4, 5, 7, and 10 trials?

7. The Law of Large Numbers. Before proceeding to an ap-
plication of the theorems of sections 4 and 5, a further word should
be said in regard to the law of large numbers, The mathematical,
or a priori, probability, p, has been defined as the ratio of the pos-
sible number of favorable to the total possible number of cases.
This means that if a large number of trials is made, the ratio of
the number of favorable to the total number of cases will be ap-
proximately p; and the larger the number of trials, the closer the
approximation will be. The probability thus determined is called
the empirical, or ¢ posteriori, probability, and will be designated
by ..

But the question remains as to the definition of large number.
Is it 10, 100, or 1,000? Tn other words, would a thousand throws
of a coin be sufficient to determine empirically the probability of
throwing heads in one throw? The answer to this question is ob-
viously a very important one, because it will furnish a measure of
faith in statistical averages which depends upon the number of
cases used. For example, would data regarding the length of life
of 100,000 individuals of initial age 10 be sufficiently accurate for
the establishment of a life insurance company?

A little later the idea of probable error will be introduced,
which is closely associated with this question. It is possible, how-
ever, to anticipate enough at this point to obtain a good working
rule for the law of large numbers. This rule may be stated as fol-
lows:

Let ¢ (the Greek letter epsilon) be the error in p,, that is ¢
is the numerical value of the difference p — p,. Then, if n trials
are made in determining the empirical probability p,, the prob-
ability is 14 that the error, = ¢ will lie within the Ilimits

+-.6745vp, (I—p,) /n and —.6745/p, (1—p,) /n. Hence to detor-
mine the number of trials necessary in order that the probability
may be 14 that the error in p, does not exceed &, one equates ¢ to
the first of the limits just given and solves for n. The following
formula is obtained:

ne= 4560 p, (1 —p,) /& .

Since for a given =n, ¢ rarely exceeds three times the limit

67459, (1 — p,) /n, one may multiply » in the last formula by
32 == 9 in order to obtain the number of trials which will be neces-
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sary in order to determine p, to within the limits specified by the
given allowable error &.1

Ezxgmpie 1. How many times must one toss a penny in order
to have a 50:50 chance of calculating the a priori probability of
throwing heads within an error of .05?

The answer is at once obtained from the formula by substitu-
ting p = .5, and ¢ == .05 in the above equation. One thus finds

n= (.4550) (.25} /.0025 = 45.50 .

Since the error ¢ is very rarely greater than 3ip—mp,,, the
value of n may be multiplied by 82, or 9, thus determining the num-
ber of trials which may be safely used to calculate p, with the de-
sired accuracy. In the example chosen, (9) (45.50) — 410, the
number of throws sufficient to calculate the desired probability
within the limits of the prescribed error.

Example 2. From a mortality table it is found that out of
89,032 persons alive at age 25, 88,314 have survived to age 26. The
probability of living from 25 to 26 is thus empirically equal to
88314/89032 = .99193548. To how many decimal places is this an-
swer correct?

In this problem, one is given # == 89,032 and p, = .991935, to
caleulate £. One thus obiains,

£ = 6745/ (.991935) (.008065) /89032 — .0002 .

It is clear from this calculation and an application of the rule
stated above, that one is as likely to be right as wrong in assum-
ing that the probability of living from 25 to 26 lies within the lim-
its .9917 and .9921, but it is very likely that the probability lies
within .9919 = 3 > .0002,

PROBLEMS
1. How many throws of two dice would be reasonably sure fo show that
the probability of throwing double sixes lies between 1/36 + .01 and
1/86 — 017
2. Suppose that the observed mortality rate for one year for a popula-
tion of 10,000 was .0200. Calculate the error.
3. Compare the error in problem 2 with the error for a population of
100,000; of 1,000,000.

1T. H. Brown hus recently prepared a table giving the vaiue of n “‘neces-
sary to be praectically sure of accuracy within given limits”. He assumes that
e rarely exceeds 4% instead of 3 times the limit 6745V p (1 —p,)/n. See
The Use of Statistical Technigues in Certain Problems of Market Resem*cl‘g,
Publication of the Graduate School of Business Administration, Harvard Uni-
vergity, Business Research Studies, Ne. 12, pp. 12-13.
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4. The American Experience Tuble states that of a population of 100,000
alive at age 10, 49,341 are alive at age 65. Caleulate the probability of
surviving for this period and determine the accuracy of your answer.

5. How many times would you have to throw 10 ¢oins in order to calcu-
late within an error of .01 the probability of getting 5 heads? to calculate
within the same error the probability of getting 3 heads? (p = 252/1024 in
the first case and 120/1024 in the second.)

8. Probability in Repeated Trials. The following two theo-
rems will be of important use in the discussion of the form of the
normal frequency curve:

Theorem 3. The probability that an event will happen exactly
r times in n trials is,
n{n—1) (n—2) --.... (n—r--1) n!
( ) ( + prqn_r — quHAT
1.2.3...7» ri(n—r)!

=07,

where p is the probability that it will happen, and ¢ the probability
that it will fail to happen, in a single trial.

Proof: The probability that in » trials a series of events will
happen in any given order is p’¢**. But there are ,C, different or-
ders, all mutually exclusive, in which the series of events could take
place, so that the total probability will be ,C,ptg™.

Example. What is the probability that in 5 throws with a
single coin, heads will appear exactly 3 times? Using the ab-
breviations, H for heads, and T for tails, the favorable cases can
be listed as follows:

HHHTT HTHTH
HHTTH THHHT
HHTHT THTHH
HTHHT THHTH
HTTHH TTHHH

The number of cases is seen to be identical with ,C, =— 10, so
that the desired probability is 10(1/2)¢- (1/2)*=5/16 .

Theorem 4. The probability that an event will happen at least
r times in » trials is
pn + nC1p"_1q + nczpnkzqz __]_ . + "Crprqn—f s

where p is the probability that the event will happen, and ¢ the
probability that it will fail, in a single trial.
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Proof: The probability that the event will happen exactly n
times in 7 trials is p"; exactly n—1 times, is .C,p"'q; exactly
r times, is ,C,p7q*". Since all of these events are mutually exclu-
sive, and since in any one of them the event happens at least r
times, the desired probability must be the sum of all of these par-
tial probabilities.

Example: What is the probability that in 5 throws with a
single coin, heads will come up at least 3 times?

The cases to be considered are: (1) all heads; (2) all heads
but one; (3) all heads but two. The first probability is 1/32, the
second 5/32, the third 10/32; their sum, 1/2, is the desired prob-
ability.

This is an interesting answer to obtain empirically. If 5 coins
are thrown 100 times and the empirical probability calculated, to
how many decimal places will the answer be correct?

9. Mathematical Expectation. In the practical application of
the theory of probability, the question of attaching a monetary
value to statistical data quickly arises. For example, it may be
seen from the American Experience Table of Mortality that the
probability of a man of age 25 failing to live to age 26 is 718/89052,
and one is required to find the amount, neglecting interest, that
would insure him for $1,000 during the year peried. The amount
of this premium is taken as the mathematical expectation, which
may be defined as the product of the probability of the occurrence
of the event by the amount to be gained if the event occurs. Thus,
the premium would be $1,000 > 718/89032 = 3$8.06.

A curious fallacy known as the St. Petersburg problem is very
illuminating in this connection.

Suppose that A and B are playing the following game. B is to
toss a coin until it falls heads. If it falls heads on the first toss, he
receives a dollar: if it falls heads for the first time on the second
toss, he receives two dollars; if it falls heads for the first time on
the third toss four dollars and, in general, 2** dollars if it falls
heads for the first time on the nth toss. What is B’s expectation?

Qince all of the events are mutually exclusive, the total expec-
tation, E, is the sum

E==1.(1/2) }2-(1/2)2 22 (1/2)° o= o .

But this answer, from experience, is absurd. However, De
Morgan, in his treatise On Probabilities, did not consider this an-
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swer to be a fallacy, quoting the experiment of Buffon as proof. The
result of 2048 games, together with their calculated expectations,
is tabulated below:

Toss on which

Head Appeared Frequency Expectation
1 1051 $ 1061
2 494 988
3 232 928
4 137 1096
b 56 896
6 29 928
7 25 1600
8 8 1024
9 6 1536
Total 2048 $10,067

The average per game is calculated to be $4.91. De Morgan
argued that if Buffon had tried a thousand times as many games,
he not only would have made more in particular games, but the
average per game would have been greater. It is not difficult to
show that it is very probable that the average per game, if 2" games
are played, will be approximately #/2 dollars.

The conclusion to be drawn from this is not that B should pay
A a very large sum of money for a particular game, which is ab-
surd, but that A would be foolish to go into this form of gambling
as a business for $5.00, or any other fixed sum of money per game,
because, if enough customers appeared, the average cost to him can
be made to exceed any pre-assigned value.

One ingenious answer to the fallacy is as follows: It may be
argued that the amount of winnings A can pay is finite, so B, by a
phenomenal run of luck, might win more than A’s total wealth.
Suppose that A’s wealth is 27 dollars, then the series E becomes

E=1(1/2) 4-2- (1/2)2422. (1/2)3F--evvvrrnn
__I_ or., (1/2)1»1_|_211. (1/2)n+2_]_ .........
= Yo (1) -F /44 1/84+1/16 4 - = Y (p42) .
Thus, if A were a millionaire, p would be equal to 20 and B’s
expectation would amount to $11.00.
A very different solution of the paradox was given by Daniel

Bernoulli in terms of a concept which he called moral expectation,
in contrast to mathematical expectation. Bernoulli argued that the



162 LLEMENTS OF STATISTICS

pleasure a man received in adding a sum of money to his wealih
depended upon his original fortune. This idea he formulated mathe-
matically by saying that the moral expectation of a man who added
b dollars to an original estate of @ dollars is measured by the
gquantity % log.(a-+b)/b, where I is a constant.

The solution to which this view leads is too intricate mathe-
matically to be presented in an elementary text, but the values to
be attached to the game on various assumptions as to B’s capital
do not differ materially from those obtained in the preceding solu-
tion, where the difficulty is placed upon the limitations of A’s
wealth. E. Czuber found, for example, that if B had $100.00, he
could afford to pay $4.36 for a game; if he had $200.00, he could
afford $6.00. W. A. Whitworth, in his book on Choice and Chance,®
somewhat modifying the idea of moral expectation, obtained an
answer of $3.80 for an initial capital of $8.00, $4.00 for a capital
of $32.00, $6.00 for a capital of $1024.00.

PROBLEMS

1. A bag contains 25 quarters and one five-dollar gold piecce. What is
one’s mathematical expectation if he has five draws from the bag?

9. A hand of five cards is dealt. If all are hearts, A is to reccive $10;
if four are hearts, $5; three hearts, $2; and one heart, $1. What is A's ex-
pectation?

3. A and B play the St. Petersburg game. If A has $100, what is B's
expectation?

4. A is to receive $1000 if no coin in & toss of ten coins is heads. What
would be an equivalent expectation for 5 heads in a toss of 10 coins?

5. A pays B $1.00 to guess the number of heads in a single toss of 4
coins. What expectation should B place on each of the possibilities: no head,
onc head, two heads, ete.?

6. A bag contains & half dollars, 7 quarters, and 8 dimes. If a person
draws a single coin, what is his expectation?

7. A bag contains 15 dollars and 10 other coins of equal denomination.
If one's expeetation for a single draw is 80 cents, what are the other 10 coins?

8. One bag conteing 5 dollars and 7 gquarters, and another 6 half dol-
lars and 4 quarters. If one coin is taken from the first bag and placed into
the second, and one coin then taken from the second bag and placed inte the
first, what value should be assigned to the first bag?

1 Cambridge, 1867, 4th edition 1886, reprinted by G. E. Stechert, 1925
See pp. 281-236.
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10. Miscellaneous Examples. When an event is known to have
happened, and it must have followed from one of several different
probable causes, the determination of the probability that it pro-
ceeded from a particular one of these causes is known as a prob-
lem in inverse probability. Because of the impossibility, in general,
of assigning the proper probability to the primary causes, this part
of the theory has recently fallen into disfavor. Its application to
certain types of problems is so interesting, however, that a certain
lack of rigor in obtaining answers, and a distrust of these answers
when they are found, will not seriously interfere with the pleasure
of the argument.*

Ezxample 1. Suppose a black ball has been drawn from one
of three bags, the first containing three black balls and seven white,
the second five black balls and three white, the third eight black
balls and four white. What is the probability that it was drawn
from the first bag?

If N drawings, with replacements each time, are made from
each bag, where N is a large number, there will be approximately
3N /10 black balls drawn from the first bag, 5N/8 from the second,
and 8N/12 from the third. Therefore, of a total of 3N drawings,
N from each bag, there will be approximately 3N/10 4+ 5N/8
-+ 8N /12 black balls drawn, of which 3N/10 came from the first
bag. Hence, it is reasonable to argue that the probability that the
black ball came from the first bag is

P 3N/10 36
3N/10 - 5N/8 + 8N/12 191

The fundamental theorem in inverse probability may be stated
as follows:

An event is known to have proceeded from one of n mutually
exclusive causes whose probabilitics are P,, P, --- , P,. Further-
more, let p,, Vs, *-+ , Pu be the respective probabilitics that when one
of the n causes exists, the event will then have followed. The prob-
ability that the event proceeded from the m-th cause is then

_ Pmpm
Pip, - Pops |- -+ Pupn

P

1An illuminating discussion of inverse probability from a modern point
of view has been given by R. A. Fisher: Inverse Probability. Proc. of the
Cambridge Phil. Soc., Vol. 26, 1930, pp. 528-535; Inverse Probability and the
Use of Likelihood. Ibid., Vol. 28, 1932, pp. 257-261.
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In the example just solved, one has P, —= P, = P, = 1/3, since
it is just as probable that the ball was drawn from one bag as an-
other. (It is this assumption, based on our ignorance of the prob-
abilities underlying the fundamental causes, that has led to the dis-
crediting of the theory.) Also, it is known that p, — 3/10, p, = 5/8,
ps = 8/ 12, and this leads, ag before, to the answer

P 1/3-3/10 36
1/3-3/104-1/3-5/8--11/3-8/12 191
The problem of testimony is an interesting application of the
theorem just stated.

Example 2. Suppose that A is known to tell the truth in five
cases out of six, and he states that a white ball was drawn from a
bag containing 9 black and one white ball. What is the probability
that the white ball was really drawn?

The probability that a white ball is drawn in any case is 1/10.
Also, the probability that the white ball was drawn and that A told
the truth is 1/10 - 5/6 . Furthermore, the probability that a black
ball was drawn and A told a lie about it is 9/10 - 1/6 . Hence the
probability that a white ball was drawn is

- 1/10-5/6 =5/14 .
1/10-5/6 +-9/10-1/6

One of the interesting historical problems in elementary prob-
ability is that known as the problem of ‘“duration of play.”

Example 3. Two players A and B having m and » counters, re-
spectively, play a game in which their respective chances of win-
ning are p and q, where p -- ¢ = 1. Each time a game is won, the
winner takes a counter from the loser. What is the chance of each
player of winning all of his opponent’s counters?

Let u, be the probability that A will win when he has x coun-
ters. On the next play his probability is p that he will win; and, if
he wins, his chance of winning in the end is #,.,. Hence, the prob-
ability that he will both win the next game and finally win all of
B’s counters is p 1,.,. Similarly, his chance of losing the game, but
still ultimately winning, will be ¢ #,,. Since these represent the
only possibilities, their sum is equal to u,, and we have the equa-
tion,

Uy == PUzss +QUz 1 -
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One can easily verify that a solution of this equation is
u=a--b-(¢/p)*,

where a and b are constants that can be chosen at pleasure. In or-
der to determine a and b, notice that when A has no counters left
his probability is zero; when he has m -|- n counters, his probabil-
ity is one. Thus, it is found that

Up—a-}b=0,
Unn =04 b- (g/p)™"=1.
From these equations it results that
Q== pmn/ (Pt — g™ty
b ="/ (™ — )
Hence, the probability that A will win is,
pmn 4 p™r{(q/p)™

p-m+n — qmm qm+n pm+n

=119’"*"[1 — (a/9)™] ,

um:

pm+n___qm+n
_ 1=/
1__ (q/p)””"

If p = g, then w,, = m/(m + n) . The proof of this follows:

From elementary algebra,

1__ n
1— (/)" + (a/p) +----+ (a/p)™* 4 (a/p)™ .
1— (q9/p)

The limits may then be calculated to be

Emit L (@/D)"

=1-}14+---4+1 (mterms) =m .
g/p=1 1—gq/p i

Similarly, one has

limit 1_—-_((1/_10)i“2

h Ti—gp T

The student can derive the desired result from these limits.
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PROBLEMS

1, A has 10 pennies and B has § pennies, What are the odds in favor
of A if A and B match pennies?

2. A and B toss a die, the first to throw a six gaining a penny from the
other. A always starts the games, If A has a dollar and B fifty cents, what
is the probability that B will win all of A’s money?

3. A black ball is drawn from one of two bags containing 3 white and
2 black balls and 5 white and 7 black balls respectively. What is the proba-
hility that the ball was drawn from the first bag?

4. A bag contains 5 balls which are just as likely to be white as colored.
Two white balls are drawn. from the bag. What is the probability that all are
white? Hint: The balls may be (1) all white, (2) 4 white, (3} 3 white, (4)
2 white. The probabilily in the first case is 1/32, and the probability that two
white balls would be drawn from such a bag is, of course, one. Hence, we have
P, == 1/32, p, = 1. Find the probabilities in the other cases and apply the
fundamental formula.

4. The probability that a certain event happened was 1/10, and A, who
is accurate in 49 cases out of 50, said that it happened. What is the proba-
bility that it actually did oceur?

6. A and B agree in stating that the event of problem & happened. B
is accurate in 9 cases out of 10. What, now, is the probability that it hap-
pened? Hint: The probability that the event happened and both A and B
told the truth is 1/10 . 48/50 . 9/10 ,

7. 1f C, who is accurate in 7 cases out of 10, denies that the event of
problem 6 happened, what is the probakility that it happened? Hint: There
are iwo possibilities, (1) that the event happened and that A and B fold the
truth while C lied, (2) that the event did not happen and that A and B lied
while C told the truth.



CHAPTER VII

BINOMIAL FREQUENCY DISTRIBUTIONS

1. Binomial Frequencies. As an introduction to the general
subject of frequency curves, a frequency distribution which is typ-
ical of a large and important class of such distributions met with
in ordinary statistical data may now be considered. This is the so-
called binomial frequency distribution, which is also often referred
to as the Bernoulli distribution because of the fundamental work
done in this connection by Jakob Bernoulli in his Ars Conjectandi.

As an example, suppose that 10 coins are thrown 21 — 1024
times, and a record kept of the number of frequencies attached to
the cases: 10 heads; 9 heads, 1 tail; 8 heads, 2 tails; etc . These
frequencies, as may be known from the theorems of section 8 of
the preceding chapter, should be approximately equal to the terms
in the expansion

2 (1/2 L 1/2) |

To these various frequencies may be attached the class marks
o= 0,2,=1, 8, =2, ¢0rvvre: , ;0 = 10 , so that the following
.1deal statistical series is obtained:

Class Marks | Frequencies

1
10
45

120
210
2562
210
120
45
10
1

[ars
| Setpo-1maibtilomo

The mode, median, and arithmetic average, are all seen to be
identical and equal to 5. The standard deviation is easily computed
to be

o= H=1.58 .
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If the histogram for the series is formed, it is seen that the
central ordinates coincide very closely with the ordinates of the
normal frequency curve the equation of which is

N
ov2n

Y= ¢ elr-4)/o]® | (1)

where one sets N — 1024, A = 5, and o = 1.8 .

The calculations involved in this graduation of the data, by
means of the normal frequency curve, are exhibited in the following
table where the abbreviation

Yo = 1_ e %t
Van

is uged. Values of this function will be found in Table VI.t

Class | Graduated
Marks | Frequencics N/a |t={x~A)/ e Ys Frequencies
{z;) (y,N /o)
0 1 648.1 - 3.16 00271 2
1 10 648.1 - 2.63 01625 11
2 45 648.1 - 1.90 06562 43
2 120 648.1 - 1.27 17810 115
4 210 648.1 - .63 32713 212
5 2h2 648.1 0 29894 259
6 210 ! 648.1 .63 32713 212
7 120 | 6481 127 17810 115
8 45 648.1 1.90 .06562 43
9 10 1 648.1 2.63 01625 11

10 1 | 648.1 3.18 00271 | 2

The values of ¥, are found by entering Table VI with the argu-
ments in the column for ¢. The graduated frequencies are then ob-
tained by multiplying y. by the value of N/o . Both the histogram
and the corresponding normal frequency curve have been graphed
in Figure 31 with the averages as the origin of the class marks.

The importance of studying binomial frequency distributions
is found in the fact that many statistical distributions are essen-
tially of this type. The student may convince himself of this fact
by turning to the list of problems in section 3, Chapter III. A
casual survey of the problems shows the characteristic concentra-

1The student should consult in this connection section 11, Chapter 1I.
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tion of frequencies about the average and the gradual diminishing
of frequencies at either end of the series. What this means is
that in most statistical data there is a modal class and that large
deviations from this mode are rare.

AT
dip

v |

-5 -4 -3 -2 -1 [+] 1 2 ] a 3

FI1GURE 31

The accompanying diagram (Figure 82) shows an instructive
device for forming a true normal frequency curve statistically. The
apparatus is made from a shallow box, covered on one side by a
piece of glass. Into the back board a large number of pegs are set
in such a way that the openings between the pegs of one row are
filled by the pegs of the next. Below the pegs a number of equally
spaced partitions are placed so as to form a set of compartments.
Now if a quantity of small shot is introduced by means of a funnel
to a point midway between the compartments and above the pegs,
the shot will fall between the pegs and distribute themselves in the
compartments so as to form an almost perfect normal frequency
histogram. This phenomenon supplies an apt illustration of the
way nature and chance work to create frequency distributions.
Most of the shot in falling through the pegs will be deflected as
much to one side as to the other so there will be a tendency for
them to accumulate in the central compartment. A few of the shot,
however, by a succession of unusual collisions, will tend to move in
one direction or the other and hence will fall into the outer com-
partments. These are the exceptions rather than the rule, how-
ever, and hence the numbers in the outer compartments are com-
paratively few. This device is known as the Galton quincunz, the
word quincunx referring to the arrangement of the pegs. A de-
sceription of it was first given in Sir Francis Galton’s Natural In-
heritance (1889).
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S8 IS BT

FIGURE 32

One approach to the mathematical theory of the normal and
the skew normal frequency curves is through an investigation of
binomial frequencies; this is the approach that is taken in this
chapter. It will be seen from the numerical example that a study
of the frequency table obtained from the individual terms of the
binomial expansion of the expression.

N(g+p)*,
where p + ¢ = 1, with which are associated the class marks 0, 1,
2, e , m, may prove typical of the study of a large class of

empirical data.

In this investigation a start may be made from the following
table of frequencies, formed from the successive terms of the ex-
pansion of the binomial N (q 4- p)* {Section 12, Chapter I):
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TABLE OF THE BINOMIAL FREQUENGY DISTRIBUTIONS

, ! -
Class Marks 0 | 1 - N & I iee
- _ |
\ i
fo fi fs L ........ f.
Frequencies * | ! (
I o n{n—1) ; n! |
Ng® | Nngvip| N it 7 N——w _gnopz . |,
| | 21 [ | xl({n—x) ! |

From this table are first calculated :

(a) the arithmetic mean,
(b) the standard deviation,
(¢) the mode.

When these values have been computed, one is then in a posi-
tion to derive the normal frequency curve which, as has been seen,
fits approximately the histogram of the frequencies.

2. Arithmetic Average and Stendard Deviation of a Bino-
mial Series. The following theorem will first be proved:

Theorem 1. The arithmetic average of the binomial series, as
defined in the preceding section, is equal to np.

Before proving the theorem, an example will clarify its mean-
ing.

Example 1. Correspondingtop==1/8, ¢q=2/3,n =25, N =23°
= 243, one obtains the following binomial distribution:

Class Marks |z,= 0 |z, = 1 &, = 2 |x,=— 8 [x,= 4 | ;=5

Frequencies |f, =32 |f,=80 [f,=80 |f,=40 |f,=10 | f,=1

Putting these values into the formula for the arithmetic mean
(see section 3, Chapter III), one has

4 (300180 X180 X2440X 310X 4--1X5)
_ 243

=5/3 ’

which is seen to be equal to np =5 X 1/8 .
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The proof of the theorem is derived from the simplification of
the following sum:

(fo0 + frl -+ fr2 4 -4 fon)
N

A=

Replacing each f by its value in the frequency table of the last
section one gets

(n—1)

_n
A=[(Ng~0 -4 Nung*p1l--N Y qp2 4 -
n!
————q*pta - Np*) /N -
zl(n—2x):

If np is factored out from each term and the N’s of the num-
erator and denominator are cancelled, this series 1s seen to reduce
as follows:

(n—1) (n—2)

A=np [g+ (n—Da’p + X q+p*

—=nplg +p1™" .

Consequently, since g + p==1, it follows that 4 — np, which
is the statement of the theorem.

Consider next the standard deviation.

Theorem 2. The standard deviation of the hinomial series is
-equal to vapq .

Example 2. Caleulate the standard deviation for the frequency
table of example 1.

Referring to formula 2, section 5, Chapter 111, and recalling
that A — 5/3, the value for o® is

ot — [32(0 —- 5/3)? 4 80(1 — 5/3)* - 80(2 — 5/3)"
1 40(3 —5/3)? + 10(4 —5/3)2 + 1(5—5/3)°1/243
— 2430/ (93¢243)
—5.1/3-2/3 .

If the frequencies of the table in the last section are designated
bY foy f1s fa,oorreet , f», and one recalls that o® = [Zf: (% — A)2]/N,
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and that 4 = np according to theorem 1, the proof of theorem 2
consists in showing that the following series reduces to npq:

0"2_-:-[fo(o“—np)z“]l‘fl(l—"p)2+f2(2_np)2
N + faln—np)2]/N .

Squaring each term,
o* = fonp? - f, (n*p? — 2np - 12) - £, (n2p® — dnp - 22)
P + fa(n?p? — 2n2p -+ m2) /N,
If the coefficients of #2p? and np are collected, one obtains
ot =P fot fit-fot-o oo fa) —2mp(f, + 27, - 3f,
T+ afy) - (422, 4 -+ »*f,) /N (2)

But it is at-once seen from the explicit values of the frequen-
cies that

fotfibforo - fas=N(@+q)"=N ,
and it has already been shown, in the proof of theorem 1, that
fit2fe-t-8fs 4o 4 nf, = NA =— Npn .
It remains then to consider the series

Ufi - 2°f 4+ 3fat- - + 0
(n—1) (n—2)

= Nnplg*? + (n—1)2pg™= + T 3p*qns
+"'+ﬂpn_l] H (3)

which is obfained by replacing each frequency by its explicit value
as given in the table of the first section of this chapter, and factor-

ing out Nnp.
Next, in equation (3) replace 2 by its equivalent value 1 -+ 1,
3by1-4-2,4by1+43,.--,nby 1 -+ (n—1). The above series

will then break up into two parts. and the following expression is
obtained:

(n—1) (n—2)

Nap{ig™ + (n—1)pg= + 21 pg?
+o - p ]+ (1) plg™? |- (n—2) pgs
+ ™1}

= Nnp[{(q-Fp)* 4+ p(n—1) (g-}p)"™*]
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== Nnp[1l + p(n—1)] = Nnp[np 4- (1—p)]
== N[n’p* 4 npq] , since ¢ = 1—p .

When these values are substituted in formula (2), the fol-
lowing simple result is obtained:

o = n2p? — 2nip? -} w2p? + npg = npq .

Corollary: For a binomial distribution, the standard devia-
tion can be expressed in terms of the arithmetic mean as follows:

o= VA1 —A4/n) ,

where A is the Bernoulli mean and » one less than the number of
classes.

The proof of this corollary is immediate if p and g are ex-
pressed in terms of A by the relations np = A and ¢ -—1 — p, and
these values then substituted in the formula for o.

PROBLEMS

1. It is very unusual for a standard deviation to be in error more than
2¢/V2N, where N is the total frequency used in the calculation of o. Given

this fact, decide whether or not the following frequency table represents a bi-
nomial distribution:

10

[$+]

ca
o
o
(=]
-3
o0
=]

Class Marks ‘0 1

Frequencies "2 57 15 46 89 125 60 20 10 2

Hint: First calculate the mean and the standard deviation. Then, using
the corollary, calculate the standard deviation on the assumption that the
distribution is normal. Compute the difference between the two values of ¢
thus obtained and see by the criterion stated above whether this difference is
significant.

2 Show that the following frequencies obtained from tossing 10 coins
500 times fit a normal frequency distribution:

ot
o
-3
w
He=}
Juy
(=]

Heads to 1 2 3 4

Frequencies | 0 5 33 51 94 127 110 56 20 4 0
: |

3. Throw 10 coins a hundred times and compare the observed frequencies
of heads and tails with those calculated.
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4. A tetrahedron has its faces numbered 1, 2, 3, and 4, Five such tetra-
hedrens are tossed 1024 times and a count is kept of the number of times the
tetrahedrons rest on the face numbered one. Compute the ideal frequency
table.

5. Graduate the data of problem 2 by means of the normal frequency
curve,

6. Calculate the arithmetic mean and the standard deviation for the fre-
quency table formed by calling successive terms of the expansion (1+3)10 the
frequencies corresponding to the class marks 0,12 ..., 10,

7. Graduate the following data, showing the distribution of the indexes
of seasonal variation for factory payrolls in 24 leading industries for the
years 1923-1931, on the assumption that they form a normal distribution:

Index of Seasonal ! Class

t
Variation Marks J Frequency
|
S | -
Under 85 | 0 J 7
88-90 i 1 | 9
91-93 ; 2 21
94-96 ‘ 3 27
97-99 i 4 57
100-102 | 5 70
103-105 | 6 64
106-108 \ 7 18
109-111 8 8
112 and over 9 7

8. Decide whether or not the above data form a binomial distribution.
See hint to problem 1.
9. Show that for a binomial distribution the third moment is equal to

lafl '+' 23f2 + 33f3 +"' -+ ngfn
= Nnp [1+ 3(n—1)p + (n—1) (n—2)p2] .

10. From the results of problem 9 show that for a binomial distribution
the third moment above the mean, M,, is given by

M,=Nnpq(g—p) .

3. The Calculation of the Mode for the Binomial Frequency
Distribution. The following theorem was first proved by J. Ber-
noulli and contains the inequalities which define the value of the
mode of the binomial series:

Theorem 3. If the probability that an event will happen is p,
and the probability that it will fail to happen is ¢, then the most
probable event in n trials is # successes and n—x failures, where
x is an integer defined by the inequality

m—gsz<pntop.
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Suppose, for example, that two coins are being tossed and the
probability is being considered that both will fall heads. In 2 sin-
gle toss the probability of this event is 1/4, and the probability
that it will not happen is 8/4. Suppose, then, that the two coins
are tossed 10 times and one inquires what is the most probable
number of times the two coins will fall heads.

The answer, %, is seen from the theorem to lie between

pr—q=13 and pn-p=23, ,

which means that « — 2.

The actual probability corresponding to this event is, of course,
the third term in the expansion of (3/4 -+ 1/4)*°, which equals
-2815. The most probable event, therefore, is not always a very
probable event, on account of the fact that there are various other
cases to be considered whose probabilities are relatively large.

The proof of the theorem consists in finding a value of x which
will make the funetion

— n!
— _  pn-ZanT
yz—Nx!( x)!q /4 (4)

as large as possible, since ¥, is the general term in the binomial
frequency table of section 1.

If such a value of # exists, it is at once seen that the values of
(4) calculated at z -}- 1 and = -— 1 must be smaller than the value
of (4) calculated at the point 2. This statement is expressed by
means of the following inequalities:

72! ot §
+ qnwz-
(z--1) H{n—a—1) ! n!
§ —_— zqmz .
n! x!l(n—=zx)!

(r—1) (B -1-1) ! e

Dividing through by each of the left-hand members and re-
membering that (r—a-4-1) ! = (n—~a+1) (n—=z) ! and that (x-}1)!
= (z+1)xi, the two inequalities are simplified as follows:

]_Sﬁv_j__ﬂ.g_ ,
T (n—x) p
1< wiﬂ .

X q
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From these, multiplying by (n—z)p and xzq respectively, these
results are derived:

p{n—zx) s qg(a+1) ,
qx = p(n—z41) .
Solving the first of these inequalities for z, one has
pn—pw = qtq ,
n—q = (ptHqla =z ,
and in a similar way from the second inequality,
r=pn-tp .

Thus it is seen that the required value, z, is the integer which
satisfies both of these inequalities. It should be noticed that when
Pn—q is an integer, x may assume both the upper and lower limits
of the inequality and the mode is not unique. Usually, however,
this will not be the case and the mode, with a very slight error, is
equal to np. It is thus seen to coincide, in general, with the value
of the arithmetic mean,

4. Stirling’s Formula. Before the equation of the normal curve
can be derived from the general term of the binomial frequency
table, it will be necessary to digress a little and discuss an impor-
tant mathematical result known as Stirling’s formula. This for-
mula gives a very useful approximation to n! which, as may readily
be appreciated, is a very large number for large values of 7.

Stirling’s formula states that

nloonr\ner\2n ,
where the symbol, &, means “approximates” or * is asymptotie to.”
For example, by the exact formula one has
51=120 ,
and by Stirling’s approximation
510055 et 2n =118+ ,
The calculations are made, of course, by means of logarithms.

It has already been seen in problems 2 and 8, section 13, Chap-
ter III, that n! is bounded by the following inequalities

n*/ (logen 4 6772)" < n! < (nf1)n/2» =n"(14+1/n)" 2" .
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If, then, n! is written as the product n! = f(n)n", it is seen
that the function f(n) is limited by the following inequalities:

(log.n ~- B772) " < f(n) < (1+1/n)" 2™,

and consequently decreases rapidly toward zero as » becomes large.
It is clear, furthermore, that

f(n) =nl/n"e= (1—1/n) (1—2/0) - [1—(n—1) /] . (5)

It was A. de Moivre (1667-1754) who first succeeded in giv-
ing, in 1718, an approximate value to this function, which he de-
termined in final form except for the unknown constant multiplier.
This constant J. Stirling (1692-1770) succeeded in finding, twelve
years later, and the approximation has since been called by his
name,

Although many derivations of Stirling’s formula have been
made, none of them may be said to be entirely elementary. One of
these, depending only upon algebraic processes, is given in Chrys-
tal’s Algebra, Edinburgh (1889), part 2, pp. 344-348. Another is
found in A. Fisher’s Mathematical Theory of Probabilities, 2nd.
ed., New York, 1922, pp. 92-95. The student of calculus will find
a proof in Whittaker and Watson, Modern Analysts, 3rd ed., Cam-
bridge, 1920, pp. 251-255.

In this book no more will be done than to exhibit the close-
ness with which values of the function v/2zn n ¢ coincide with the
values of f(n) calculated by means of (5). These values are re-
corded in the following table for a few values of n:

n f(n) . Vernen
2 5000 AT797
3 2222 1800
4 0937 .0918
5 0384 03738
10 0005 0004

5. Derivation of the Skew-Normal Frequency Curve. In this
section it will be shown that a skew-normal frequency distribution
with its mean at the origin is approximately represented by the
curve

elir-0 /28 ]x e-(1/zat)e?

yr:

oV 2n
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The derivation of this curve from the general term of the bi-
nomial frequency distribution is one of the elegant problems in the
mathematical theory of statistics. While a knowlege of this con-
nection hetween the digcrete and continuous series may not add
materially to one’s ability to apply the theory, the thoughtful stu-
dent will find the following development profitable in arriving at
a knowledge of the underlying principles of the subject. An indi-
cation of another method of derivation will be found in section 8,
Chapter IX.

The development begins with the general term of the binomial
frequency table of section 1, which may be written

N n!
Yz e ap (6)

Since the maximum or modal value of this function occurs at
or close to x == np, the origin may first be shifted to the mean by
a transformation of coordinates. Referring to section 10 of Chap-
ter 11, it is seen that this is accomplished by replacing x by #p -}- .
The point of departure will then be from the new function

e N nl
T (npta) Hng—sz) !

which has its highest point at x =—= 0.

The connection between the discrete and continuous series is
made by means of Stirling’s formula. Replacing each of the fac-
torials by its approximation—for example, replacing

(mp+2)! by (np-+x)™ /ap I xe™= /21,
after cancelling common factors, one has '

prsqrs (7)

N arva

y’ o R - — -— pﬂj')-fl‘qnqggy .
(np-2) "™ \ptx (ng—ax) " /ng—a Von
(8)

Taking np and ng out of the parentheses and the radicals of
the denominator as factors [for example, by (4) section 2, Appen-
dix II, (npf-2)* = (np)*(14x/np)*] eguation (8) then becomes:

N n*n

Yo oo
np+a np+e+l4g nq-z ng-2+14
(np)r#+# (1 +np) P /mp (ng) " (1 —~n—q) Vg Van

>< pnmzqnqq
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N ar/n

Yz 0

x — Z —_ .
RPHEgp L 1 np+e+1 n L gy NG 1 R-T+15
» O+ vap et (1— o) Vng Van

>< pnqunq-x .

Since np -+ nq = n{p -~ q) = n, one can factor out n*\/n and
thus obtain

N
0 (1 /) T (1 /)%
V27 npq

If logarithms of both sides to the base e are taken, one gets

log,y. o log.N — 14 log, 27 npq — (np -|- x -}- Vo) log. (1 -+ x/np)
— (ng—z + Vo) log. (1 —2/nq) .

Knowing from equation 9, section 6, Appendix II, that
log.(1+2) =2 —22/2 +28/3 —2¢/4 + ..,

one can expand the logarithms of the last two terms and expand
the resulting series in powers of x. This leads to the further
approximation,

log.y, o log.N — 14 log.2anpq
4 [ —(np-+Ve} /np + (ng4+16) /ngl x
+ [ (np-+15) /2(np)? + (ng-|-12) /2 (ng)* — 1/np — 1/ng) a?

Since n was assumed to be large, terms which involve 1/n to
the second or higher powers can be neglected. Finaily, recalling
that p -+ ¢ — 1, one arrives at the approximate value
P—1q
2npq 2npq

log.y. o log.N — 14 log2nnpq -

From this, taking the anti-logarithms of both sides and calling
y the approximate value of ¥,, the equation is obtained,

Y= _—N...._ e [(p-0)/2npgle o-(1/2npg) 02 (9)

V2 7
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6. The Skew-Normal Curve. The student will observe from
the results of the last section a curious circumstance. 1If in equa-
tion (9) one replaces npg by ¢ and makes use of the fact that
p == A/n, then (9) can be written

N 1

o V21
where 8" = (¢—p) /20 = (1 — 24/0) /20 .

S0 gitater (10)

But equation (10} may also be written in the form
y— N1
o V2n

e—§ (248741 /2

where N’ — N ¢, By reference to section 11, Chapter II, one
notes that this is the equation of the normal probability curve with
its modal point at x =— —8’ .

Hence the conclusion is reached that the skew-normal binomial
distribution obtained when p is different from ¢ is approximately
represented by a normal curve the modal point of which is found
at x == —§"¢. Since the origin of coordinates of the binomial dis-
tribution has been chosen at the arithmetic mean of the distribu-
tion, that is, A = 0, the skewness may be measured by Karl Pear-
son’s definition [see section 10, Chapter 111, formula (9)]

__A-«—MO

T

S

that is,
0 — (S%a)

o

S S

Moreover, from the results of problem 10, section 2, Chapter
V1I, one obtains

,_q—p_ Ma Qe
V=5 ="

which is seen to be identical with formula (11), section 10, Chap-
ter III.

In practical application of these formulas for the skewnhess,
because of the difficulty of making an accurate determination of
% in some cases, S’ should be checked by comparison with S”.
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It is illuminating to compare values of y. and y for special
cases,

Example 1. Let p — q = 14, n = 10, N = 1024. One thus
has, from {ormula (7),

1024 - 10! 10!
Yo = (1o)== (15)** =
(54a) 1(5—=z)! (6+2) 1 (5—a) !
and from (10),
yo 1024 1
1.58 v/2a

Letting x take values from — 5 to 5, the following table is ob-
tained, which has already been graphically represented in Figure
31:

x Ye )

0 252 259
+ 1 210 212
= 2 120 115
= 3 45 43
+ 4 10 11
* b 1 2

Example 2. Let
p=1/3, ¢=2/3, N=3"=19,683, n=9.
Then
A=3, o¢=v2=14142 ,
S = (1--6/9)/2.8284 —=.1179 .

Making the proper substitutions in the formulas for %. and ¥
[formulas (7) and (10), respectively], one has

19683 - 9! . . 91
~ (34x) 1(6—z) ! (1/8)% (2/8)** = (31 x) 1 (6—=) ! 2
19683 1

Y= p—
1.4142 /5,

F 4

¢1179(2/1.414) o34 (2/1.414)2

If, in the last equation, e-17?=/1.410) jg designated by y, and
e a0 hy 4 the calculations may be tabulated as follows:
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x x/o N/e Yy Yo ¥= (N/o) .y,9, Yz
-3 - 2,12 13918 | 1.28403 | .04217 754 512
-2 - 1.41 13918 ! 118531 | .14764 2436 2304
-1 1L 132918 1.08329 | .31006 4675 4608

0 0 13918 | 1.00000 | .39894 5552 5376
1 71 | 18918 92312 | .310086 3984 4032
2 1.41 13918 24366 | .14764 1734 2016
3 2.12 | 13918 ST7880 | 04217 457 672
4 . 2.83 13918 ST1892 | 00725 73 ! 144
b . 3.64 13918 65705 | .00076 | Vi ; 18
6 - 4,24 ‘ 13918 60653 | .00005 | 0 i 1

The histogram for y. and the graph of y are given in Figure

33.
Y
™,
— AN
N
—3 —2 —1 o] 1 2 3 4 5 6
FIGURE 33

7. Application to the Graduation of Statistical Data. The prob-
lem that has just been solved is essentially one in curve fitling.
Given a table of data, one is required to find a curve which will ap-
proximately fit the histogram. A great deal of woerk has been done
in recent times in constructing a mathematical theory of curve-
fitting which will apply especially to frequency histograms. Fre-
quency distributions are usually, but not always, unimodal in char-
acter, although inherent peculiarities in the data often make it im-
possible to use the skew-normal curve for graduation. Two the-
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ories of curve fitting have arisen in attempts to generalize the
skew-normal curve. One of these is due to Karl Pearson, the emi-
nent Knglish biometrician, who founded his theory upon a differ-
ential equation and developed seven types of curves, later increased
to twelve types, which seemed admirably suited to the graduation
of frequency distributions found in hiological data.! The second
theory is due to the Scandinavian statisticians and actuaries, Gram,
Thiele, Westergaard, Charlier, Wicksell, and Jorgensen, and is well
set forth in Mathematical Theory of Probabilities by Arne Fisher.
The theory is not elementary in character, however, and depends
upon a knowledge of the manipulation of seriecs of so-called orth-
ogonal functions. In this introductory treatment it is necessary to
limit the discussion to the skew-normal curve, and if this will not
graduate the distribution, the problem must be abandoned to high-
er methods. Some further account of this subject will be found in
Chapter XII.

¥

30

. 2\

20

o \
b% AN

FIGURE 34

In further illustration of the principles of graduation of data,
consider the following example.

Ezxzample: Fit a skew-normal curve to the data of table (b),
(4-6 months prime commercial paper rates, January, 1922-Decem-
ber, 1831), as given in section 2, of Chapter III.

The Bernoulli mean and deviation are calculated to be 3.40 and
1.6 respectively, (see sections 4 and 6, Chapter I11). The skewness,

iFor a comprehensive treatment of the Pearson theory, see W. P. Llder-
ton: Freguency Curves and Correlation, London, C. & E. Layton, 1806, 2nd.
ed. (1927%%
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S, is then equal to (1 — 6.80/7) /3.2 = .0089. Keeping to the class
marks 0, 1, 2, etc., one approximates the.skew-normal curve for
these data by means of (using equation 10),

— 108 g—-0089(7-3.40)/1.60 6-%[(2-3.40)/1.60]2 .
1.6 V2n
Designat‘ing g—-0088(2-3.40)/1.60 9114 e—yﬁ[w-s.m)n.ﬁ(}]ﬂ
Van
by ¥, and ¥. respectively, the following table is calculated:
- ) B “Graduates §
x (x-A)/o{ N/o |-§'(x-A)/o| ¥, ¥a Frequencies | ungraduated
¥y = (N/o).y, ¥, Frequenclesi
0 - 2,13 67.5 02 1.02020 | .04128 3 2
1 - 1.50 67.56 .01 1.01005 | .12952 9 8
2 - .B8 67.5 01 1.01005 | 27086 18 23
3 - .25 67.5 00 1.00000 | .38667 26 30
4 38 67.5 .00 1.00000 | 37115 25 20
b 1.00 67.5 —-.01 99005 | 24197 16 13
6 1.63 67.5 —01 89005 | .10567 7 6
7 2.25 67.5 -02 98020 | 03174 2 6

The histogram of the ungraduated frequencies and the graph
for the graduated frequencies are given in Figure 34.

PROBLEMS

1. Calculate the mode for problem 1, section 9, Chapter I, on the assump-
tion that it is a skew-normal distribution, How does this value compare with
the value calculated by the formula for the mode given in section 10, chap-
ter 37

2. Compute the value of 10! and of 1000! by Stirling’s formula.

3. Fit a skew-normal curve to the table obtained by using each term in
the expansion of {(1+4)% as a frequency.

4. Graduate the data of the following table, showing the percentage
deviation from trend of Bradstreet’s Index of General Prices for the pre-war
period, 1897-1913:

Percentage Deviation Class
from Trend Marks Frequency

— 15to— 13 0 3
—~12to— 10 1 6
— 9to- 7 2 10
— 6to- 4 3 31
- 3to— 1 4 37
0to2 b 58
3tobh 6 39
6to8 7 13
9to 11 8 4

12 to 14 9 3
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5. Graduate the following table, which shows the distribution of 1110
observations made on 149 commodity price series during ten business cycles:t

Duration of Cycle |
(from low to ensuing low) ‘ Class
{(in months) ! Marks Frequency

7.50-12.49 | 0 T
12.50-17.49 ; 1 27
17.50-22.4% ‘ 2 61
22.50-27.49 3 115
27.50-32.49 i 4 139
32.50-37.49 ! 5 186
37.50-42.49 6 187
42.50-47.49 7 124
47.50-52.49 8 122
52.50-57.49 9 67
57.50-62.49 10 52
62.50-67.49 11 15
67.50-72.49 12 15
72.50-77.49 13 , 8
77.50-Over 14 I 5
Total 1110

6. 'The data in table (a), section 2, Chapter V, give the monthly and an-
nual averages of mean weekly freight loadings, from January, 1919, to De-
cember, 1932, Choose proper class intervals and arrange the 168 items into
a frequency distribution. Hint: Let the difference between the largest and
smallest item form the range. Divide this range up into a convenient number
of intervals and arrange the data into these classes. Test the distribution to
see if it is either normal or skew-normal and make a table showing the gradu-
ation of the data.

7. Graduate the following data, which show the deviations from trend of
bank clearings outside of New York City, from 1897 to 1913:

Deviations Class

from Trend Marks Frequency
Over —17% 0 1
-16to-14 1 1
-13 to -11 2 10
-10to- & 3 13
—Tto-b 4 15
—4to- 2 5 28
- 1to1 6 60
2to4 7 | 33
5to7 8 24
8to 10 9 ! 17
11 and QOver ‘ 10 2
Total 204

1The Behavior of Prices, Frederick C. Mills, New York, 1927, Ch. IV,



CHAPTER VIII

THE NORMAL FREQUENCY CURVE—PROBLEMS IN SAMPLING

1. The Meaning and Use of the Area under the Normal Curve,
In the beginning of the last chapter, the formula was given

Y = g ilz-ayio)r (]_)

o/ 2n
where N was the total frequency, « the standard deviation, and 4
the arithmetic mean of the distribution, which the formula was de-
signed to represent.

From graphs previously given in the text (see, for example,
Figure 17, section 11, Chapter II), it is seen that the curve repre-
sents a normal symmetric distribution; it is variously referred to
as (a) the normal frequency curve, (b) the prohability curve, (c)
the Gaussian curve of error. The first two names are apparent
from its derivation, the last is due to the work on it by Karl Fried-
rich Gauss (1777-1855), who was one of the first to point out that
errors in observations could be treated by means of this curve.

It will be seen by referring to the work of the preceding chap-
ter that the area of each rectangle of the histogram is equal nu-
merically to the frequency which corresponds to the class mark at-
tached to it. Thus in Figure 31 of Chapter VII, the frequency of
the class mark 3 is 120. The total frequency is equal numerically
to the total area of the histogram.

In a similar way, the total area under the normal curve is
equal to the total frequency of the data represented by it. Hence,
it is important to know the area included under the probability
curve between the ordinates corresponding to # = 0 and # ~— X ,
where X is any value, because this area will be equal numerically
to the sum of the frequencies corresponding to the class marks be-
tween 0 and X.

For convenience, the area under the curve,

Y= %, (2)

V2a
is tabulated for values of £ from 0 to 4 in Table VII at the end of
—187—
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this book. To find from these tabulated values the area under the
normal curve corresponding to a value of x, the following rule is
used :

Find in Table VIL the area under (2) which corresponds to
t — z/v . This area will be designated by the symbol 7(f). The
product of the value thus obtained by the total frequency N gives
the desired area under the normal curve. It should be noticed
from the symmelry of the function defined by (2) that the area
for negative values of ¢ is equal to the area for positive values of {,
that is to say, T (—1t) = I(?).

Example 1. As an example, one may turn to the histogram giv-
en in Figure 31 of the preceding chapter and calculate the sum of
the frequencies between lhe class marks z : = 0 and x = 2 which
correspond to the class marks ¢ ~—=5and x==7 of the table. Since
the class marks fall in the middle of the intervals, only half the
initial and final frequency rectangles are to be used. The desired
sum is then found to be equal to 126 4+ 210 |- 60 = 396. The area
under the normal curve which approximates this value is calcu-
lated by finding in Table VII the area corresponding to t = 2/v
— 2/1.58 == 1.266, and multiplying the area thus found by the {re-
quency 1024. Since ¢ is given to three decimal places, it is neces-
sary to interpolate in finding the value of I(f). Thus, from the
table, one has

1(1.26) =-.89617
00179 (First difference).
1(1.27) = .39796

Consequently I{1.266) == .39617 —- 6(.00179) —= .39724, and
the desired frequency is this number multiplied by N == 1024,
which gives 407 approximately.

Qinee the area under the normal frequency curve is exactly
equal lo N, and since a frequency histogram is essentially an area
chart in which each frequency is represented by the area of a rec-
tangle, the area function I{f) may be used instead of the ordinate
of the normal frequency curve for the graduation of data. If ref-
erence is made to Figure 31 of the preceding chapter, it is seen
that the bounds of the frequency rectangle of the histogram arc
— B.5, — 4.5; — 4.5, — 3.5; — 3.5, -- 2.5; ete. In order to ap-
proximate the area of the rectangle between 2.5 and 3.5, for ex-
ample, all that is necded is to subtract the product of N with the
area function evaluated at the first station from the product of
N with the area function evaluated at the second, or, in other
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words, to compute the difference N I(8.5/¢) — N I(2.5/0). This
difference is easily found to be 1024 [I(2.21) — I(1.58)] =
1024 (0.48645 — 0.44295) = 44.54, which is very close to the his-
togram area of 45.

The following table shows the graduation of the data of sec-
tion 1, Chapter VII, where N === 1024 and ¢ —= 1.58:

; Gradulz—lmt—;t‘iwwl-'l‘i—s—togram
x x/o ‘ I(z/0) NI(x/0) | Frequency | Data
- W oo ! 50000 512.0
- 4.5 - 2.85 49781 5090.8 2.2 1
- 3.5 - 2.21 48645 498.1 117 10
- 2.5 - 1.58 44295 453.6 44.5 45
— 1.5 -~ .95 32894 336.8 116.8 120
- 0.5 - .32 12552 128.5 208.3 210
0.5 .32 12552 128.5 257.0 252
1.5 95 .32894 336.8 208.3 210
2.5 1.58 .44295 453.6 116.8 120
3.5 221 .48645 498.1 ? 44.5 45
4.5 2.85 49781 509.8 | 117 10
oo <] 50000 512.0 { 2.2 1
Totals | | 1024.0 1024.0

Example 2. The skewness of the data given in the following
table is not sufficient to invalidate approximate calculations based
upon the assumption that a normal distribution is being dealt with:

DISTRIBUTION OF BRADSTREET’'S COMMODITY PRICES (18%7-1913)
(expressed as percentages of trend)

Percentage ! Percentage
of Trend Frequency | of Trend Frequenecy
85% 1 100% 14
86 0 , 101 30
87 2 | 102 15
88 0 : 108 15
29 4 ! 104 12
90 2 105 12
91 1 106 4
92 8 107 T
93 6 108 2
94 10 109 0
95 B 110 3
96 13 111 i
97 1 5 112 1
98 16 113 1 1
99 ‘ 15 114 1{ 1
N =204, A = 99.94, o=—=4.934 .
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It will be instructive to evaluate the sum of the frequencies
from ¢ = 0 to & == 5, where x is the percentage trend measured
from the arithmetic mean. Since 5 is approximalely equal {9 o,
this sum is given by

NI({B/r)—=NI(1)=204(.34134) =- 69.63 .

Since A = 99.94 and « == 4,934, this {requency is equal approxi-
mately to the sum of the frequencies of the histogram from the per-
centage 100 to the percentage 105 on one side of the mean, and
also from the percentage 100 to the percentage 95 on the other side.
Sinece only half the frequencies of the two end values are to be in-
cluded, these two sums, S; and S., are calculated to be

S, =565 , S,= 80,
16(8: - 8.) = 6825 .

2. The Probable Error. The probable cirvoy of a normal fre-
queney distribution is a value 2,, so chosen that one half the total
frequencies correspond to class marks lying between x, and —x, .

The probable error can be readily obtained by inlerpolation
from the table of areas, since, where 2, is the probable error, &, will
be equal to that value of ¢ for which the area, I(f) = 1/4--= .2500.
From Table VII the following values are given:

T(.67) = = 24857
00318 (first difference).
1(.68) -— 25175

By interpolation,
. —.2485
£ gy 2200024857 s
00318

Thus, the following formula for the probable error is derived:

Pp. €.==.6T74b0 . (3)

Since .6745 is approximately 2/3, the probable error is often
conveniently wrilten (2/3)0.

The significance of this formula will be clear from examples.
Thus, in the data of example 2, section 1, of this chapter, the
probable error is .6745 3 4.934 = 3.3280. This means that any
item chosen at random among the 204 has a “50-50" chance of rang-
ing between 100 — 3 = 97 and 100 + 3 = 103 percent.
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As another example, consider the frequency distribution ob-
tained when 9 coins are tossed 512 times and count kept of the
number of times heads appeared on each toss. The probable error
is calculated to be

p- €. = .6745 < 3/2=1.01 ,

This means that the chance is practicaly 14 that if 9 coins are
tossed at random they will fall cither 5 H, 4T; or 4 H, 5T. This
probability is actually 63/128.

The probable error is one of the most important expressions
in statistical study and considerable emphasis will be laid upon it
in subsequent developments. Not a great deal of information is
given about a distribution, for example, by stating merely the
arithmetic average but considerable knowledge is derived from a
statement of the arithmetic average and the probable error in com-
bination, thus:

A = 67450 .

One important fact that is easily proved is that a deviation
from the mean of three times the probable error is very unlikely.
Thus, if x == 3(.6745 ¢ ) == 2.0235 ¢, then ¢t =2.0235 and 2171 (¢) =—
2(.47849) — .95698. From this we derive the information that the
probability is 1 — 95698 — .04302 that a deviation will occur which
is three times the probable error.

It should be particulavly emphasized that formula (3) for the
probable error has mceaning only when it is applied to a normal
distribution. If the distribution is skewed, then this formula is.
only a convenient approximation to the true probable error.

PROGBLEMS

1. Caleulate the values of the following: I{1.82), I(2.44), I(—1.22),
1{0.237), I{—1.268).

2. What is the probability that a statistical unit will lie outside of the
interval A = 1/2 of its probable error? Within the interval 4 £8/2 of its
probable error? Outside of the interval A * twice its probable error?

3. Using the method of areas, graduate the data of table (b), 4-6 months
prime commercial paper rates, 1922-1931, as given in section 2, Chapter III.
The average and standard deviation for this table are A = 4.45, ¢ = ,80. Cal-
culate the probable error.

4. From the data of problem 7, section 2, Chapter VII, compare the ac-
tual and theoretical probability of an index of seasonal variation of factory
payrolls lying between the values of 97 and 106. Calculate directly from the
data the probability that an index lies outside three times the probable error,
and compare with the theoretical value derived above.
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3. Probable Error Applied to Sampling. Any empirically de-
rived table of frequencies may be conveniently thought of as being
a random sample chosen from an ideal distribution, or population,
whose total number of cases greatly exceeds that of the sample.

If one were to throw 10 coins 1024 times, for example, and
record the frequencies corresponding to the number of heads
thrown, the resulting table would be essentially a random sample
of 1024 cases chosen from the ideal distribution which would result
if the number of cases could be increased without limit.

In business, sampling is a common Process used in arriving at
the value of commodities. A car load of coal must be estimated with
respect to size and quality by random sampling. A merchant can-
not examine every bolt of cloth that is purchased, but by a proper
selection of samples from the entire order he can assure himself of
the average quality of the merchandise. It is not possible to go into
details here about methods of sampling, because each problem has a
technique of its own. The only general rule to follow is that of
being sure that the sample is sufficiently large and chosen in such
a way that it is perfectly random. If one bought apples by judging
only from the size of those displayed, he might sometimes make a
mistake, since some dealers display only the best of the lot.

The problem which can be dealt with statistically is that pre-
sented by the analysis of the sample once it has been properly
chosen. Thus, suppose, for some ideal population of M individuals,
M a large number, that the frequency table is as follows:

£ FOR AN IDEAL POPULATION

«Class Marks x,

Frequencies I,

where F, -+ F. + Fi +

Next, suppose that a sample of N individuals is chosen from
this population, and that the frequencies arc recorded as follows:

Class Marks x, x, Ty e ) x,

Frequencies f1 fa fa 1 e ‘ fo

where f, 4+ fo - fs 400 4-f, == N.



THE NORMAL FREQUENCY CURVE 193

This very important problem is then considered: What is the
probable error for the kth frequency, i.e., fi, of the sample?

It is at once clear that, if a second sample of N individuals is
taken from the ideal population, the kth frequency may have any
one of the values from 0 to N. However, the probability is very
much in favor of the value f;, since that has already appeared in
the first sample. For example, it is known that, if ten coins are
tossed 1024 times, five heads will appear 252 times on the average.
If some individual actually makes a toss of ten coins 1024 times, he
may find that five heads appear 0 times or 1024 times. The prob-
ability is practically zero for these extreme cases, however, and
the empirical figure should be close to 252. The probability in favor
of 252 is high, the probabilities for 242 and 262 are lower, and the
further one gets from 252, the smaller the chances become of get-
ting that number for the frequency for 5 heads. If, then, the respec-
tive probabilities for each number between 0 and 1024 are calculated
and graphed, it is evidently reasonable to assume that these prob-
abilities will form a normal distribution about 252 as the average.
The actual values of these probabilities will be, of course, the terms
in the expansion of (1,2 - 1/2)%%2¢, Obviously, it would be foolish
to attempt to calculate them. The purpose of this discussion is
merely to show that one is dealing with a binomial frequency dis-
tribution to which the Bernoulli mean and the Bernoulli deviation
apply.

Returning now to the general sample, it is seen that the most
probable value for the frequency f;, is M - Fx/M and that the stan-
dard deviation of the frequencies attached to the numbers from 0

to M is
o-—\/M-—-m-(l—-————) __\/Fk 1————)

Thus, the highly important conclusion is reached that the prob-
able error for an observed frequency is

6745 VF, (1 —F/M) .

In practice, of course, neither Fy nor M is known, but, if the
sample is sufficiently large, F./M can be replaced by its approximate
value f/N, giving

o?  fi{(1—fi/N) . (4)

The frequency of the kth group could then be written
fr = 8745V fi (L — fu/N) .
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Ezxample 1. 1If a student tosses 100 pennies and counts the
heads, within what limits will his answer lie? In the ideal case n
frequency of 50 heads would be expecled. Hence, the probable
error is

8745v/50(1 —50,/100) = 3.836 .

It is then very probable that the number of heads tossed will
lie within the range 502-3(3.36). That is to sav, it is unlikely that
the student will throw more than 60 heads or fewer than 40.

Example 2. A dealer takes 100 samples from a shipment of
10,000 items of a certain goods and finds that there are 50 items
of grade A worth $5 per thousand, 30 items of grade I3 worth $41
per thousand, and 20 ilems of grade C worth $3 per thousand.
Within what limits should the value of the shipment be fixed?

Obviously, the true value of the shipment must be somewhere
between $30.00 and $50.00, since certainly all of it is neither grade
A nor grade C. In order further to limit the values, one first cal-
culates the probable errors of the samples and thus finds:

p. e. for grade A = .6745+/100 - {50/100) (1 —50/100) =-3.37 ,

p. e. for grade B = 67145v/100 - (30/100) (1 — 30,/100) =-3.09 ,

». . for grade (! = .6745/100 - (20/100) (1 -—20/100) - -2.70 .
Adding to and subtracting from the sample three times the
probable error for each grade, the following upper and lower values

for the three kinds of goods are found. These figures are expressed
in percentages:

srade A Grade B Grade C

[50-+83(3.37)] [80+3(3.00)] [203(2.70)]
Upper Value: 60.11% 39.27% 28.109%,
Lower Value: 39.889¢ 20.73% 11.90%

Thus the highest value that can be placed upon the shipment
is that value for which grade A is the highest and C the lowesi,
that is,

Grade A — approximately 60%
Grade C = approximately 12

720
Grade B =: 100% — 729% — 289, .
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From the above figures, it is found that the maximum value of the
shipment is

$5(609% of grade A) |- $4(28% of grade B} + $3(12% of
grade C) — $30 1+ $11.20 - $3.60 = $44.80.

Similarly, the lowest value that can be set on the shipment is
that value for which grade A is the lowest and grade C the highest,
that is,

Grade A =— approximately 409%
Grade C = approximately 28%

68%
Grade B = 1009%,—68% = 32% .

From these figures, it is found that the minimum value of the ship-
ment is

$5(40% of grade A) - $4 (32¢; of grade 8) | $3(28% of
grade C) — $20 1 $12.80 - $8.40 — $41.20.

The value of the goods can then be fixed within the limits
$41.20 and $44.80.

4. Probable Errors of Various Statistical Constants. By ar-
guments which are too long and difficult to be developed profitably
in an introductory course, the probable errors of all the statistical
constants can be calculated. As an example, the method of deriva-
tion of the probable error of the arithmetic mean will be given in
the next section, although the theory is difficult at best and not
essential for a proper understanding of the use and application of
the result.

Since probable errors are of the very greatest importance in
the application of the theory of statistics to practical problems, a
few of them have been recorded below, together with some illustra-
tions.

(1) p.e. of the arithmetic mean, A, = .6745 ¢/ VN .

(2} p.e. of the standard deviation (normal distribution), o,
= .6745 o/V/2N = .4769 ¢/VN .

(3) p.e. of the observed probability, p.,
=.6745vVp, (1L —p,) /N .
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(4) p.e. of the second moment about the mean (normal dis-
tribution), M./N = .6745 ¢*/2/N = .9539 a2/ VN .
(5) p.e. of the third moment about the mean (normal dis-
tribution), M./N = .6745 ¢*v/6/N = 1.6522 /N .
(6) . e.of skewness = .6745v/3/2n — 8261/ N .
(7) 7p.e. of the sum or difference of two independent vari-
ables x and y — .6745\/«’ | o> where o, and o, are the stand-
ard errors, that is to say, the probable errors divided by .6745.

(8) If two variables x and y are correlated (see Chaptler
X), then the probable error of their sum or difference is

6745 \/Trﬁ_i;ET 0z Ty $o‘?’ ’
where 7 is the correlation coefficient.

For the probable errors associated with correlation coefficients,
see (a), section 6, Chapter X; section 3, Chapter X; sections 6, T,
8, and 9, Chapter XT.

Example 1. An industry desires to make a survey of the mean
weekly wage of 10,000 of its workers. Since a study of all the
workers is impossible, a representative sample of 400 workers is
selected. The mean weekly wage of the 400 workers is $30.00 and
the standard deviation $2.50. If additional samples were selected,
by how much would the results differ from the above sample?

This can be determined by getting the probable error of the
mean, which is
6745 ($2.50) /1/400) = .084 .

The mean weekly wage for any sample would then be given as
$30.00 = .084 .

Thus, one may conclude that if an additional sample of the
same size were made, the chances would be even that its average
wage would lie between $29.92 and $30.08.

Example 2. Calculate the probable error for the standard
deviation of the above example.

Qince o« — 2.50 and the number of items used in obtaining it
was 400, the required probable error is

4769(2.50,1/400) = .060 .
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This means that if the standard deviation for a similar group
of workers is calculated it will quite probably lie within the limits:
2.50 - 3(.060) = 2.68 and 2.50 — 3(.060) — 2.32.

Ezample 3. A student tossed ten coins 1024 times and found
that 5 heads appeared 260 times. What is the probability of toss-
ing 5 heads in a single throw of ten coing?

The empirical probability is p, = 260/1024 — .2539. Con-
sequently,

p. e. of p, = .6745+/[.2539 (1 — .2539) ] /1024 — .00917 .

This result can be used to calculate the probable error of the
frequency, since this probable error is equal to the product of the
total frequency with the probable error of the observed probabil-
ity. One thus gets

p. e. of 260 =1024 >< .00917=19.39 .

Since the a priori or expected frequency was 252, it is seen
that the observed value is within the probable error, and hence is
a very satisfactory number.

Ezxample 4. The following table taken from the U. S. census
for 1930 gives the number of women engaged in gainful occupa-
tion in various sections of the country. Is there a significant dif-
ference between labor conditions in New England and in the Moun-
tain section?

Total Female Female

Population Workers

New England 3,418,058 943,384
Middle Atlantic 10,744,622 2,643,177
E. N. Central 10,100,961 2,070,697
W. N. Central 5,267,138 948,084
5. Atlantie 6,127,071 1,476,624
E. 8. Central 3,787,352 829,430
W. 8. Central 4,646,581 864,264
Mountain 1,363,595 235,902
Pacific 3,307,034 767,232
Total 48,762,407 10,778,794

From the total figures it is seen that the average ratio of fe-
male workers to total female population for the United States is

p = 10,778,794/48,762,407 — .2210 .
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Letting # refer to the New England and y to the Mountain section,
the squares of the standard errors are calculated to be

o2 =pg/N,=. 2210 (1 — 2210) /3,418,058 == .0000000504
o == pg/Ny= 2210 (1 — .2210) /1,363,595 = = 0000001263 ,

Furthermore, the respective ratios in the two divisions are

v, = 943,384/3,418,058 = .2760 ,
py— 235,902/1,363,595 == . 1730 .

Consequently the probable error of the difference of the two ra-
tios, i.e., .1030, is

.6745 /.0000000504 - |- .0000001263 -= .0001 .

Since the difference between the ratios of the two groups is
far greater than three times the probable error, one can safely con-
clude that there is a marked difference in the employment status
of women in these two sections of the country.

PROBLEMS

1. In tossing a hundred pennies a student geis 62 heads. Do you Lhink
that he has used sufficient care to ohain a random foss each time?

9. A life insurance company founded upon the American Euwperience
Table has a thousand policies averaging $2,000 on lives at age 25. From the
experience table it is found that of 89,032 alive at age 25, 88,314 are alive at
age 26. Find the upper and lower values of the amount that the company will
have to pay out in insurance during the year.

3, A man buys 1,000 sacks of polatoes. He finds that from 1,000 polatocs
chosen {rom the sacks at random, 442 are of class A, worth $1.75 a sack; 2h2
are of class B, worth $1.50 per sack; 175 are of class C, worth $1.25 a sack:
and 181 are of elass D, worth $1.00 per sack. What are the upper and lower
bounds for the value of the potatoes?

4. A group of scientific men reported 1,705 sons and 1,527 daughters. Do
these figures conform to the hypothesis that the sex ratio is 1/27 (H. 1.
Rictz digcusses this problem in his Mathemntical Stutistics, Chicago, 19217,
p. 38. The figures are taken from the third edition of Awmerican Men of
Secience.)

5. The number of men and women in the censuses for 1920 and 1930
woere found to be as follows:

Men Women Total
1920 53,900,131 51,810,189 105,710,620
1930 62,137,080 £0,637,966 122,775,046

Are these two samples consistent with each other? Hint: Calculate the
probable error for each group. Within what limits would you place the sex
ratio?
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6. Are the data of problem 4 consistent with those of problem 57

7. Within what limits is your average for problem 8, section 3, Chapter
II1 correct?

8. What are the limits of error in the calculation of the standard devia-
tion for example 2, section 1, of this chapter.

9. Calculate the probable error for the coefficient of variation for table
(b), section 2, Chapter III.

10. What is the probable error for the second moment ahout the mean
for the data of the distribution given in example 2, section 1, of this chapter?

5. Derivation of the Probable Evror of the Mean. In a first
approach to the theory of statistics, one might find it profitable to
omit the derivation of the formula for the probable error of the
mean, since the ideas and the mathematics that underlie it are by
no means simple. However, the thoughtful student, after he has
acquired a working knowledge of probable error and its applica-
tion to practical problems, will wish to look deeper into the sub-
ject to see how one arrives at these formulas. It is to satisfy this
very desirable curiosity that the following development is given,
which is essentially a modification of a proof due to Karl Pearson.!

In order to derive the formula
p. e. of the mean == 6745 o/v/N ,
let a second sample of N individuals be chosen from, our ideal pop-

ulation (see the frequency tables of section 8) and its frequency
table be written as follows:

FREQUENCY TABLE FOR THE SECOND SAMPLE

Class Marks x, z, ] ....... Lo
Frequencies H fi+td, fotds | ceeneens f,+d,
where d,, d,, --------- , d, are deviations from the frequencies of

the first sample,

The relations existing between the frequencies of the two
tables must now be sought.

It will be clear that
d1+d2+"‘+dp:0 ’

1Biometrika, Vol, IT (19b2), pp. 273-281, in particular p. 274.
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because the sum of the frequencies of both samples is equal to N.
This means that the sign of some of the deviations must be nega-
tive, since the gain in the frequency for one class mark must be ac-
counted for by a deficiency in the frequency for another class mark.

If one frequency, f;, has a positive deviation, d;, it is reasonable
to make the assumption that this error will be distributed among
the other frequencies in proportion to their relative frequencies.
Thus, the total frequency, exclusive of the frequency of the jth
group, is N — f;, so that the portion of d; shared by the ith group
will be

R
N —f;

From this relation the following derivation is made:
d; fi o dag fifs
didj —— —_
N 1—(f//N) N fi[1—({;/N)] ,
or, since f;[1— (f;/N)] =o;° ,

d;?

O’j2

didy = — fifi - (5)

Returning now to the frequency distributions, the value of
the mean for the first sample is found to be

#1fy 4 #afs 4+ 25
N

A,

+

and for the second sample,
4, B ®) + @t d) bt Ut d)
N
2y dy -zl 4 - 4 20,
~ .

— A,

Calling the difference between the two means D,, one has

x.dy + 2dy + -+ - 24,

D1=A2‘-‘—‘A1: N

Now, taking m—2 new samples, so that there are m in all, the
standard deviation of the different values of A, the mean, for this
random set is sought. If it is assumed that the true mean does not



THE NORMAL FREQUENCY CURVE 201

differ greatly from the mean of the first sample, it is seen that the
standard deviation for the m samples will be

. D2 D2geenen + D,?

"

04

where D, means the deviation of the mean of the kth sample from
that of the first, i.e,,

Dy=4,—A4, .

Denoting the deviations of the frequencies of the kth sample
from the frequencies of the first by

d,® , d,® e d s
one has
N2D 2= 2.2d® | 2.°d,2 - - -} 22,2.d,d, - 22,00.d,d,
4,
N2D.? == [2:d,®]? + [2,d.P]2 - | 2z,2,d, 2,
+ 2x.2:d, P dy® - ,

N2D,? == [2,d,™]2 & [,d™]2 L - b 20 ,2,d, 0 d ™
+ 2@ 2o d, M )

But one has the following values:

d12+ [d1(2)]2|+__. + [dl(m)]z
m _ =
d,? + [dy ]2 ... - [dym]2

m

Ulngl(l—fn/N) ’

= gy’ = 2(1—f2/N) ’

ete.
1t follows from formula (5) that
tids = — (d,*/N o®) [if2
dld2: - (dzz/N Gzz)flf‘z ]
ete.

Substituting these values above and adding, one obtains

N*(D24 D2+ D2 4 ... Dy2)

= &y%0® b TPy e —+ 2,2, (— f2f2/N)
—I— 2x1$3(—f1f3/N) + e
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=22, (1 — f1/N) + @z (1 — fa/N) -
+ 202 (— fifo/N) + 20205 (— fifs/N)Y +- -

=, s T
et wfe o @ 20w 4 2aamefafs o ]
N

= x12f1 + a:ffz + ..... __F xpgfp . [xlfi + xzf.z;— ces _!_ xpfg]2 .

Referring to formula (3), section 5, Chapter II1, and selting
X = 0, it is seen that the last value obtained above is identically
equal to N ¢, where ¢ is the standard deviation of the first sample.
Therefore, one obtains the result
2z
I\T"’UAZZNU? s OT o;f":f— .

From this it follows that the probable error of the mean is
equal to
T

r

VN

6745 o, = 6745
which is the desired result.

6. A Measure of Goodness of Fit. Suppose that to some fre-
queney histogram derived from empirical data a normal frequency
curve had been fitted by the method of this chapter and various
statistical constants belonging to it had been calculated.

It would be very desirable to have a measure of faith in the
results derived and, in particular, in the theoretical curve which
had been fitted to the histogram. It would, of course, be perfectly
possible in a mechanical way to fit a normal curve to any frequency
table whatsoever. However, it would obviously be very foolish to
try to fit a normal frequency curve to data that did not appear rea-
sonably normal.

One important contribution to modern statistical theory is the
ingenious method that was devised by Karl Pearson to measure
the goodness of fit betwecn empirical and theoretical data.

1This method was devised in 1900, See Karl Pearson: On the Crilerion
that a given System of Deviations from the Probable in the Case of a Corre-
lated System of Variables is such that it can be reasonably supposed to have
arisen from Random Sampiing, Philosephical Magazine, Vol. 50 (bth series)
(1900), pp. 167-175.




THE NORMAL FREQUENCY CURVE 203

Let P, denote the probability that, in a random sample, devia-
tions as great as, or greater than, the deviations between the em-
pirical or observed and theoretical frequencies will occur. Such a
probability, if it could be calculated, would be an excellent meas-
ure of faith in the agreement of the theoretiecal frequency curve
with the empirical histogram to which it has been fitted. It seems
appropriate to refer to P, as the “Pearson Probability.”

Let the theoretical and empirical frequencies be recorded sSyme
bolically in the following table:

Class Marks

! xy ][ x, i £ f ....... / x,
I — |
Theoretical Frequencies ‘ F, L F, F, ‘ ....... ‘ B,
—_— el LU p—" | i
Empirical or Observed ' | }r E
Frequencies \ fi ’ fs l fs \ ....... ‘ fa

Supposing that none of the Fy’s are zero, let the value of the
following series be calculated.!

= AFy—f1)*/F\ - (Fo— f.)?/F; -+ (Fs — f;)/F,
+ """" +(Fﬂ—fn)2/Fn .

If ¥* == 0, which means that the calculated and observed fre-
quencies coincide exactly, one would then expect to find that
P, =1 and, for »* very large, that P, was very nearly zero.

The function which Professor Pearson derived by rather elab-
orate means is the following:

(1) Ifniseven,

2_ ¥ xa xn_s
P,—=—1-—2I(y) |— ex2| L. ,
’ \/n [1+1-3+1-3-5.-.(4z“3)

(2) If nis odd,

% 1 ]

e x
P,—ex [1+2+2'4+ +2.4.6---(')b——-3)

1The symbol x is the Greek letter “chi,” and the Pearson criterion is often
referred to as the “chi square test.”
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where I(y) is the value of the area function discussed in section
1 of this chapter. '

Ag the values of this function are very tedious to calculate,
they have been recorded for various values of n and »* in Table VIII
at the end of this book. The original table was calculated by W. P.
Elderton in Biometrika, Vol. 1 (1902), pp. 155-163, and recom-
puted in 1932 by Anne M. Lescisin of the statistical laboratory of
Indiana University.

It should be especially emphasized here that the theory of the
“chi test” limits its application to data that are nearly normal. One
should also exercise care in the handling of small frequencies, since
it is in these extreme cases that the efficacy of the test seems to
fail. A few examples follow:

FExample 1. Test the following graduated frequencies for good-
ness of fit;

Class Marks 1 3 4 5 6 7 8|9 (10 (11 112 13

S [ [ S

2
Theoretical 2[.7121)]50] 93| 136|154 |13.6 | 9.3 5.0 2.7 \.7 2
0

N
L
|

0'1

QObserved 0 4 6 |10 | 12 18 14 8 3 2

From these values one calculates

r=(2—0)2/2+ (7T—0)2/7 - (21 —4)?/21
+ot(2—12,

= 8.63

and, since n == 13, it follows by interpolation from Table VIII that
P, = .733317. This means that in approximately 73 cases out of 100
a random sample will give deviations that exceed those of the ob-
served data, which shows that the theoretical curve is a good rep-
resentation of the observed data.

Ezxample 2. The data for Table (b), section 2, Chapter III (4-
6 months prime commercial paper rates), have been graduated in
the illustrative example given in section 7 of the preceding chap-
ter. The following frequencies are obtained. Does this represent
a good fit?
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Class Marks 0 J 1 2 3 4 5 6 i
I r—————

Graduated Frequencies 3 9 18 26 25 16 7 2

Observed Freoguencies 2 8 ’ 23 ‘ 30 20 13 6 6

It will be noticed that »? will receive an abnormal addition if
the last frequency is included, since (6—2)?/2 — 8. Therefore,
omitting this value, one has y* = 4.15407. Since n — 7, it is found
by interpolation in Table VIII that P, = .65621, which means that
in 66 times out of a hundred a poorer fit than the one under dis-
cussion is to be expected.

The work of calculation can be arranged conveniently in tabu-
lar form as follows:

Graduated Observed
Class Marks | Freguencies Frequencies| (F;, —f;) | (F; —f)2 | (F,—f)2/F;
F, fi
0 3 2 1 1 .33333
1 9 8 1 1 111711
2 18 23 -5 25 1.38889
3 26 30 -4 16 .61538
4 25 20 5 25 1.00000
5 16 13 3 9 .56250
6 7 6 1 1 14286
x2 = 4,15407

Example 3. When the data of the first table in section 1, Chap-
ter VII were graduated by means of the ordinates of the normal
curve and then by the area under the curve, it was found that
slightly different results were obtained. Determine which of these
graduations fits the data better.

The following frequencies have been given:

Class Marks 01 2 3 4 5 6 " 8 910
Observed Data (f) 1 10 45 120 210 252 210 120 45 10 1
First Graduation (F,) 2 11 43 115 212 259 212 115 43 11 2
Second Graduation (F,) 2 12 45 117 208 257 208 117 45 12 2
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Calculating 72 for the first frequency data, one finds y* =
3.02698; similarly, for the second, »* == 3.08730. These two values
for n = 11 lead to the Pearson probabilities, P, = .9805 and P,
= .9784 respectively, which means that there is little to choose be-
tween the two graduations and that they are both excellent fits.

PROBLEMS

1. Ten coins are tossed 1024 times and the following frequencies ob-
served:

No. of heads 0o 1 2 3 4 5 6 7 8 9 10

Frequencies 2 10 38 106 183 257 226 128 59 T 3

How does this compare with a normal distribution?

2. 1s the theoretical frequency curve which you ohtained for problem 4,
section 7, Chapter VII, a good fit to the observed data?

3. Test for goodness of fit the data which you have graduated for prob-
lem 7, section 7, Chapter VIL

4, Test the following data for goodness of fit (Volume of Trading on

New York Stock Exchange, expressed as percentage of straight line trend,
1897-1913) :

Class Marks 0 1 2 3 4 5 6 7 8 910

Observed Frequencies 11 35 50 48 24 15 9 7 3 1 1

Theoretical Frequencies 15 29 40 43 35 21 9 3 1 0 0

Here, N = 204. Is the th_eoreticarl frequency curve a good fit t;) fhe obseﬁ;ed
data?

7. The Theory of Evrors—Least Squares. One important ap-
plication of the normal curve has been made in the theory of errors.
Suppose that, in a set of n observations, errors have occurred whose
magnitudes, arranged in increasing order, may be represented by
dy, gy vovers , dn. If the number of observations is supposed to be
very large and the errors equally likely to have occurred with either
sign, then it is reasonable to assume that the frequencies f,, fs,

., fu, attached to the magnitudes d,, d,, - - - - - , dy, Will form a
normal distribution. It follows from this assumption that the prob-
ability that an error of magnitude di should have occurred in a
single observation is

1 —d@/2e
—€ (6)

o\ 2n

Pp=
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The thoughtful reader will not too readily accept this state-
ment, for it may very justly be asked why errors should follow the
law of normal distribution. The answer is that errors do not al-
ways follow the normal law, but that in a large number of cases,
they are observed to do so. In any event, when, in ignorance as to
the true distribution, some assumption must be made, this secems
a reasonable one. It is pertinent, perhaps, to quote in this connec-
tion a famous remark once made by G. Lippman to H. Poincaré:
“Everybody believes in the experimental law of errors; the experi-
menters because they believe it can be proved by mathematics, and
the mathematicians because they think that it has been established
by observation.’

The following illustration may give some experimental confi-
dence in the assumption. W. J. Kirkham made a hundred sets of
1024 tosses of ten coins and recorded the frequencies which corre-
spond to 0 head, 1 head, 2 heads, 3 heads, etc. For five heads the
following frequencies were observed:

269; 258; 279; 225; 245 287; 244; 260; 253; 237; 253; 231; 270;

264; 269; 240; 248; 259; 260; 251; 265; 250; 244; 261; 266; 283;

2T4; 262; 266; 274; 252; 251; 253; 232; 250; 266; 246; 230; 239:;

264; 276; 261; 252; 265; 245; 263; 270; 260; 254; 247; 242; 268;

264; 252; 250; 273; 269; 253; 246; 249; 273; 240; 250; 258; 253:

262; 247; 232; 259; 279; 2062; 254; 243; 247; 291; 254; 247; 240;

264; 246; 256; 263; 290; 280; 257; 252; 250; 268; 250; 255; 255;

253; 240; 24b; 250; 253; 252; 242; 254; 259,

The expected value in every case was, of course, 252, so that
the deviation from this number measures the extent of the error
made. Taking as the range of error the deviations from — 27 to
-+ 27, the errors can be classified in the following frequency table:

Magnitude .
of Error Frequencies
Below -27 0
—27 to -22 2
—21to -16 3
~15t0~10 8
- %to- 4 14
-3to 3 28
4to 9 13
10to 15 13
16to 21 9
22to 27 5
Above 27 5
Total 100

iH. Poincaré: Caleul des probabilités, Paris, 1896; second edition, 1912,
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It is at once seen that the mode is approximately 0 and the en-
tire distribution is essentially normal with a slight skewness to the
positive side.

Returning now to equation (6) and the distribution of errors,
it may next be noticed that the probability that, in two observa-
tions, errors of magnitude d; and d; should both have occurred,
since they are the errors of independent observations, must be

. ;200 L i 2al
Pu==z(1/o\/27) e (1/6n/22) ¢

—(d)2 - d,2) /20

e (1/0’\/2;1)726

In general, the probability that all the = crrors will oceur,
will be
. —dptdr e d 2/ 200
P-= (1/0\.-/231) g

Suppose that several individuals have made a sct of indepen-
dent observations and it is required to determine which of these
sets is the most accurate. Tt is clear thal the answer will be that
set for which P has the largest value. This will be the set of cor-
rors which makes the exponent of ¢ 2 minimum, or in other words,
the values for which

dlg jl“ d:ﬂg e f{* d?lz

has the smallest vaiue. This is the fundamental assumption in the
so-called Methad of Least Squares, which will be applied in the the-
ory of curve filting in the next chapter.

One very important application immediately comes out of this
assumption. Suppose that n observations have heen made on an
object whose true value is x and that these observations give the
values @y, &, ---, @,. What is the most probable value of %7

This, by the methed of least sqguares, is that value of » which
makes the following expression a minimum:

= (r—a)? |- (x—a))*+ -+ (x—a,)? .
Squaring and collecting ferms, one gets

d*==ne® —2(a; + @ - -+ @) &+ a,° |- @

But this expression is a quadratic polynomial in « of the form
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ax:-+bx +ec, a>0,

which is known to assume its smallest value when x is equal to
— b/2a.’
In the present case this gives us the very neat result

au"i—a'z—i_”'"l‘a'n

n

&

¥

or in other words;

According to the theory of least squares, the most probable
value of a series of observations is the arithmetic mean of the ob-
servations.

Example: Using the first twenty-five frequencies in the coin
tossing experiment recorded above, decide whether or not any bias
entered, due either to irregularities in the coins used or to the
method employed in tossing them.

The theoretical frequency expected was 252 and the probable
error, using the methods of section 3, is easily calculated to be

.6745+/252 (1 — 252/1024) =9.29 .

But, from the resulit just obtained, the most probable frequency
is the average, and this value, calculated from the first 25 num-
bers recorded, is equal to 255.52. The probable error of the mean

computed from the formula p. e. = .6745 ¢//N is found for the
present case to be 9.29/5 = 1.86. Since this error is approximately
half of the difference hetween the calculated and the theoretical
value, one is justified in suspecting a slight bias in the experiment.
This bias is further emphasized if the average for the entire 100
values is taken.

PROBLEMS

1. In the coin tossing experiment referred to above, the following fre-
quencies for the case of four heads were recorded:

220; 195; 197; 206; 209; 200; 227; 201; 195; 209; 199; 217; 227;
207; 208; 233; 215; 232; 184; 220; 188; 225; 205; 200; 179; 187;
200; 212; 206; 210; 237; 221; 230; 232; 224; 217; 206; 209; 208;
205; 226; 204; 222; 239; 198; 205; 203; 226; 196; 226; 213; 206;
189; 218; 200; 198; 225; 199; 195; 211; 205; 226; 215; 219; 196;
204; 198; 186; 208; 208; 211; 213; 219; 212; 211; 210; 199; 221;
187; 209; 204; 202; 190; 172; 212; 211; 210; 200; 215; 202; 204;
203; 200; 202; 232; 212; 233; 224; 238; 216.

1See formula (3), section 7, Chapter II.
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Calculate the deviations from the theoretical frequency 210 and determine
whether or not they form a normal distribution. Also calculate the most prob-
able value, and by means of the probable error of the mean decide whether
or not bias existed in the experimental determination of the frequencies.

2. Three individuals measure a stick alleged to have a length of one
meter (39.37) inches. FEach takes five measurements. What is the most re-
liable set of measurements if the following are the recorded valnes?

E

A 39.37 39.38 39.40 39.36 39.35
!
\

B 39.37 39.37 39.38 30.38 39.38

C 39.35 39.38 39.29 39.36 39.37

3. What is the probable length of the stick of the above problem?

4. The following figures are the frequencies cbtained in the first ten
samples of the coin tossing experiment deseribed above for the cases three
heads and seven heads respeetively:

Frequencies (3) 107 110 120 118 119 113 129 117 117 114

Frequencies (7) 112 182 112 181 118 101 112 115 132 134

Which set: of frequencics is the most consistent? What is the most prob-
able value for each? Do the two sets differ from one another in a significant
manner?

5. Two persons, A and B, fitted a curve to the data recorded below,
but their computed values did not agree. From the following results deter-
mine which one was wrong:

Data f 168 17 12 18 25 29 36 43 51 63 81 117 166 239 349

A’s ealculation 144 59 17 4 8 21 37 49 61 71 86 111 156 233 357
B’s calculation 145 55 14 4 13 30 48 63 73 81 91 111 152 229 3568

For an able discussion of the problems of sampling theory and
interesting applications to the control of quality of manufactured
articles, see W. A. Shewhart, Economic Control of Quality of Man-
ufactured Product, New York, 1931.
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8. The Theory of Small Samples. In section 5 it was shown

that the standard error of the mean is equal to ¢/\/IN . Since o is
seldom known a priori, but must be computed from the data, this
quantity itself is subject to an error which diminishes as N in-
creases. Hence if N is not sufficiently large, let us say a number
less than 20, then it is reasonable to expect that the standard error
of the mean may have a significant error.

“Qtudent” in a paper of considerable mathematical elegance
examined this problem of small samples and determined the dis-
tribution of the ratio

XA -
t: \/ﬂ,

8

where A is the irue arithmetic mean, X the mean determined from
the small sample, s the standard deviation determined from the
sample, and » is one less than the number of items in the sample,
thatis, n =N —1.*

The distribution for ¢ found by “Student” was not the normal
frequency law, but the following one, which is seen to depend upon
the size of the sample:

{in—1)1! 1
”:[/Z(% )] _(1+ tg/n)—?;(at+l) (7)

- [Ya{n—2)1! Van

Graphs of this function are given below (Figure 34a) for
n = 2, n == 10, and # = «. The function 4. looks like, and in-
deed is, the normal frequency function
1

Van

This fact may be established by replacing the factorials In
(7) by their Stirling approximations (section 4, Chapter VII) and
then finding the limiting value as n becomes infinite, The student
may thus verify that when = is sufficiently large, the function ¥,
is given approximately as follows:

Un 00 (1-—2//m) = (1—1/n) ™ (2a¢)
DL B2/m) o] (L 2/m)

*“The Probable Error of a Mean,” Biometrika, Vol. 6 (1908-1908), pp.
1-25. The work of “Student” has been greatly extended by R. A. Fisher and
others. For an admirable account of the problem and its development the
reader is referred to P. R. Rider: “A Survey of the Theory of Small Samples.”
Annals of Mathematics, Vol. 31 (second series}, (1930), pp. H77-628. Strictly

speaking “Student” determined the distributicn of &/ Vn.

emitt .

Y
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Noting the limits

lim (1 —1/n}*=¢*, lIm (1 —2/0)"=1¢" ,

e oo

lim (14 &/n)-"*=e* ,
one derives immediately the limiting value

. 1 -
limy, =9y, =——¢'* .
n=ca Van

In order to apply the theory to practical problems it was first
necessary to compute tables of the area under the curve y, for dif-
ferent values of n. Such a table was first computed by “Student”
in 1908 and later extended by him to other values. A brief table of
the area under the curve y,, computed in the statistical laboratory
of Indiana University, is given in Table XTI at the end of the book.

In order to conform with the notation used for the area func-
tion of the normal curve, the symbol I,.(f) has been used to desig-
nate the area under ¥, between the values 0 and ¢. Obviously from
the graph I, (—%) = I.(f) and I,(t) is equal to 7 (f) as defined in
the first seetion of this chapter.

FIGURE 34a.

The following data, showing the average yearly mortality in
automobile accidents per 100,000 population in 30 American cities
for two three year periods (Data compiled from the Statistical
Abstracts of the U. S.), will be used in illustrating the application
of the new frequency curves:

The problem proposed is to determine whether or not there
was a significant increase in the mortality in automobile accidents
from the first period to the second.
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| Rate per Rate per
| 100,000 for 100,000 for Difference
Cities | 1924-1926 period 1931-1933 period (2)- (1)

; 1 (2)
Albany ! 29.4 30.2 0.8
Baltimore { }33 25.0 gg
Boston I X 18.7 —1.
Buffalo | 22.6 24.5 1.9
Chicago l 21.1 95.8 4.7

|
Cincinnati | 25.1 ‘ 30.3 5.2
Cleveland ! 25.5 | 29.0 3.5
Columbus ‘ 24.0 i 46.9 2.9
Dallas 26.6 98.5 1.9
Denver l 15.2 | 50.7 15.5
Indiznapolis ‘ 215 34.1 126
Jersey kCity igg 17.2 gg
Milwaukee . 16.5 —d
Minneapolis { 181 21.3 3.2
Nashville ‘ 28.0 19.4 14.4
Newark ' 23.8 227 —1.1
New Haven ‘ 242 | 30.5 6.2
New Orleans | 19.9 24.0 4.1
New York [ 17.8 16.9 —0.9
Philadelphia , 15.0 179 2.1

i
Pittsburgh | 27.2 25.8 —1.9
Providence ‘ 24.6 19.9 —4.9
Rochester X 17.5 18.4 0.9
St. Louis 23.1 19.5 —-3.6
Salt Lake City 27.7 35.8 81
San Francisco 207 20.6 -0.1
Seranton 20.9 25.4 4.5
Toledo 216 35.6 14.0
Trenton 26.8 411 14.3
Yonkers 14.6 16.2 1.6

| |

Average (A) 21,89 26.02 4.13

Standard Deviation (¢} 4.08 7.35 570

In order to illustrate the theory of small samples, suppose that
a sample of only five cities is given, let us say, the data for Dallas,
Minneapolis, Philadelphia, Salt Lake and Scranton. Using these
data one computes for the difference (2) —— (1) the following

values:
Xe=41, 5=2,14 .
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Since the problem is to determine the significance of the in-
crease in morlality rather than the significance of the difference
between the two periods, one now assumes that the true mean of
the difference is zero, that is, A = 0, and then seeks to determine
the significance of the positive difference X — 4.1. Thus one com-
putes

te= [ (41— 0) VB —1)]/2.14 — 3.83 .

By an interpolation in Table X1 the following value is found
for the probability that the mean of the difference is positive:

Ppe=.5+ I(3.83) ==.5 4 49068 -= 99068 .

Hence the conclusion is reached from the small sample that
the odds are approximately 99 to 1 that there was an increase in
mortality from the first period to the second.

If the entire sample is considered, this probability is measur-
ably increased. Thus for the sample of N == 30 items one compufes
¢ = [4.13 X v29]/5.70 == 3.90 and from the table for I (¢) [Table
VII] concludes that the probability of a significant increase is

pr=.5 - I (3.90) == 99995 .
PROBLEMS

1. In “Student’s” original paper the following example was employed:

The sleep of 10 patients was measured for the effects of two soporific
drugs referred to in the following table as (1) and (Z). TI'rom the duta given
below show that there is a significant difference belween the effects of the two
drugs.

Additional hours of sleep gained by use of soporifics (1) and (2)

Difference | Difference

Patient| (1) (2) (2} - (1) 'Patient | (1) (2) | (2) - (1)
1 4+ 7 1.9 1.2 6 3.4 4.4 1.0
2 —1.6 | 8 | 2.4 7 8.7 5.5 i 1.8
3 | — .2 1.1 1.3 8 .8 1.6 8
4 —1.2 l 1 1.3 9 G 46 4.6
5 — 1 | — .1 0 10 2.0 3.4 1.4
Mean Wi 2,33 1.h8
o 1.70 1.90 1.17

2. Choose at random a sample of automobile deaths for 10 cities in the
data of the illustrated example and compute the significance between the two
series as indicated by the sample.



CHAPTER 1IX

CURVE FITTING

1. The Problem of Curve Fitting. The problem of curve fitting
is the converse of the problem of graphing or curve plotting. In the
latter problem the equation of a curve is given and the geometrical
figure required. In the problem of curve fitting one i3 given o sel
of points which define more or less approximately a geometrical
figure and the equation of a curve is then sought which will exactly
or approximately pass through these points.

The methods employed previously (See Chapters II, V, and
VII) to determine a secular trend and to find a curve of normal
distribution suitable for the representation of given frequency data
are examples of curve fitting. It is the extenmsion of these ideas
which will be developed in this chapter. Two principal methods
are in use for making the necessary calculations. The first is called
the method of least squares, the second the method of moments.

To begin with, assume that a table of data has been given to
which a curve of best approximation is to be fitted. These data
may be represented as follows:

(1)

Unless otherwise specified, the values of x are to be regarded
as equally spaced, ©;; — &: = Q.

Obviously, the first problem that arises is that of finding the
proper kind of curve to use. What geometrical figure will give
a reasonable approximation to the series? Since there are many
analytical formulas, graphs of which resemble one another, it
is a matter of judgment and experience to decide which one to use.
Sometimes the nature of the problem itself suggests the equation,
but more often it is a matter of choosing the simplest formula that
promises to give a reasonable approximation.

Lacking any a priori basis for a choice of curve, one can often
find a guide in certain characteristic properties of a table of differ-
ences computed from the data.

—2156—
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Definition. By a difference of the first order of a function f(x)
at the point z will be meant

Af(x) =f(x - d} —f(x) ;
by a difference of second order,
Af (x) = Af (x + d) — Af(x)
=f{x+2dy —2f(x+d) +f(x) ;
by a difference of n-th order,
A (x) == A" f (x + d) — A f (%)
== f(x -+ nd) — Cif (2 - nd — d)
“+nCof (4 nd — 2d) — -+ - (-1)*f(x),
where ,C, = o is the 7-th binomial coeflicient.
(n~—r) Ir! ‘

A table of differences can be conveniently represenied as fol-
lows:

Tabular |
A:rgumentl Value ‘ A | A2 \ A3 l A4
............... [ e L ]
o—38d f(w-ﬂ3d)L | d2f(a—ad) | | A4 (z—5d)
Af (z—38d) | A% (x—4d) |
z—2d |f(z—2d) | | A2f (a—3d) | ] MAf (x—4d)
L Af (z—-2d) | | A%f (x—3d)
v—d | f(a—d) | | A% (z—2d) | | A% (z—3d)
| Af @—d) | A% (z—2d)
z fo) | Az —d) | | A% (o—2a)
O Af(e) - A5 (a—d) ‘
e+d | flztd) | LA A4 (v—d)
W Aftz+d) | | A
x+2d Flz+2d) A (z+Hd) ! ! Aif (=)
 Af(wr2d) | | Afetd)
x+3d  fzt8d) | A () L Af(wtd)
|

PR e mamnre . P R I R

There will now be listed a few equations which have proved
useful in the application of curve fitting, together with a deseription
of the characteristics of data to which they are applicable.

(1) 'The straight line,
Y =0y -} Gk



CURVE FITTING ' 217

1o be fitted to data for which the first difference is a constant.

(2) The parabola,
Y ==y + Ox 4 asx?
to be fitted to data for which the second difference is a constant.

(3) The general polynomial,
Y ==+ G -} QX A= oo + Gna™
When n—1, one has the straight line; # -— 2, the parabola; n—3,
the cubic; n =4, the quartic or bi-quadratic; n=2>5, the quintic;
n = 6, the gextic; n = 7, the septimie, ete.
The general polynomial of degree = is to be fitted to data for
which the n-th difference is constant,
(4) The simple exponential curve,
y=ar* ,or logy=logae 3 xlogr ,
to be fitted to data for which the first difference of log ¥ is a con-
stant.
(5) The exponential curve,
Y= ;¢ a,e”
to be fitted to data for which the points {¥:i../%:, ¥%i./%:} lieon a

straight line. This is seen to be the case if one considers the equa-
tions

Yire/Yi == (Gd+ eNYin/(y:) — 1,
where d is the class interval.

(6) The logarithmic curve,
Yy=—ua, -} alogx ,

to be fitted to data for which 4y tends to approach —k/x as z in-
creases, where & 18 a constant.

() 'The simple parabolic curve,

9 == ax®, or log y=Iloga-}-blogzx ,

to be fitted to data which form a straight line on double logarithmic
paper (See example 2 in section 3).

(8) The logistic curve,

y=Fk/ (14 be)

to be fitted to data representing growth.
These various curves are illustrated in Figure 35.
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FIGURE 35. Various types of curves, For the straight line (Equation 1),
4, is negative. In the parabola of Equation 2A, a, is positive, in 2B nega-
tive. In the exponential of Equation 5A, a, and a, are the same in sign,
a, > 0; in 6B, a, and &, are different in sign and a, > 0. In the two curves
of Equation 7, in (1) & < 1,in (2) b > 1.
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2. The Method of Least Squares. Suppose, now, that a choice
has been made of the proper curve to fit to the data, and suppose
that it contains n arbitrary constants. This can be stafed symboli-
cally by writing the equation of the curve as follows:

y:f(xja’lya"zj""yan) .

How are the constants to be determined? One method in com-
mon use is that of least squares. The fundamental principle of this
method is that the constants are to be so determined that the sum
of the squares of the deviations of the empirical values from the
eorresponding ordinates of the curve 18 to be made as small as pos-
sible (See Chapter VIII, section 7). Referring to Figure 36, one
sees that this statement means that the sum,

is to be made a minimum.

The problem of actually determining the value of the constants
aceording to the principle of least squares is, in the general case, a
very difficult one to solve. However, great simplification is intro-
duced if the assumption is made that the constants enter linearly,
in other words, if ¥ = @A, ()L a,4,(x) -}--- -+ a, A, (x) , where
A, (%), A.(z), ete., are known functions determined upon when the
choice of a curve was made. For example, if one had decided to fit
a straight line to the given data, then one should have had 4, ( 2} =
1 and A4,(x) = «; if one had decided upon the exponential curve,

FIGURE 36.
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then 4;(x) = ¢*, and A;(x) — e~ ; 1f the logarithmic curve, then
A (x) =1, and 4,(x) =log z.

Before proceeding to applications, it will be desirable to have
a literal solution of the problem, and for the sake of simplicity the
case of two unknowns only will be considered. The general case
follows without essential alteration.

The problem to be considered, then, is that of fitling a curve
of the form,

Y==a,4,(x) + a.Az(x),
to the following set of p points:

Y Y, Yo Y3 ses Yp

If, in the equation just written down, x and y are replaced suec-
cessively by the values given in the table, the following set of p
equations will be obtained from which the values of a, and «. are
to be found;

¥ =0 A, (2,) + wAs(2)
Y — a4, (952) + azAz (xz) ’

yp == CL._A1 (mp) "l" a/2A2 (xﬂ) *

It will be recalled from section 5, Chapter II that the problem
there presented itself of determining the most probable value of
two constants from a set of more than two simultaneous equations.
The method which was then employed was stated without proof. It
is now possible to explain the reason for the process used in the
determination of 1his most probable value. Thus, confronted by p
equations in two unknowns, it is clear that, in general, values of a,
and @, cannot be found which will satisfy the entire system. Con-
sequently, it is necessary to determine the most probable values.

With this object in view, the sum of the squares of the differ-
ences of the right and left hand members of the set of equations
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are now found and the following quadratic expressions thus ob-
tained:
D?* = {y, — [a, A (x,) - (A, (-7/'1)]}2
+ {y. — [, A4 (22) + @;4,(22)]}2
‘l" tet —l_ {yp — [anl (xp) "I‘ aaAz (xzr)]}z .

Expanding each term of this square and collecting the coeffi-
cients of a,, one obtains the following quadratic expression in @, :

D?— {A12 (x,) + Az () AR + A12(:Ep) }a’lz
—2{4,(x )+ A (@)Y Ao e - + A4, (x) Yy
+ [Al(wl)Ait (x1) "‘{‘*’ A, (xz)A'z (.’Uz) + """ + Al(xp)Az(xp) ]a'z}aq

-}- other terms which do not contain a,.

It is now recalled from section 7, Chapter II that the minimum
value of the quadratic expression,
y=ar’+br ¢,

is obtained when 2 =—= —b/2a.

Applying this result to the quadratic expression above, in which
@, is regarded as the variable quantity, one then finds as the most
probable value for a,,

@ = {A:(2) 4 A (@) 9 + - +A: (%) Yy
4+ [A: () A (z) + Ay () Az (22} -+
- A, (xp)As(xp)]afz}/{Alz(xl) -+ Az(x) -
+ Al (2} . (2)

This equation ean be greatly simplified in formal appearance
by use of the following customary abbreviation:

[A:A] =Ai(m:) A () - A2 A, () -+ Au(e)) 45 (x5}
[Ay] =A@ -+Ai@) e+ A2 Yy

where ¢ and § may have either of the values 1 or 2, Making use of
these abbreviations, equation (2), by transposition, will become,

[Ale]a'l"{“ [AIAz]az: [Aly] .
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If the second constant, a,, is treated in a like manner, a second
equation is obtained which, together with the one just written down,
forms a set of two linear equations from which @, and a, can be
determined by the ordinary method of algebra. The name of nor-
mal equations has been applied to this system, which, for the special
case under consideration becomes,

f4.4,]a, + [AA,]a, = [Ay] ,
[A2A1]a1 -+ [4.4.]a, = [Azy] . (3)

The generalization to the case where n arbitrary constants ap-
pear in the least square curve, i.e., where

y=a, A, (x) } .4, (x) 4----.- +a,d.(x) ,
is easily made, and one obtains for the normal equations in this
case the following system:
[A1A1-’ a, —l— [AlAz]a"z ‘l" T ‘+‘ [AlAn]a'n = [Aly] ]
[AzAJ,]aq “[— [A2A2]a'2 + s + [AzAn]an = [Az'y] ’ (4)

[AnAl] @y + [AnA2]a'2 + e + I:Aﬂ.An]am - [Any] .

The application of the theory just developed to actual data can
best be illustrated by examples, a few of which follow.

3. Examples Illustrating the Method of Least Squares.

Ezample 1. The following table gives the fire losses in the
United States in millions of dollars over a period of eleven years.
Fit a straight line to the data.

Years & 1916 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

Fire Losses

172 258 290 259 321 448 495 507 535 549 570

Since a straight line is to be fitted to these data, the problem
is that of calculating the constants a, and @, in the equation y=a,
-+ a,¢. Hence, the functional multipliers are A4, (z) = 1 and A4, (x)
==, since these functions are the coefficients of the constants a,
and e, respectively.
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When the obvious simplification is made of changing to posi-
tive integers for class marks instead of using the year numbers,
the work of calculation can be tabulated as follows:

Class |
Years | Marks|Losses| A, (2} | A, (z) | Ay Ay | A4, |44, | A4,

(=) | ()
1915 1 | 172 1 1 172 172 1 1 1
1916 2 ! 258 1 2 258 516 1 2 4
1917 3 | 290 1 g 290 870 1 3 9
1918 4 | 259 1 4 259 1036 1 4 16
1919 5 | 821 1 5 321 1605 1 5 25
1920 6 | 448 1 6 448 2688 1 6 36
1921 7 | 495 1 7 495 3465 1] 7 49
1922 g8 | 507 1 8 507 4056 1 8 64
1923 9 | 535 1 9 535 4815 1 9 81
1924 10 | 549 | 1 10 549 5490 1 10 100
1925 11 570 § 1 | 11 570 62170 11 121
Totals, | |4104 | 30983 | 11 | 66 | 506

From the totals one obtains the values [4.4,] = 11, [4,4,] =
TA,A,] == 66, [4.,4,] = 506, and these substituted in the normal
equations vield the system,

11, - 660, — 4404 ,
664, -+ 5060, — 30983 .

Caleulating a, and ., one obtains ¢, — 151.69 and a. — 41.45.
The desired straight line thus becomes,

¥ =151.69 -} 41.45% .

The following table shows the closeness of agreement between
the observed and calculated values. This agreement is shown
graphically in Figure 37.

x 1 2 3 4 b 6 7 8 g 10 1

y (observed) 172 258 290 259 321 448 495 507 535 549 570

¥ (calculated) 193 235 276 317 359 400 442 483 525 566 608
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Example 2. An interesting illustration of the use of the para-
bolic curve y = ax?, is found in the problem of the distribution of
incomes. The so-called law of Parelo, an empirical assertion made
by V. Pareto (1848-1923) in an attempt to formulate a mathemati-
cal expression which would deseribe the frequency distribution of
incomes in all places and at all times, closely, elegantly, and, if
possible, rationally, states that, if x is the size of the income and
9 the number of people having that income or larger, then the para-
bolic curve will fit the income data and b will be approximately
—1.5.!

The law of Pareto as given here is only in its first approxima-
tion, a more general! formulation being

y:a‘ eﬁfi‘r(x'_{_ C)b y

where a, b, ¢, and d are constants. For a bibliography of the theory
and a summary of the various investigations which have been made,
one may consult C. Gini: “On the Measure of Concentration with
Special Reference to Income and Wealth.”

The following summary (condensed) is taken from the ex-
tensive study of incomes in the United States, published by the Na-
tional Bureau of Economic Research in 1921, for incomes in 1919.°

1See Pareto, Cours d’économie politique, Vol. 2, pp. 806-307. A discussion
of this law is given in The Economics of Welfare, by A. C. Pigou, London,
second edition, 1924, Chap. 2, Part 4, pp. 605-613, and in Income in the United
States—Its Amount and Dzstmbutwn 1909-1918, Vol. 11, National Bureau of
Economic Research, New York, 1922, pp. 344- 294,

2Cowles Commissio-n Research Co-nference on Economics and Statistics.
Colorado College Publication, No. 208, 1936, pp. 73-80.

3Income in the United States, Its Amount and Distribution, 1909-1919,
Vol. I, op. ¢if.
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Income Class Class Mark ‘ No. of Persons Amount of Income
(%) | {¥)
|
Under Zero - 200,000 $ -125,000,000
0- 500 250 1,827,654 685,287,806
500- 1,000 750 12,530,670 9,818,678,617
1,000- 1,600 1250 12,498,120 15,295,790,524
1,500- 2,000 1750 5,222,067 8,917,648,336
2,000 3,000 2500 3,065,024 7,314,412 994
3,000- 5,000 4000 1,383,167 5,174,090,777
5,000- 10,000 7500 587,824 3,937,183,313
10,000- 25,000 17500 192,062 2,808,290,063
25,000- 50,000 37500 41,119 1,398,785,687
50,000- 100,000 75000 14,011 951,529,576
100,000- 200,000 150000 4,945 671,565,821
200,000- 500,000 250000 1,976 570,019,200
500,000-1,000,000 750000 369 220,120,399
1,000,000 and over ! - - - 162 316,319,219
i
Totals 37,569,060 $57,954,722 341

Cumulative Distribution
Class Mark Percentage (Percentage)

{x) No. Amt, No. Amt.
--- B3 -.22 .53 -.22
250 4,86 1.18 5.839 .96
760 33.35 16.94 38.74 17.90

1250 33.27 26.40 72.01 44.30

1750 13.90 15.89 85.91 59.69

2500 8.16 12.62 94,07 72.31

4000 3.68 8.93 97.75 81.24

7500 1.57 6.79 99.32 88.02

17500 G 4.86 99.83 92.88
37500 A1 2.41 99.94 95.29
75000 04 1.64 99.98 96.93
150000 .01 1.16 99.99 98.09
250000 201 98 100.00 99.07
750000 .00 .38 100.00 99,45
--- .00 .bb 100.00 100.00
Totals 100.00 104,00

From these data the following table of cumulative frequencies
is formed, the two lowest classes being omitted. The class mark
(z) has been arbitrarily chosen as the center of the class interval.
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Cumulative ‘ ‘

Income frequency % | loga | logy 1Gog ) (log )2

x (unit 1000) | | ! (log %)
' | — B .
750 35541 |, 2.87506 4.55073 | 13.08382 8.26597
1250 | 23010 | 3.09691 | 4.36192 | 13.50847 959085
1750 ! 10512 324304 & 4.02169 ! 13.04250 | 10.51731
2500 ‘ 5290 | 3.39794 ‘ 2.72246 ‘ 12.65209 11,54600
4000 2225 ' 3,60206 | 3.34733 | 1205728 | 1297484
7500 | 842 ‘ 3.87506 1 292531 | 11.33575 15.01609
17500 | 254 424304 | 2.40483 | 10.20579 18.00239
87500 62 | 457463 | 1.79239 8.19845 | 20.92175
75000 \ 21 | 4.87506 \ 1.32022 l 6.44590 | 23.76621
150000 | 7 | 517609 ,84510 4.57431 . 26.79191
250000 | 2 | 539794 | 30103 | 162494 | 2018776
Totals 766 44.35623 | 29.59601 l 186.53208

| | | 10652720
i

From the totals the following normal equations are then
obtained:
T, - 44.35628¢. = 29.59601 ,

44.35623a, -- 186.532084a, == 106.52710
from which are computed,

a, = 9.42721 =log a , = — 1.67064 =0 ,

The desired curve, in logarithmic form, is thus found to be,
log ¥y = 9.42721 — 1.67064 log x ,

from which the following table has been computed for comparison :

Income | Y | Y
X 1 observed f computed
750 35541 42075
1250 23010 17322
1750 \ 10512 10216
2500 5290 5630
4000 \ 2925 2567
7500 842 898
17500 ‘ 254 218
37500 62 61
75000 21 19
150000 l 7 6
250000 | 2 3
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To exhibit the closeness of fit between the observed values of
y and the computed values of y, these values are plotted on double
logarithmic paner. By double logarithmic paper is meant graphing
paper in which the rules cn both axes are spaced according to the
logarithms of the numbers. IFigure 38 shows the income data
graphed on this type of paper. The paper in Figure 3% has four
cycles on the vertical axis and approximately three on the hori-
zontal axis. The chief characteristic of such paper is that the units
of one cycle are ten timesg as large as the units of the immediately
preceding cycle. On such paper one is able to represent data in
which the range is very great, as in the present example. Also, on
such paper data to which the parabolic curve mayv be fitted are
always represented by an approximately straight line.

PROBLEMS

The commodity price index, using 1926 as the base, i.e., 100 per cent,
cen estimated as follows:

=
2

0
g

Year C 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

Price Index ! 98 97 101 o8 104 100 95 97 95 86

Fit a straight line to these data.

2. The following figures give the average annual earning capacity for
five-year age intervals. (Adapted from the U.S. Bureau of Labor Statistics,
Bulletin 8563):

Earning | Earning
Age Group Capacity ' Age Group ' Capacity
—_ \ R
15-19 | 56 I 45-19 ! .93
20-24 ! 71 i 50-54 .86
25-29 | R4 | 55-59 | 6
30-34 92 I 60-64 | 66
35-39 97 I 66-69 | Zg
I -

40-44 . 98 | 70-74

Fit a parabola to these figures.

3. Fit a curve of the form
y=a27+ b2*
to the following values:
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x -2 -1 0 1 2
Yy 4 2 1 3 5
4. Yit a curve of the form
y=ae*+ bes
to the following table of values:
x F -2 -1 0 1 2
Y ‘ -8 =2 1 5 15

5. The total number of passenger automobiles and trucks produced in
the United States from 1916 to 1930 was as follows:

Number in Number in

Year miliions Year millions
1916 1.6 1924 3.7
1917 1.9 1925 4.4
1918 1.2 1926 4.5
1919 1.9 1927 3.6
1920 2.2 1928 4.6
1921 1.7 1929 5.6
1922 2.6 1930 3.5
1923 i 4.2

Fit a straight line to this table and graph the observed and computed values,

6. The following data on national income in 1929 have been given by V.
von Szeliski [See Econometrica, Vol. 11 (1934), pp. 215-216] :

INCOME DISTRIBUTION2 BY INCOME CLASSES
‘ 1929

| i
! Number in ! Income \
Each | Cumula- Per ‘ in Cumula- | Per
Income Class Class tive cent - Millions tive cent
|- ‘ | |
Under $1,000 15,472,660 | 48,500,000 : 100.0 | $9,567 | $90,500 |100.0
1,000- 2,000 4 20,117,610 | 33,027,440 | 68.1 ‘ 29,487 80,033 | 894
2,000- 3,000 | 8,962,940 | 12,909,930 | 26.6 21,462 51,446 \ 56.8
3,000- 4,000 | 1,994,920 3,946,990 8.13 6,773 29,984 1 33.1
4,000- 5,000 ! 720,210 1,952,070 4.02 3,216 23,211 . 25.6
5,000- 10,000 ! 770,909 1,231,860 ; 2.64 5,339 19,995 - 22.1
10,000- 25,000 | 339,871 460,951 | 0950 i 6,082 14,656 | 16.2
25,000- 50,000 77,039 121,080 | 0250 | 2,623 9,624 ‘10.6
50,000- 100,000 28,021 44,041 0.0909 1,908 7,001 | 7.73
100,000- 250,000 11,648 16,020 ‘ 0.0330 1,749 5,093 5.63
250,000- 500,000 2,842 4372 °  0.00891 | 911 3,334 | 370
5¢0,000-1,000,000 973 1,530 1 0.00316 663 2,433 | 2.68
1,000,000 and over 557 5567 | 0.00115 1,770 1,770 | 1.96

Graduate these data by the law of Pareto and estimate the accuracy of

this law in its relation to these figures.
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4. Simplification when the Curve is a Polynomial. Consider-
able simplification in the normal equations (4) can be made when
the curve to be fitted is of the form:

y = + a6 + CLg&Cz Les _I_ a‘nx'n—l .

Suppose that the class marks are taken to be,

=1, Z=2, -, Tp=p .
which can be done in most problems by properly choosing the unit.

Then, since
Az =1, A (x)=5, A(x)=2*, - ---,

A, (x) =a,
one has
[AA] =1+ 141,
[AA] =142+ +p,
[Ad,] =17 2
and, in general,

[AiA ] = VU 2027 ... | pipf

= 11+ L 23 L ... L gt

It follows from this that if the following abbreviations are
employed :

§=1"3-274F ...} p",
Ayl =%+ Y+ Ys-F -+ Up=m0
[Ay] == LU+ 29 + 3Us -+ DYp =10, (5)
[A.y] = 129, - 2292 + 3% -+ o DY =M,

[Ary] = 17 1 + Z’yz + Sry3 -l— . _.I_ prypr —m, ,

1Recall that these values are the respective moments of the data. These
are discussed in section 7, Chapter IIT, and applied further to curve fitting
in section 8 of this chapter.
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the normal equations reduce to the following system :

8ytty, 8,0, —[— C Syl == M, ,
Sla’l ‘_|_ Szafz + _l_ Sna‘ = m]_ ] (6)

n1a1—|—3na‘|— +32nza'n—'m—1-

This leads one to enquire about the formula for the sum s,. It
is apparent that s, = p, and it is proved in elementary algebra un-
der arithmetic progression that

si=Y p(p+1) .

The formulas for s,, for other values of #, can be calculated
from the identity,

(p“l"l) "l = r+1013r —|— 1‘+1CZST—1 + """ + r+1Cr31 —|— Sq
where the ,.,C; are the binomial coefficients, i.e.,
(r4+1)r (r4-1)7r(r—1)

ete.

r+10‘1:r_|"1 ] THCZﬁT ’ r+1C3m 31

In order to prove this, write the following identity, which is
merely the binomial theorem with one member removed to the left
hand side:

(x'*‘l) Mgt =, Cha” - Cog™? AR + Crx + 1.

Now, let  assume successively the values 1, 2, 8, ----.. ,
and add the resulting identities. Noticing that all the terms except
two in the left hand members of these identities cancel one an-
other, one thus gets:

21 1 = Ly Cy 1T Gy I + mCr 141,
37— 2= 0y 2 G 2 +aCr 241,
A 3 = 8 Ca BT e +:C, 841,
. . . (7)
(p+1)™ —pmt = r+1C1 P HlCz P ~|~ mC p+1,
(p+1)™ — 1= .,C8, + +Co8ry  ------ oo G880

From this identity it is possible to calculate any of the sums
in terms of those which precede it.
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For example,

(p+1)*—1=35,4 38, + 8, .
Therefore,

szzz-;;[(p+1)3-—1~3sl—s0]

==%[(p+1)3-—1—_3%p(10+1) — ]

__@p4-3p°+p) pl-+DE@p+1)
6 6

In a similar way, the following formulas may be deduced:

1
3:12{'é'i?(p+1)}2 f

_pp+1)(2p+1)Bp°+3p—1)

EN 20
Pt Eprt2p—1) (%)
12
Sr:p('p+1) (2p - 1) (3p* -+ 6p° — 3p - 1)
' 42

By means of these formulas, all the coefficients of the constants
in the normal equations can be readily calculated. The labor of
solving for the unknowns is still very great, however, when the
value of p is large; this suggests the advisability of obtaining literal
solutions for several special cases. These solutions for the straight
line and the parabola are given in the next two sections.?

PROBLEMS

1. What is the sum of the squares of the first 100 integers?
2. Calculate the sum of the first 100 cubes,
3. Find the sum of the first hundred odd numbers.
4. Find the sum of the squares of the first hundred odd numbers. Hint:
Consider the identity
12+ 22+ 83+ . ..... + (2p—1)2=
fi1z+324+524 ..... + (2p—1)2} {22+ 42462+ ..... + (2p—2)?} .

1A remarkably complete treatise on the subject of polynomial curve fit-
ting iz found in Trend Analysis of Statistics by Max Sasuly, Washingbon, D.
C., 1934, Tables for fitting polynomials to and including the seventh degree
will be found in H. T. Davis: Tables of the Higher Mathematical Functions,
Vol. 2, Bloomington, 1935, pp. 305-385.
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5. Fitting a Straight Line to Empirical Data. The theory
given in the last section can be greatly simplified in special cases.
Consider, for example, the problem of fitting a straight line, the
equation of which is,

Y—a, *+“ a,x ,
to given data.
In this case the normal equations become,

Sy + 518 = M, ,
81011 —l—' S2CL2 _= ml .
Replacing s,, s,, and s, by their explicit values and solving for
@, and a,, one gets
. (182 — m,s,) _
L= —
(8082 — 8:18;) p(p—1)

[ (2p 4+ 1Ymo, — 8m,]

:Amo+Bm1 ’ (9)
6
Gy —=———- [— (p + 1} my 1+ 2m,]
p(p*—1)
== Bm, + Cm, ,
WhereAzz_(g?_j__}.)_y B::..G___, and C:__i__. The
p{p—1) p(p—1) p{p*—1)

coefficients of m., and m,, namely, A, B, and C, have been computed
and recorded in Table IX for values of p from 2 to 100.

An example of the application of these formulas has already
been given in section 6, Chapter II, and should be restudied at this
time,

6. Fitting a Parabola to Empirical Data. A similar simplifica-
tion is possible in the case of the parabola
Y=0 + Qo -}- az2? .

In this case the normal equations become,
ol + 81, "‘I‘ Sally — My ,

$iy -+ 8:0, - Suy==m, ,
820y | 84ty + 8,003 =M, .
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After some calculation one arrives at the formulas,

3
a, = [(3p? +3p L+ 2Ym;—6(2p 4+ Vm,
pp—1) (p—2) Fer thm

-4 10m,]

= Anig -|- Bing -+ Cin;

6 i
o, = - —3(2p 4 1)m,
p(p—1)(p—2) +
2(2p-{-1) (Bp--11) . — ?0 - (10)
(p+ 1){(p-H-2) P2
== Bmg - Dy -i- Ewm,
30 6 6
Uy == [my, — m; + g |
p(p—1)(p—2) P2 (p—4 1) (p—+2)
== Cmy -}- Em, - Fm, ,
where A — 3(3p* - 3p - 2) , B = ~-18(2p - 1) s
p(p-—1}) (p—2) p(p—1)(p —2)
. 30 p_ 12@p+1) (8p+11)
(p—1) (p—2) » (p*—1) (p*—1)
— 180 180

and F

T —1) -1 T (p—1) (p°—4)

The coefficients of #1., #,, and #.,, in these formulas have been
evaluated and recorded as A, B, C, D, E, and F', in Table X, for
values of p from 3 to 50.

Example: These formulas will be applied to determine the
best parabola, in the sense of least squares, that will fit the follow-
ing data, which show the average annual earning capacity for five-
year age intervals, (adapted from the U.S. Bureau of Labor Sta-

tistics, Bulletin 359) :



CURVE FITTING 235

Age Class Earning
Group Marks Capacity y m,
(%) (¥)

15-19 1 56 .56 56
20-24 2 71 1.42 2.84
25-29 3 84 2.52 7.56
30-34 4 92 3.68 14.72
35-39 5 97 4.85 24.25
40-44 6 98 5.88 35.28
45-49 7 93 6.51 4557
50-54 8 26 6.88 55.04
55-569 9 76 6.84 61.56
60-64 10 66 6.60 66.00
65-69 11 56 6.16 67.76
7074 12 | 48 5.52 66.24
Total 9.21 57.42 447.38

It is seen at once that p =— 12, and that the three moments are:
Mo =.56 }-.71 -~ 84} ...} 56 -]- .46 =921 ,

my = (1) (.:56) -}~ (2) (.71) - (3) (.84) ------|- (11) (.56)
1+ (12) (.46) == 57.42 ,

ms— (1)*(56) + (2)*(.71) + (3)*(.84) 4--- + (11)*(.56)
L (12)2(.46) = 447.38 .

Referring to Table X, for p — 12, one finds

A= 10682 |, D= 1336,
B= -—.3409 , E=—.009740 ,
C=  .02273 , F= .0007493 .

From these values the coefficients (10) are immediately com-
puted.

o, =— (1.0682) (9.21) - (—.3409) (57.42)
+ (.02273) (447.38) = .432b ,

0, == (—.3409) (9.21) 4 (.1336) (57.42)
-+ (—.009'74) (447.38) = .1741 ,

as = (.02273) (9.21) + (—.00974) (57.42)
4 (.0007493) (447.38) =—.0148 .
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Hence, the best fit parabola, in the sense of least squares, is
y — 4825 - . 1741 & — .0148 x* .

From the above equation, the

following values have been com-

puted. These together with the observed values of y, are plotted in
Figure 39. The closeness of fit is there clearly exhibited.

Class Earning Capacity
Marks
{x) Obhserved (y) Calculated (y)
1 b6 .59
2 71 2
3 84 82
4 .92 .89
5 97 .93
6 98 94
7 93 .93
8 .86 .88
9 76 .80
10 : .66 .69
11 56 .56
12 46 .29

g

~J
o

EARNING CAPACITY
@
o

.25

COWLES COMMISSION FOR RESEARCH IN ECONOMICS

MR
CLASS M

7 8 ® ) 1 12
ARKS

FIGURE 39
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_ PROBLEMS
1. Use the method of section 5 to fit a straight line to the data of the
first illustrative example of section 3, of this chapter.

2. Fit a straight line to the data of problem 1, section 3. (Use the meth-
od of section 5).

3. TFit a parabola, by the method of section 6, to the following data:

7. The Simple Exponential. One curve that is of special im-
portance in many statistical problems because of its frequent oc-
currence in natural phenomena is the simple exponential which,
for convenience, will be written in the form,

Y=ar .

It is obvious that this curve may be fitted to data by the method
of least squares if logarithms of both sides are taken and a deter-
mination made of the unknown coefficients in the equation

logy—=a, 4 ax ,

where a, =1log ¢ and @, = log 7.

The objection sometimes raised to this method is that a straight
line is being fitted to the logarithms of the data instead of the ex-
ponential to the actual values of y. This objection, however, does
not usually affect the fit seriously, so the method is often employed.

A second method, which is free from the difficulty just pointed
out, and which has a great deal to recommend it on the score of
simplicity, is the following, taken from Glover’s Tables of Applied
Mathematics, Ann Arbor, Michigan, 1928. This admirable book
contains extensive tables for use in applying the method about to
be described.

Suppose that the data are given in the following form:

x

Yq ¥ Yo P Y

|
|
|
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Placing these values in the formula ¥ = @® and summing, one
easily gets,

Syi=my=ae(1+r+1r*4+ 4. F7r"7) =@

1—r

1—7r

Similarly, for the first moments (2a;¥:), one finds

Iy == W, —=a[r4-2r2 - 3r* 4 (n— 1) r*1]

wt — et —t A ar(r—1) —r (" —1)
(1—7)? d—7)*

—_—

Dividing m, by m,, one gets the equation,

M —= it e nr —_ "
My rv—1 r—1

It is clear that this equation defines r as soon as m, and m, are
known, but it is equally clear that the process of finding r would
usually be quite laborious. In order to simplify the calculation, the
following table has been computed (most of it is an abridgement
from Glover’s Tables), from which » can be readily found by inter-

polation:
The function defining M is interesting in that
lim M == u ,
r=1l
lIimM=n—1.
=00

The proof of these statements is left to the student.
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m, n 1
Table for ¥ = — =— —
my, {(1—r*%) (1—r1)

n=2 n=3 n=4 n=2>5 n=2~6 n="T n=2=38

ol
=
k=4

) 5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
1.01 5025 1.0066 1.5124 2.019% 2.5290 3.0398 3.5522
1.02 5050 10132 1.5248 2.0896 2.5577 3.0792 3.6039
1.03 5074 1.0197 1.5369 2.0591 2.5862 3.1181 3.6550
1.04 .5098 1.0261 1.5490 2.0784 2.6143 3.1567 3.7056
1.05 5122 1.0325 1.5609 2.0975 2.6421 3.1948 3.7555
1.06 5146 1.0388 1.5728 2.1164 2.6696 3.2324 3.8048
1.07 5169 1.0451 1.5845 21851 2.6968 8.2698 3.8535
1.08 5192 1.0513 1.5960 2.1535 2.9237 3.3063 8.9015
1.09 5215 1.0574 1.6075 2.1718 2.7502 3.3426 3.9488
1.10 5238 1.0634 1.6188 2.1899 2.7764 3.3784 3.9955
1.20 .5455 1.1209 1.7258 2,8595 3.0212 3.7098 4.4244
1.30 .5652 1.1729 1.8217 2.5097 8.2346 3.9937 47844
1.40 .5833 1.2202 1.8077 2.6420 3.4189 4.2336 5.0815
1.50 L6000 1.2632 1.9846 2.7583 3.5774 4.4352 5.8248

r n=29 =10 n=11 n—=12 n=13 n =14 =15
1.00 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000 7.0000
1.01 4.0663 4.5821 5.0995 5.6186 6.1393 6.6616 7.1857
1.02 4.1319 4.6633 5.1979 5.7358 6.2769 6.8214 T.2691
1.08 4.1968 4.7435 5.2951 5.8515 6.4128 6.9790 7.5500
1.04 4.2609 4,8227 5.3910 5.9657 6.5467 7.1341 7.7279
1.06 4.3242 4.9009 5.4856 6.0781 6.6785 7.2867 7.9027
1.06 4.3867 4.9780 5.5787 6.1887 6.8080 7.4365 8.0740
1.07 4.4483 5.0539 5.6704 6.2975 6.9352 7.5833 B.2417
1.08 4.5090 5.1287 5.7605 6.4043 7.0598 7.7269 8.4055.
1.09 4,5688 5.2022 5.8490 6.5090 7.1818 7.8674 8.5654.
1.10 4.6276 5.2745 5.9859 6.6118 7.3012 8.0045 87211
1.20 51636 5.9261 6.7107 7.5159 8.3403 9.1825 10.0412
1.30 5.6037 6.4488 7.8167 8.2048 9.11056 10.0315  10.9656
1.40 5.9578 6.8581 7.7785 8.7155 9.6659 10.6271 11.5970
1.50 6.2404 7.1765 8.1287 9.0932 10.0671 11,0481 12.0343

As soon as r is known, ¢ can be determined from the easily
derived formula,
r— (n—M) (r—1)

o= ~ My . (11)
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FEzample: Fit an exponential fo the {ollowing data, which give
the average number of shares sold on the New York Stock Ex-
change from 1919-1930, unit 1,000,000 shares:

! | Stock Sales |

Year , @ ' N.Y.S.E.{y) | a.y

1919 0 - 26.07 ' 0

1920 | 1| 18.72 | 18.73
1921 ! 2 14.30 * 28.60
1922 : 3 | 21.73 | £5.19
1923 | 4 = 19.77 . 79.08
1924 ; 5 28.50 117.50
1925 | 6 37.69 l 226.14
1926 i 7 57.42 261.94
1927 | 3 48.08 384.64
1928 9 76.71 £90.39
1929 | 10 93.75 937.50
1920 ! 11 67.55 | 743.05

—

otals ; 485.30 3552.76

From the totals, one gets n, =— 485.30, and m, == 3,5562.76; s0

that M — . 4. —7.3208. Since n == 12, that column is entered with

n
the value of M and r is then found by interpolation to be » = 1.10

-+ 078 = 1.178.
Substituting this value in the formula for e (formula 11), one
easily computes ¢ = 13.956. Hence the desired equation is,

y= (15.956) (1.178)" ,

from which the following table has been calculated for comparison
with the observed values of v:

x| Computed (y) ;i x ‘ Computed (¥
— —— —— . | g [ e
0 13.96 L6 ' 3729
1 16.44 .7 | 43.93
2 | 19.36 8 51.75
3 22.80 l" 9 60.96
4 26.87 10 | 71.82
5 31.65 i1 4 84.60
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The closeness of the fit is graphiecally shown in the accompany-

ing Figure 40.
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In the graphical representation of the exponential curve, it is
often desirable to use semi-logarithmic paper, that is to say, co-
ordinate paper in which the rulings on the y-axis are spaced ac-
cording to the logarithms of the numbers. On such paper, data to
which an exponential curve may be fitted lie close to a straight
line. The representation of the data of the example just given and
the exponential fitted to them are given in Figure 41.
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PROBLEMS

1. TFit an exponential to the following figures:

x 0 1 2 3 4 5 6

9 10

Y 23 25 26 27 30 32 34

37

40 43 46

2. The following data show the number of auto trucks registered in the
United States (000 omitted) from 1919 to 1930. Fit an exponential to these

data,

Year No. of Trucks Year No. of Trucks

1919 414 1925 2442

1920 852 1926 2764

1921 980 1927 2897

1922 1279 1928 3114

1923 15563 1929 3380

1924 2131 1930 3481

3. The following data show the population (expressed in millions) of the
United States at each census since 1790:
Year Population Year ! Population
- | L e R -
1790 | 4 1860 | 31
1800 5 1870 | 3¢
1810 7 1880 ho
1820 10 1890 63
1830 13 1900 76
1840 17 1910 i a2
1850 23 1920 106
ﬂ 1930 123

Fit an exponential curve to these data.

4. Fit an exponential curve to the following data, which give the average
bank clearings, outside of New York City, for the years 1917 to 1930 (unii,

billion dollars) :

]
Year | Bank Clearings Year
1917 | 10.8 1024
1918 \ 12.8 1925
1919 15.1 1926
1920 174 1927
1921 13.5 1928
1922 | 13.7 1929
1923 | 16.6 1920

Bank Clearings

17.1
18.9
194
19.0
19.1
19.8
16.3
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8, The Method of Moments. The method of moments is fre-
quently employed in curve fitting where the theory of least squares
leads to analytical difficulties which make that method impracti-
cable.

Assume that the curve to be fitted to the data, ¥, { =1, 2, .-+,
P, is of the form,

y:f(ﬂ?,ﬂm a‘;’!""an) . (12)

Then, according to the method of moments, the parameters, a,, .,
v+, @, are to be determined from a set of n equations of the form,

14
E x‘lrf(x'ir gy Ly ove {L,,,) =M, , V= Oa 1: 2' ] n—1 )

i=1

where m, = Ty, m, = 2 x:4; , M. =— X x:%,; , etc., the summa-
tion extending overi=1,2,3,---, p.

It is usual in curve fifting by this method, however, because of
the complexities which may otherwise be introduced, to define the
moments not as “moments of ordinates” but as “moments of
areas” (see section 7, Chapter III}, Such moments must be com-
puted by the methods of integral calculus, a discipline which has
not been assumed as a part of the equipment of the reader of this
book. The method of moments, therefore, belongs to a more ad-
vanced theory of statistics. It is probably profitable to observe,
however, that the graduation of frequency distributions by means
of the normal frequency curve is an application of curve fitting
by the method of area moments.

Thus, consider the problem of fitting the curve,

—- ~c(z-h)2
y_alec(-'ﬂ ) .

to the data v, ¥., -+, ¥, Setting the first three moments of the
data equal to the first three moments of the function taken over
the range from — e to + oo, one obtains the following equations
for the determination of the parameters a, b, ¢:*

e 1
ava/c=m, , ebya/c=m ,a\/n/c(a2~—|— b2) — m, -
e

1These formulas are derived in advanced books on statistics where the
methods of integral calculus are employed. See, for example, E. T. Whittaker
and Q. Robinson, The Calewlus of Observations, Glasgow, 1929, pp. 183-184.
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Solving for a, b, and ¢, one gets
a=meVe/a , b=m,/m,, 1/2¢== {(my/m) — (m./m,)? .

From the formulas:
N=m,, A=mny/m,, o= (Myfm;) ~— (m./m,)?
(see section 7, Chapter III), the familiar values:
a=N/(V2720) , b=A, c=1/(2¢?)

are immediately derived.

Whenever the function to be fitted to the data is linear in
the parameters, that is to say, when it is of the form,

Y=da, A1(.’L') —|—CL2¢’12(.’L‘) —I—"""—a‘nAn(m) ’

a better fit to the data will usually be obtained by the method of
least squares than by the method of moments.
When the functions 4,(x) , A.(z) ,---, A, (x), are powers of

&, e, di(x) =1, A(z) =2, As(x) = a*, .- -, A, (x) = 2™,
that is to say, when ¥ is a polynomial, the method of moments be-
comes identical with the method of least squares.

9. The Logistic Curve. 1t is inevitable in any discipline which
anticipates application to problems of economies that there should
be a theory of growth functions. One encounters on the threshold
the problem of population growth, which eannot be neglected in
any attempt to anticipate the trend of primary economic series.
Moreover, new industries are continually being invented in this
age of scientific and industrial discovery. The automobile indus-
try, for example, started with an insignificant production about
1908 and had reached saturation by 1929. The phcnomena of
growth were clearly exhibited in the production activities of the
intervening years.

One of the most widely used functions in the study of growth
phenomena is the logistic curve,

ing papers by Pearl and Reed: *On the rate of growth of the population of
the United States since 1790 and its mathematical representation,” Proc. Nat.
Academy of Science, Vol. 6 (1920), pp. 275-288; “0On the Mathematical Theory
of Population Growth,” Metron, Vol. 3 (1923), pp. 6-19; “The Probable Error
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ok
14 bew

which has been extensively employed by Raymond Pearl and I. J.
Reed in population studies.

If one examines attentively the graph of the curve [See Fig-
ure 35] he will see that it proceeds from an initial level to a
final level which represents the maturity of the phenomenon under
investigation. The two lines within which the curve lies are cus-
tomarily referred to as asymptotes. Midway between the two
asymptotes, the rate of growth (as distinguished from the growth
itself) becomes zero, the point at which this occurs being called a
point of inflection. It is easily proved by the methods of calculus?
that the point of inflection is given by,

Y

(13)

z=-—(logb)/a , y=Wk.

Barlier in the book (Chapter II, section 1, problem 6) the
funetion
197.27

Y=
1-- 67.32¢0318
was given as a representation of the population growth of the

United States, x representing years since 1780. This function is
due to Pearl and Reed.

(14)

of Certain Constants of the Population Growth Curve,” American Journel of
Huygiene, (1924). An extensive account is given in Chapter XXIV, Studies in
Humen Biology, by Raymond Pearl, Baltimore, 1924. A comprehensive ar-
ticle is also due to H. Hotelling, “Differential Equations Subject to Error, and
Population Estimates,” Jowrnal of the American Statistical Association, Vol.
27, 1927, pp. 283-314.

Extensive applications of the logistie curve to economic data are to be
found in Secular Movements in Production and Prices by S. 8. Kuznets, Boston,
1980, The appendix to this book contains the numerical evaluation of the
logistic curve for a number of economie series,

For a scholarly investigation of the whole problem of growth, from
the a priori ag well as from the empirical point of view, the reader is referred
to A. J. Lotka, Elements of Physical Riology, Baltimore, 1925, in particular,
to Chapters 7, 9, and 11.

1The student of calculus can establish this from the values of the first
and second derivatives obtained directly by the differentiation of (13),
dy/dz = ey (y — k}/k ,
d2y/dx? = a* (2y — k) y (y—Fk) /k® .
The first and second derivatives both vanish at y = 0 and y = k, and the
second derivative at ¥ =— %k. The value of = corresponding to this last point
is —(log,b)/a.
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From it one is able to calculate,

k=14 (197.27) = 98.63 millions

r

as the approximate population at the point ‘of inflection and the
corresponding time as

& = —(log, 67.32) / (—.0313)
= 134,48 .

That is to say, the critical period in the growth of the popu-
lation of the United States, according to this curve, was in the
neighborhood of the year 1780 —+ 134 = 1914, when the population
approximated 98.63 million people. Tt is certainly a curious fact,
although perhaps only an interesting coincidence, that the popula-
tion predicted for 1930 by this function was 122.12 million and the
actual census showed 122.78 million.

The method of fitting the logistic curve to data is originally
due to Pearl and Reed, who employed the method of least squares
in the final adjustment of the constants which were first approxi-
mately determined as follows:

To attain this first approximation three equally spaced points
are chosen which seem to be fairly characteristic of the data to
which the curve is to be fitted. Designate those points by (0,y,),
(%, 1), (224, ¥.).

Writing equation (18) in the form,

k

yzl_‘_ec-ﬂl&' ’

b:ec ’ (15)

one now solves for ¢ - ax in terms of ¥ and % and in the resulting
expression substitutes the three points given in the preceding para-
graph. The following three equations are thus obtained:

¢-+a-0=log.{k—y,) /1 ’
C_|_a-x1::10ge(k—y1)/y1 »
c_l_a.lemlogg(k“—yz)/yz s

from which k, ¢, and a are to be determined.
It is at once seen that e can be found from the first equation
as soon as k is known, since

¢ =log. (% — ¥s) /Yo .
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In order to find k, cne substitutes this value of ¢ in the second
equation and thus finds,

a—= L {log. (k — 1) /v, — loge (b —y,) /yo}

&y

1 {logo (B —9.) /v, (b — )} -

1

Similarly, from the third equation one gets,

1
a,:;;}-— logeys (k — .} /4. (K —Yo) »

po log{y, (kK —42) /4. (k — y,) 1.

Equating these two values of ¢ and comparing the logarithms,
one obtains for the determination of % the equation,

yo(k'—yl)/yt(}ﬂ_yn) - {?Jo(k—yz)/yz(k—yo)}% .

Squaring both sides and collecting on the right hand side of
the equation terms involving %, one gets,

(Yolhs — ¥ o= 200, % — ¥.2 (Yo + ¥,)
or

k== {299 Ys ~~y.> (Yo -} ¥2) Y/ (Uolh2 — ¥:2) .

The value of @ is then readily found from either the second
or third equation in the original svstem.?

1This same preliminary adjustment can be made for the more general
equation,
k

Y= .
3
a,te,xta,0tta

1+e

Five equally spaced points, (0, y,), (%, ¥}, (2z, ¥,), (22, ¥,), (4, ¥,),
are first determined.

The value of & is then computed from the following equation:
Y4y (k—y,) (h—y,) ¢ (B—y,) = you,%y, (B—y,) * (b—y,) 4,
and the coefficients @, a,, a,, and o,, from the formulas,
k—y

o
a, = log , a, = (184, — 94, + 2]33)/6-.1:1 ,
Yo
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Ezample: The following data give the number of automobiles
produced per month in a certain state over a nine-year period.
The problem proposed is to fit a trend line of the population growth

type to these figures.

Jan. 2512 7324 3264 7903 11113 8830 7605 10951 9735
Feb, 4689 9292 4892 9284 137756 14072 10024 14955 15097
Mar. | 6636 11236 8972 11823 17995 17841 14436 17736 21289
Apr. -~ 6798 6343 9087 11290 16882 17980 16547 14450 22698
May | 7408 9063 10028 13905 17588 15458 16537 13099 16204
June | 6265 11588 12461 14155 17018 2762 16578 8504 12103
July 7141 8093 10121 11752 16184 1653 16058 8777 8853
Aug. | 7868 9469 10461 13222 17564 3494 15569 13808 14949
Sept. | 8543 9511 8229 11667 15902 10565 15496 12774 13805
Oct. 6384 5834 7283 103233 12401 15942 14981 9604 10255
Nov. 7104 4651 3216 9047 11315 11360 11170 7775 8449
Dec. 8430 6061 7584 6308 9133 8347 (481 9923

3826

Obviously, the problem must first be simplified. Hence, the av-
erage production per month for each year is first calculated and

these values assigned to the month
obtained as follows:

of June. New data are thus

Month (x)

Production ()

6648 8019 7840 10997 14503 10758 13612 11526 13613

To these averages the foregoing theory is now applied. Be-
cause the frequency corresponding to the class mark 54 is obvious-

ly high, it is replaced by the average

of the numbers corresponding

to ¥ = 42, x = 54, and x == 66, namely, 12,086. Hence, selecting
as the three points, (x,, #,) = (0, 6648), (x, ¥.) = (54, 12086),
(22, ¥.) == (108, 13613), one calculates,

a, = (48, — 58, — ;) /2x* ,

where the following abbreviations are used

ey = {fy T 38, — 3}32)/6‘#1—; »

Yo (k1) Yolk—u,)
B, =log, s B2 =log, ——o,
Y, (—,) Y, (h—y,)
] yo(k"_ys)
= log, .
Pu ¥y (b—,)

For an application of this to population data, see Raymond Pearl, Studies

in Human Biology, op. cit., p. 607,
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k=—=13,892 ,
¢ = log, (13,892 — 6,648) /6,648 = log, 1.0897 ,
= 2.30259 < .03731=.0859 ;

¢= 1 log..018809 ~— —.0368 .
108

The desired curve is then,

13,892
T 1 + 6'0859 e—.OS?ﬂJ‘ ’

the graph of which is the dotted line in Figure 42.

It is at once clear from the method employed in its derivation
that the curve just written down is only a first approximation to
the curve of best fit. The method of least squares can be used to
obtain a better approximation in many cases as follows:

First write equation (13) in the form,
B B

= H
e—{A+hh" _!_ e C—Az e-fm _l_ ¢

where A =— —a, and k, B and ¢ are constants to be determined.

Expanding ¢ one has,
B
Y= ’

22 3403
e—Az(l_hx_!_ hx hm ._}_...)_]_c

2! 3t

or, assuming that & is small, which will be true if @ has been prop-
erly approximated, one gets,

Y B
et (1l —hx) +¢

Multiplying through by the denominator of the right hand side,
one obtains the new equation with linear coefficients,

B - Cy 3 haye 4 =— ye- 4,

To this equation one now applies the theory of least squares
as developed in the third section of this chapter, using for A4, (x)
the value 1, for A,(x). the value -—y, and for A;(z), z ¥y e4* .
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The calculations may be tabulaled as follows:

e—A.ﬂ

e |y
6 | 6618 | 30192
18 2019 51568
30 \ 7810 | 38162
42 | 100997 21325
54 | 14,503 ] 18713
66 | 10758 108819
78 | 13612 | 03671
90 \ 11526 | 03647
102 13,613 | 02345
} 97,516 |
myZ 3—2111' %
sy
170,527,000 |
307,809,000 |
202,783.000 |
230,986,000
213,602,000 |
59,404,000
46.479.000
15,901,000 |
10.396.000

1,267,887,000

43,920,546,000

i y? K AT : " yQ, p-Ag
| 44195904 | 31987 | 212,649,000
b 64,304,361 74435 | 506.891.000
| 61,465,600 \ 77997 | 611,494,000
| 120,924,009 987496 | 1,082,157.000
| 210,337,009 | 107,399 | 1,557,605,000
| 115734,564 | 62615 | 673,612,000
. 185,286,544 60,211 819,588,000
| 132,848,676 \ 37.830 |  436,028.000
. 185,313,769 ‘ 82363 | 413,284,000
} 1,120,420,436 | 583,593 “ 6,474,311,000
x2 y? @21e | y AT ‘ y? g4z
L YeT A
1,023,160,000 | 5331 \ 35,441,000
5,540,562,000 | 4,135 | 33,161,000
6,083,184,000 | 2600 | 20,383,000
6700293000 2345 | 25,789,000
11634511000 | 1,989 %;,s;zlg,ono
2 206,
/658.785.000 M 10,708,000
1.421,103,000 | 20 | 4,845,000
1,060,368,000 319 | 4,346,000
| 18,860 | 173,624,000
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Noting that
[4:4,.]=mn, [A:4,] =2y , [A,A;] = Szye ,
[A.4.] = 2y* , [A,A,;] = Zzyte
[A:4,;] = Za2yreas |
[Ay] = Zyetr , [Ay] = Zy2e4r |
[Ay] == Zxyre2ar |

one gets from these calculations the following set of normal equa-
tions,!

9F — 97,5616 C - 583,633 h = 18,860
97,516 B —1,120,420,436 C -+ 6,434,311,000 h = 173,524,000
583,533 B — 6,434,311,000 C - 43,920,546,000 h — 1,257,887,000

Dividing the first of these equations by 9, the second by
97,516, and the third by 583,533, one obtains the new set,

B —10,835 C -- 64,837 h == 2,096 ,
B — 11,490 C + 65,982 h — 1,779 ,
B — 11,026 C 4 75,267 h — 2,156 .
Eliminating B from these equations, one gets,

—655C-+ 1,145 h ——317 ,
—191C 110,430 h= 60 ,

from which C and & are easily calculated by the same method to be,
C =.51037 , ==.01510 .

Substituting these values in the first equation above, one finds
B — 6646. Hence the desired curve becomes,

6646 13021

— - : 16
e0519% 1 5104 1 1.9592¢0510e (16)

The closeness with which this curve fits the dataZ is graphic-
ally illustrated in Figure 42.

1The negative sign in the second terms of these equations comes from the
sign of C in the original equation.

2This problem iz furnished by the courtesy of Professor George Starr of
the Bureau of Business Research of Indiana University.
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PROBLEMS

1. Make a graph of equation (14} and compare with the actual census
figures given in problem 5, section 1, Chapter II. What is the population pre-
dicted for the next census?

2, What was the critical year for automobile production as indicated by
equation (16) ?

3. On the basis of the growth curve fitted to the production of automo-
biles, calculate the maximum production at the saturation point, Does the
fluctuation of the data make you wish to qualify your answer?

4. Obtain census reports for some city in your neighborhood and fit a
population growth curve to the data thus obtained.



CHAPTER X

ELEMENTS OF CORRELATION

1. The Mathematical Theory of Drawing Conclusions, One of
the most important problems that can be dealt with by means of
the theory of probabilities is that of finding relations between sets
of characteristics belonging to groups of entities. The mathe-
matical theory by means of which these relationships are found and
reduced to formula and number is called correlation. For example,
one might plausibly suspect that great industrial activity would im-
ply high prices for common stocks, or that a sharp rise in the cost
of living would lead to a decline in highest grade (Aaa) bond prices,
or that a depreciation in the dollar would, at least temporarily,
stimulate export trade, but these are only guesses until they have
been tested by means of the laws of averages. Some people believe
that crops should be planted in the dark of the moon, and that black
cats cause bad luck, but these opinions cannot be justified by mathe-
matical theory. No real correlation exists between large crops and
the light of the moon, or between black cats and bad luck, although
occasional coincidences may lead to such conjectures.

Correlation may, of course, exist in various degrees. Faraday
noticed that an electric current was always associated with a mag-
netic field, and the correlation between these two phenomena was
expressed by Maxwell in absolute mathematical terms. High corre-
lation existed between them. The economic law of diminishing re-
turns, and Gresham’s law that the less valuable element of a nation-
al currency tends to remain in circulation and the more valuable to
disappear, are correlations that are less exact than those of the
physical law just mentioned. Mendel’s law of heredity, which
states the distribution of parental characteristics in offspring, is
another example that is subject to minor fluctuations.

We may then define the theory of correlation as the theory of
the concomitant varietion of two or more attributes of a group of
individual entities, the attributes being measured with respect to
each entity; as, for example, the variation of the economic indexes
associated with a given year, the variation in the heights of sons
of a common Tather, ete.

—253—
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2. The Correlation Coefficient. In order to make the idea of
correlation more exact, suppose that one has two sets of numbers
which, for convenience, may be recorded in parallel rows as follows:

X data: X, X, Xy eee X.,
Y data: Y, Y. Y, - -- Y., .

It is suspected that there exists a relationship between the
values of X and the values of Y, so one plots on coordinate paper
the points (X, Y,), (X, Y2), -+ -+ , {X., Y.). If these points,
when so plotted, appear to lie approximately along some curve, then
one may say that the two sets of numbers are correlated. If they
group themselves about a straight line, then one is concerned with
the case of lnear correlation, otherwise the correlation is said to
be non-linear. It is with the first type that this chapter is mainly
concerned. Linear correlations are much more generally used
than non-linear since the calculations involved are less arduous.
Very often, too, a linear correlation may be applied even when it
is suspected that the relationship of the two variables is non-linear
but where the departure from linearity may be so slight as to make
the linear correlation a satisfactory approximation. Or, again, the
range of the data treated may be sufficiently accurately dealt with
by a linear approximation, even though it is logical to expect that,
if data outside this range were included, only some form of curve
would adequately describe the relationship between the total
possible series. Thus, although a really perfect relationship may be
established, the correlation coefficient, although high, may not be
+1.0, due to a linear assumption when the relationship is really
curvilinear.

In order to have some way of arriving at a numerical measure
of linear correlation, the so-called correlation coefficient has been
devised. This coefficient is given by the following formula:

(/NY(EXY) XY

pr—— L

Gy Oy

(X —X) (Y, —Y)

N oy oy
where X, Y, means the sum of the products of the values of X with
the corresponding values of ¥, X and Y are the arithmetic averages
of the two series, and oy and oy the respective standard deviations.
Of the two forms in which the correlation coeflicient is written
above, the first is more generally used although they arc, of course,
equivalent to one another.
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It will be proved later that » never exceeds 1 in absolute
value. If 7 equals 0, then there exists no correlation between the
two series, and if it equals 1, the correlation is perfect. If r is less
then 0, the correlation is said to be negative or inverse.!

Example: The following table gives the average annual earn-
ings per share of the United States Steel Corporation and the price
per share of its common stock. Is there any correlation between the
earnings and the prices of the common stock?

I :
Earnings! | Price! of Common | Earnings Price of Common
Year Per Share Stock, Per Share | Year Per Share Stock, Per Share
I —_— . - R . —

1902 § 7.45 $26.50 1918 $15.25 $70.25
1803 3.40 17.25 1919 6.93 70.50
1904 .68 14.25 | 1920 11.50 64.00
1905 5.90 25.50 ¢ 1921 1.55 54.25
1906 10.00 28.75 i 1922 1.96 67.00
1907 | 10.80 25.00 1923 11.30 67.50
1908 2.80 | 20.25 1924 8.15 74.50
1909 7.30 : 47.00 1925 | 8.90 87.00
1910 8.48 52.50 1926 12.40 96.00
1911 4.09 45.75 1927 8.50 131.50
1912 3.95 48.00 11928 12.10 147.50
1913 7.60 41.25 i 1929 21.19 206.00
1914 -24 2975 P 1930 9.12 166.50
1915 6.85 44.00 1931 - 1.40 94.25
1516 33.50 72.50 1932 1 -11.08 37.00
1917 27.00 7475 \

1Corrected for the effect of a 40% stock dividend paid June 1, 1927, and
for rights issued May 1, 1929. The price per share of the common stock is
thtla average of the annual high and low prices, to the ncarest quarter of a
dollar.

Solution : The first series may be called X and the second series

Y. One will then have X = 8.2558, Y — 66.5742, ¢, = 8.1303, o, —

43.9487, T X Y = 21,351.6075; the correlation coefficient then is
found to be

. (21,351.6075/31) — (8.2558) (66.5742)

(8.1303) (43.9487)

1The discovery of the correlation coefficient is generally attributed to Sir
Francis Galton, who used it early in the last quarter of the nineteenth century.
Among those who contributed to the early theory of correlation, the following
are especially to be noted: R. Adrian (1775-1843), P. 8. Laplace (1749-1827),
G. A. A. Plana (1781-1864), K. F. Gauss (1777-1855), and A. Bravais (1811-
1863). An account of the history of the development of the theory of correia-
tion will be found in Chapter V of Helen M. Walker's Studies in the History
of Statistical Method, Baltimore, 1929, and in “Notes on the History of Corre-
lation,”” by Karl Pearson, Biometrila, Vol, 13, 1921, pp. 25-45.

==.389
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PROBLEMS

1. The following table gives the indexes of seasonal variation of pro-
duction and shipments of pneumatic casings for the years 1923-10310 Is
there any correlation between these seasonal variation indexes?

Month 1Jan‘ Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Index - |
Shipments (X} 89 Bl 98 119 113 120 129 123 104 &7 T2 74

Index - l
Production (Y) ' 96 10r 114 113 116 112 97 104 91 a1 82 83

S8hift the indexes for the production one place to the vight, so that the
following new series are obtained:

- i — ,.1___ ——— . T [ = -t ppm—— P P [, -

Shipments (X) | 83 81 98 110 113 120 129 123 104 87 72 74
O I -

96 101 114 113 16 112 97 104 91 91 B2

Production (Y) : 83

Caleulate the new correlation coefficient and eall it »,. Shift the indexes for
(Y) one more place to the right and again calculate the correlation coetlicient,
calling it r,. Repeal this process four more times and call the new coefficients
Ty Ty ¥y and 7. Now shift the original data for (Y) one unit te the left so
that the following new series are obtained:

Shipments (X) 8 81 98 110 113 120 129 123 104 87 T2 T4

Production (Y7) F10L 114 113 116 132 97 104 91 91 B2 83 96

Calculate the new coefficient, calling it r;”. Repeat this process five times
and calculate the cocfficients v/, +,/, v/, 7/, and r;'. Finally, on graph paper
ercct ordinates equal to v, 7,7, 7, 2, 7., 7y 1 vy, Ty Ty T, ¥o T Can a
smooth curve be drawn {hrough these points? What cenclusions do you draw?

2. A priori, one might say that variations in long term bond prices re-
sulted from (a) variations in the purchasing power of money, (b) variations
in interest rates, and (¢} variations in earnings applicable to interest charges.
The foliowing tables give annual averages for the Dow-Jones Bond Prices, an
index of the cost of living, 4-6 months prime commercial paper rates, and per-
centage of net income to capitalization of 71 manufacturing corporations, for
the years 1918-1952. Calculate the correlation cocfficients befween each of the
last three series and the first. From this type of analysis, rate the impor-
tance of these factors on the movements of bond prices.

15ource: Simon Kuznets, Seasonal Vwm'at-iﬁns w Industry and Trade, Na—
tional Bureau of Economic Research, 1933.
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Percentage
net income to
Dow-Jones Bond capilalization of
Prices (Average 4-6 Months 71
high and low for Index of Cost Prime Commerecial manufacturing
Year each month) of Living Paper Rates corporations
1919 §82.46 111.0 5.42 13.4
1920 76.18 119.4 | 7.87 3.4
1921 79.62 102.7 ; 6.53 3.8
1922 88.23 97.3 4.43 12.1
1923 87.58 100.0 4.98 10.3
1924 | 89.05 101.5 3.91 10.7
1926 91.92 103.8 4,03 13.0
1926 94.63 i 103.8 4,24 13.3
1927 | 97.75 101.6 401 10.3
1928 i 97.656 100.4 4,84 11.3
1929 ! 94.04 1000 | 5.78 13.1
1930 | 95.27 96.2 3.56 8.3
1931 ; 85.06 867 | 2.64 3.6
‘. 77.61 (kO 2.74 3 6

1932

3. Over short periods of time one might think that the investment pol-
icies of banks exerted a considerable influence on bond prices, since the value
of bonds held by banks is about 60 per cent of the value of bonds listed on the
New York Stock Exchange. The following are monthly figures on investments
(exclusive of U.8. Government Securities) of reporting Federal Reserve Mem-
ber Banks in leading ecities, and the New York Times Bond Averages (1928-
1932). What is the correlation between these two series? Does it confirm the

Investments Other Investments Other
Than U.8. {iov. Than U.8. Gov.
Securities of Re- Securities of Re-
porting Federal porting Federal
Reserve Mcember New York Reserve Member New York
Banks Times Banks Times
{unit, Average Price (unit, Average Price
Year-Month biltion dollars) of 40 Bonds | Year-Month billion dollars) of 40 Bonds
1929-Jan, 2.94 90.2 1931-Jan. 3.60 84.7
Feb, 2.93 29.7 Feb. 3.72 84.9
Mar. 2.90 88.7 Mar. 3.75 84.9
Apr. 2.89 88.0 Apr. 3.83 83.2
May 2.88 87.5 May 3.87 82.5
June 2.84 86.9 June 3.77 82.2
July 2.79 86.5 July 3.68 83.9
Aug. 2.7 86.2 Aup, 5.64 | 81.7
Sept. 2.76 85.8 Sept. 3.64 77.0
Oct. 2.76 85.9 Oct. 3.60 72.5
Nov. 2.85 85.5 Nowv. 3.51 : 71.9
Deec. 2.86 86.9 Dee. 3.42 } 64.6
1930-Jan. 2.83 868  |1932-Jan. 3.26 T X
Feb. 2.77 7.2 Feb. 3.21 65.8
Mar. 2.80 88.6 Mar. 3.19 66.4
Avpr. 2.90 88.5 Apr. 3.25 61.3
May 3.01 88.1 May 3.29 55.9
June 3.15 87.3 June 3.26 55.3
July 3.20 872 July 3.20 59.2
Aug. 3.40 88.3 Aug. 3.19 67.5
Sept, 3.44 88.8 Sept. 3.23 70.2
Oct. 3.57 86.9 Oct. 3.28 68.1
Nov, 3.71 84.6 Nov, 3.31 65.6
Deec. 8.66 82.4 Dee. 3.28 63.9
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4, In Warren and Pearson’s Prices, the authors contend that the general
price level varies directly with the ratio existing between the supply of gold
and the production of all other commedities, The following table! gives (a)
an index of the world’s stock of monetary gold, (b) an index of the world’s
physical volume of production, (c¢) the ratio of gold to production, and (d) an
index of wholesale prices in gold in the United States. What is the corrclation
between (¢) and {d)? Does this confirm the authors’ eontention for the period
of time under consideration?

i Index World’s | Index World’s Index

| " Stockof | Physical Volume | Ratio, Gold| United States

1‘ Monetary Gold of Production Stock to | Wholesale Prices

| (1880-1914 | (1880-1914 | Production | (1880-1914

C = 100) = 100) = 100)
Year \ (a) | (b) | () | (d)
1500 | 101 ! 106 ! o5 | 94
1901 | 104 ‘ 107 \ 97 93
1902 | 108 114 95 99
1903 111 ‘ i15 97 100
1904 115 115 \ 100 | 160
1905 121 : 125 97 101
1906 | 125 ; 134 | 9 | 103
1907 130 129 ‘ 101 109
1908 | 137 | 129 | 106 105
1909 143 138 104 113
1910 | 147 ‘ 140 \ 105 | 118
1911 | 152 143 | 106 109
1912 | 156 ‘ 156 | 00 | 116
1913 161 157 | 1035 117
1914 | 168 \ 146 ! 115 113
1915, 176 148 119 116
1916 183 \ 142 | 129 | 143
1917 | 188 ; 144 1 | 197
1918 | 194 { 142 1 117 i 219
1919 | 195 I 138 1 141 | 231
1920 | 200 : 156 | 128 i 259

i | 1
1921 206 ‘ 138 | 149 164
1922 | 208 | 159 : m 162
1928 212 : 169 ' 125 168
1924 213 \ 17t ; 125 1 164
1923 217 187 | 116 172
1926 222 ! 183 1 121 \ 167
1927 997 i 192 ' 118 | 159
1928 2392 ! 202 | 115 ¢ 162
1529 9238 ; 208 ; 114 159
1980 243 198 123 144
1931 | 250 |

184 136 ' 123

1Source: George I, Warren and Frank A. P'é;ré.on, Pric;e;“Ne;v Yorki
1933, Ch. V, p. 79.



ELEMENTS OF CORRELATION 259

5. The following tables give the total national income! of the United
States expressed in 1913 dollars, and the index of industrial production, for
the years 1909-1932, What is the correlation between these two series?

Total National Income Index of Industrial
in 1913 dollars Production
Year {unit, billion deltars) 1923 = 100
1909 29.2 70.2
1910 30.2 73.8
1911 30.6 64.4
1912 32.4 78.0
1913 334 81.2
1914 32.8 67.1
1915 34.1 80.8
1916 36.9 101.2
1917 37.6 99.9
1918 37.2 97.0
1919 35.1 89.7
1920 34.3 94.2
1921 33.6 71.6
1922 37.8 93.1
1923 42.1 113.9
1924 43.6 104.8
1925 45.2 116.4
1926 47.3 119.9
1927 49.7 117.3
1928 50.7 120.5
1929 51.2 128.7
1930 44.5 103.7
1931 38.9 82.9
1932 28.6 62.4

6. Are the following fipures correlated?

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dee.

Egg Production, | 1171 10.87 16.11 1585 13.92 12.46 10.87 9.84 8.19 5.50 4.63 8.91
average per bird

Average Price 38.0 319 2247 211 213 21,7 233 25.8 30.2 36.9 46.4 484

Cen higher correlation be obtained by shifting the data as in the first
problem? What conclusions de you reach?

~ 1Source: Irving Fisher, Booms and Depressions, New York, 1932, Appen-
dix V.
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7. The following data, from Warren and Pearson’s Prices, op. cit., page
25, give the wholesale price indexes for all commodities and for farm products,

1850-1932. Are these figures closely correlated?

Farm i Al
Year Products | Commodities
1850 71 L 84
1851 (R 83
1553 w5
1854 93 108
1855 98 110
1856 84 105
1857 95 111
1858 76 93
1859 82 a5
1860 77 93
1861 75 189
186 0
1864 162 | 193
1865 148 | 185
18686 140 | 174
1867 133 1 162
1868 138 158
1869 128 | 151
1870 12 135
1871 102 ! 13
1872 108 ! 126
1873 103 151
1874 102 126
1875 99 | 118
1876 8 110
1877 ‘ gy ! 106
1878 : 72 91
1879 | 72 20
1880 ‘ 80 100
1881 ! 89 103
1882 : 99 108
1883 | 87 101
1884 ; g2 93
1885 - 72 85
1886 68 32
1887 ‘ 71 85
1888 ‘ 75 86
1889 ‘ 67 81
82

1890 om
| |

|

|

——

\
i
!

Year

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

1901
1302
1903
1904
1905
1906
1807
1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920

1921
1922
1923
1924
1925
1926
1027
1928
1929
1930
1931
1642

|
|
|

|

|
|

Farm All
Products | Commaodities

87
a7
08
104

94
102
100
100
160
118
181
208

291

G4

211

124
132
138
140
154
141
130
149
147
124

91

6%

| 82

76
\ 78

70
N 71
.
N Zl
I
|

81
! 86
| 87
87

\ 88
90

95

[ 92
L a9
i 103
\ 95
101

102

\ a9
| 101
S b
172

191
202
\ 226

143
147
147
143
151
146
139
141
139
126
107

0

8 The law of supply and demand in cconomics states the reasonable
proposition that when a certain commeodity is scarce its price advances and
vice werga. Test this law by obtaining the correlation between the production
and the price of cotton over a certain peried. It will be evident at once that
some corrections must be made before a significant correlation can be ob-
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tained. One of these is the correction which must be applied to the dollar
whose purchasing power has fluctuated very greatly in the period under dis-
cussion. Another factor that must be taken into account is the lag of price
behind production. It is reasonable to assume that the production of one year
will possibly be the chief influence on the price of the succeeding year. To
correct for the changing dollar, one divides the price series by the price index
of the year under consideration and multiplies by 100; to take account of the
lag in price, the production figures are to be shifted one year.

COTTON PRODUCTION AND PRICES

Production unit: 1,000,000 bales,
Price unit: cents per pound.

! Index- J Index-
i | Commodity , Comimodity
Produc- | Prices, | Produc- Prices,

Year tion iPrice‘ 1926=100 | Year tion |Price| 1926—100
. i P | —
1900 10 10 ! 56 . 1916 11 14 36
1901 i 10 9 b5 | 1917 11 23 118
1902 ; 11 P9 59 1 1918 12 32 131
1903 10 11 60 L1919 11 I 138
1904 M1z 61 | 1920 13 | 34| 154
1905 : i 9 60 | 1921 8 | 17 98
1906 | 14 ‘ 11! 62 11922 10 P21 97
1907 11 12 65 f 1923 ! 10 29 100
1908 14 | 10 63 : 1924 14 29 93
1909 10 o 12 68 v 19256 16 23 104
1910 12 C15 70 0 1926 18 18 100
1911 16 ¢ 13 Gh 11927 12 18 95
1912 14 ;12 69 | 1928 14 © 20 97
1913 14 I 13 70 11929 15 P19 96
1914 16 ‘ 12 68 . 1930 14 14 86
1915 11 | 10 . 70 1931 1 9 73

} ‘ ; 1932 13 6 65

8. The Correlation Table. The first approach to the subject
of correlation is the construction of a table which will exhibit any
relationship that may exist between the frequencies of the two
groups of characteristics. One might well surmise, for example,
that in this Steel Age a high volume of general industrial produc-
tion would be accompanied by a high volume of pig iron production.
To test the validity of this conjecture, statistical data on pig iron
production and general industrial production, monthly averages
through the years 1897-19183, are gathered. The range of the
two variates may be divided into convenient sections (for sugges-
tions as to the choice of interval, see section 9, Chapter 1). In the
present case, since industrial production ranges from 54 per cent to
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124 per cent, and pig iron production from 55 per cent to 125 per
cent of a hypothetical “normal”, it will be convenient to divide the
range for both series into eight divisions of ten units each. The re-
sults of this classification can be represented by the following cor-
relation table made up of 8 > 8 = 64 cells:

120-129 | i | | ¥ | ‘l 5 |1
— T o
110-119 ‘ 5 ! 6 34 | 1 | 41
100-109 | | | f s s e ‘| 62
| I ‘ _ | R R
90-99 | s oqss |1 | 37
| [R— ‘ | S N
80-89 1 2 28 29
| | e SN N S
7079 | T2 | | 9
B : |
| | i - e .
60-69 2 1 | | x 3
_ ‘ — e — S S
50-69% 6 2 . ‘ L 8
] —r---——..::__f;,:“—___:f\é..—;,-i:,—, R
Frequencies | 6 4 |10 |29 ! 41 58 40 16 | 204
of columns ! | - i |
© 50-59% | 60-69 | 70-79 i 80-8 !90-99 1 100-100 * 110-119  120-129 | Frequencies
L | : ; i - ofrows
T TapiE A Pie Iron Production (percentage of trend), 1897-1913

One notices a pronounced tendency for the largest {requencies
to group themselves about the main diagonal of the table. This
tendency always indicates that a correlation exists between the
variates whose frequencies have been recorded, and it is the pur-
pose in the present chapter to see how this correlation can be ex-
pressed numerically.

As a second example, for comparison, consider the problem of
determining whether or not a relationship exists between whole-
sale commodity prices and employment, using the United States
Bureau of Labor Statistics index of wholesale commodity prices
and the index of employment, from 1919-1932. Since the commod-
ity price interval is from 104.5 to 62.6 and the employment interval
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from 110‘.9 to 55.2, nine divisions of five units wexre chosen for the
former and twelve divisions of five units for the latter. The corre-
lation table follows:

! —— oW - 7} ; = P —
110-114 \’ | | | } 4 4
— «
105-109 | \ g T 2 9
| | ‘
100-104 ‘ ’ | 5 9 14
i |
95-99 | 6 . 25 11 42
——— ‘ [ i
i : :
L 90-94 | | 4 | 13 17
| —
85-89 | | b2 2 . 4 ’
! o ! : i ~ |
80-84 . ! 1
e
7579 2 |3 4 ; | 9
i ; | . ‘ R I -
: | | | | | |
70-74 I 4 1 i : 1 5
— ——| | ! i | e |
6560 | 2 2 | i ! | 4
— L ]
60-64 | L3 : ; | 5
. | | |
T T | — T |
: 55-59 | 6 | 2 . | ‘ 8 i
O S i ' — I
— e .
-Frequencies | 6 7 ¢+ 8 4 5 | 2 12 50 26 120 l
fof columns i ; i
‘ 1‘ ,,,,, 3 S— ! e
| ' | : | i ;
| ' 60-64 , 65-69 ' 70-74 | T5-79 | 80-84 iss-ss 190-94 | 95-99 | 100-104 | Trequencies|
| | | o R AR L | ofrows _
Tapre B Index of Commodity Prices (1919-1932)

In general, if there seems to be a tendency for the frequencies
to group themselves about any line, either straight or curved, in
the correlation table, then there will always be some amount of
correlation existing between the two variates. As has already been
stated in the preceding section, if the line about which this group-
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ing occurs is straight, the correlation is Iinear; otherwise, non-
Linear.

As a preliminary to the study of correlation, one first draws on
coordinate paper two axes along which are marked off intervals
corresponding to the class marks of the two varialtes whose cor-
relation is being studied. Cells, as in the correlation table, are then
constructed and in these cells dots are made, as in ordinhary graph-
ing, to represent pairs of values in the frequency lable. The number
of dots in each cell equals the frequency with which that particular
pair of values occurs. The diagram thus obtained is known as the
seatter diagram. Figure 43 is the scatter diagram for Table A,

%
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FIGURE 43

Now, if the arithmetic means of the sets of points in each col-
umn are calculated, graphed, and connected by straight lines, one
obtains the so-called regression curve of 4 on x, which affords some
indication as to the linear or non-linear character of the correjation.
For convenience in the calculation of the means, the new class
marks y=1,2,3,....,n, are used. A similar calculation of the
means of the rows, using the class marks x=-1,2,3,....,n, gives
likewise the regression curve of x on Y.
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The two regression curves for Table A are given in the accom-
panying Figure 44 and indicate clearly that the correlation is es-
sentially linear. )

{1) Regression curve of ¥y on z.
(2) Regression curve of z on .
Jd (1) (2)
® Y Yy x
11 1.0 1| 13
2| 15 21 23
3 | 31 3| 32
4 | 4.0 4 | 4.0
5 | 50 5| 4.9
6 | 6.1 6 | 6.0
7169 7| 6.9
I 5,19 8| 8.0

2 3 - 3 3 3 Fl

FIGURE 44

Since it is often easier to plot a scatter diagram than to com-
pute a correlation coefficient, and since the estimate of co-variation
based on a scatter diagram is often sufficiently accurate for certain
purposes, six scatter diagrams are given on page 266. Two of these
diagrams exhibit high, two medium, and two low, correlations be-
tween the indicated pairs of variables. In each case the actual cor-
relation coefficient is given. The degree of linearity is estimated
from the degree of concentration of the points about a straight
line. Study of these graphs in Figure 45 will enable students fo
approximate roughly a correlation coefficient from a scatter dia-
gram. It should be emphasized that in practically every case it is
advisable to make a scatter diagram before computing a correla-
tion coefficient. In this way, much tedious computation is avoided
while much valuable information, especially with regard to the
linearity or rnon-linearity of relationship, is often gained.
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4. Caleulation of the Coefficient of Correlation. It is conven-
ient to have a definite method of procedure to follow in the calcula-
tion of the coefficient of correlation from a correlation table, and
the following scheme is suggested :

Class ‘ ‘ : . » .
Marks | | ; [ Frequencies | : i
(¥) ; } : Lo | ofrows  g.y | gy Ti=EFymy Ty
— —— . | |
_ | | | | | |
¥y Fyy Ji F, F; - F, g 9y 9.YE T, Iy,
|
. [ o ‘
Ya Fyy i Foy Fyy T Fy, ! 92 LG | g.YR T, Ty,
. . S __ , -
' | : 5 [
¥s | Foa | Fyp Py 10 Py, 9s ‘ Iy | 93Ys? T, T3y,
| . R
. . | | ! —
Yy ! Fo |Fp @ Fy e I PP 9, Lo ou? T, Ty¥s
_ ' — : . .
- . o]
———— e .v__; 1 —-—i 1 {' I-;i R
Ym ile F, Fma i an Im D Gl ! gmyng T, To¥m
! i _ !
Frequencies | ‘ ‘ N : I o
¢f columns fu ; fs J fs — 1 f, . (Totals) GY ; GYz | T TY
‘ i — - i _
Class Marks | x, ! £, | Ty - | a, B‘:" "'2 — Fx _ GY
] T | TN Ty
| w i T B
Iz | famy o Taty ) fe®g = | Pty FX . (FX2) (G¥2) _
| | ! q— @ = N —% = N ~—y? 7
[t if1w12 ‘Ffzfﬂzzi faxsz - fnxnz FXxz 1 — TY —=
o | _ —ﬁ-‘lxy—xy ~ Y
. . : .‘ r= =
S;= iP5y 8 i Sy | 85 | | Sn ! S oz Ty Tz Oy
| — !
o o, | '
S;ox Symy (Syry | Symy |- | Syw, 0 SX = N{aT) —FX ¥
i J . VIN(FX?) — (FX)2][N(GY?) — (GY)

Omne should note especially the computation checks: Y = SX, § = G¥Y,T = FX.
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The actual calculation of the two examples of the third section
are given bclow, and the curves of regression for the first are
graphed in Figure 44.

Caleulation of Correlation Coefficient for Table A

|

t

I Qlass 7\ _’ | l \ 1 I \Frequencms | 1 {
Marks ' | : | i | . of rows ‘ g-ylgowr! TV Ty
) \ ‘ R T N _(___j__ﬁ 2 R ﬁl_ _\
RO T T N i___l __ |1 ‘* 15 __'1001 785105 735,
6 _\_ lﬁl”‘ i ‘N_ _f37|w77347;_ 14 __fj 246 | 1476 ! 241] 1446
5 o ?__.r_ B .751_}_},_ e ‘ 310\ 1550 ,gml 1555
_f_f;_pfl_ \_ﬁl _ﬁlwi_g‘._gzi 7 _1|_ﬁ vl_-_i_n_,ﬁl. B 148\ 592 | 146} 581,
3 4.\__l_,li,,2_‘i LTS T T O N R . O 261 l 88‘ 264
JOREE S T 2 A S N ,18_| 3 0y
1*2.1“!,'313)
"o ’| glal I o ‘I rﬂ»—_'* s ‘_, 0 \ l o
! |
- e . = I: :";__Jr': I‘_ sy iy _l:. g en———— — ;%T'_ R —- - I__'
.Frequencms v i | 1 L I{ l % ‘
\ofcolumns ‘6\ 4710 2 29 | 41‘ lioi usl 204 ‘ 17| \1)1 4628
_—— " ’;'_ 1— ‘ ,— - - !_7 T T T __" T |” —
s lolal 2} al a) s el dl |
jom lo|a 20|87 | 164] 290 | 240) 112] 917 ] ) o |
 few? Gl4i40 261 \606 1450 [ 1440 | 7;;4 4635 57 0
s o2 88 1(;51 205 | 24 Al 111\ o7 || | 1
— —_— ‘ - - H _ \-—- 7| — — -
S.x {0 1 2| 42 264 ‘ 664 1475 1404\ 77| 4028 | | \
Plg‘ Iron Production ( 1897 1913) i
917 917
x = 4.4951 , ¥ =-—=4.4951 ,
204 04
Ma635
0= [ or— (4.4951)% = V25147 = 1.5858 ,
1658
= \/——_ (4.4951)% = V26029 = 1.6134 ,
4628 (4.4951) (4.4951)
204 _ 2480 o
T T (1.5858) (1.6134) e

Note the Check: TY = 4628 = 8X, § = 917 == Y, T-=917 = FX.
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Calculation of Correlation Coeff@ment for Table B

Class \ i ] f | Frequencies S N
Marks | ‘ ! P ! i i of rows g-¥| gy T | T.y
) o o (9) !
R N T R B oi | ver e o
5 *Wf o ) e 9 45 | 225 —53‘.—1_45
4 V‘*—*”W'l ___‘Wm 0 50 9 14 | o] 224 51! 204
B W% ___u 7!7‘77'6 o5 11] 42 | 126! 378 |11 é&
e T s Twmw wla oW
B S T N T A 1 O e e Y Y I
0 R 0 0ol o o
o T En e IEE IR YE
-2 : 4l N 101 2010 _9, 18
I 4 "1z 36 10 s0
I e N R
e oel2l 8 40| 200 130— 150]
T N IR O i SR T
of columns (f) 6 7! 8: 4| 5 i2 | 12, 50 | 26, 120 | 206 {1356 |215  1179]
Class Marks | ; ; Lo ! i i
(zy | 4| 8 -2 -1 01 2| 3| 4 T
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The calculations made from the correlation table are self-evi-
dent, except, perhaps, for the quantities T and S. T, as explained
in the general table, is defined by the series

Tg s Z?—Fi,-xj ,

that is, the frequency in each cell is multiplied by the corresponding
value of x, and these products are then summed by rows.

Similarly, S is the sum of the products of the frequencies in any
column by their corresponding values of y, i.e.,

S;; = Ziﬁv-;jy; .

Referring to the calculations of Table A, it is seen, for example,
that
T,c=15(7) =— 105 ,

T,-=6(5) }34(6) + 1(7) ==241 ,
S,-=5(5) 1 33(4) -} 3(3) =-166 .

PROBLEMS

1. The following data give (a) the closing prices as of Deeember 31,
1931, for 200 stocks listed on the New York Stock Exchange, and (b) the an-
nual dividend payments per share on these stocks. Make a scatter diagram
and caleulate the coefficient of correlation. What do ¥ou now know of the rela-
tionship between the dividend and the price of shares? The answer to this
problem is obtained by the use of the following intervals: for the dividend
series, the interval range is 50-949 at umits of 50, with the first interval hav-
ing frequencies under 50, and the last interval having frequencies 950 and

" over. For the price series, the intervals range from 10 to 220 inclusive, at
units of 10, with the first interval being under 10. Thus for the dividend series
there will be 20 intervals, and for the price series 16 intervals,
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Closing Prices as of December 31, 1931, for 200 stocks listed on the New York
Stock Exchange, and Annual Dividend Payments per Share on these Stocks

i

Price : Price
No. ; Dividend i per shara No. Dividend per share
1| 160 16% 51 2.50 213
2 2.00 23 b2 2.00 30
3 1.50 ! 2434 53 10.00 17815
4 3.00 97 54 10.00 10014
5 .60 614 55 3.00 34
6 A0 T4 56 1.00 18
7 | - 11.00 212 57 4.00 45
8 | 180 10% 58 1.00 7%
9 ! 6.00 117 h9 4.00 10614
10 3.00 60 60 1.75 21%
11 6.00 1754 61 7.00 6914
12 3.00 3314 62 3.50 b4
13 2.00 16 63 2.00 9
14 2.00 17% 64 2.00 1114
15 2.00 b5 65 3.00 25
16 2.40 33 66 4.00 647%
17 4.00 11014 67 2.00 40
18 6.00 27% 68 3.00 4815
19 3.00 30 69 1.00 17
20 2.00 3914 70 2.00 33%
21 1.00 1014 1 6.00 50%
22 4,20 47% 72 1.50 24
23 3.00 27 73 1.50 22
24 2.00 21 74 4,00 60
25 1.40 30% 75 3.00 6935
26 1.00 17 76 8.00 21
27 3.00 50 77 4.00 67
28 1.00 16 T8 1.50 174
29 2.00 303% 79 2.00 16
30 5.00 5815 80 8.00 370
31 5.00 42 81 4.00 6114
32 4.00 41 82 5.00 1031
33 3.00 361 83 3.00 36
34 3.00 257% 84 1.00 1415
35 2.00 28 85 1.00 9
36 5.00 4134 86 3.00 10%
a7 5.00 15 87 8.00 35
38 9.00 178% a8 1.00 24
39 5.00 1051 89 250 24
40 5.00 106 % 90 4.00 4214
41 8.00 95 91 2.00 1184
42 3.00 60 92 3.00 35
43 2.50 30 93 3.00 58
44 1.00 22 94 2.50 3914
45 2.40 26 | 95 1.60 17
46 1.00 133 96 4.00 85
47 6.00 95 97 , 6.00 8934
48 2.00 15% 98 | 3.00 27
49 1.60 21%; 99 L 1.50 19714
50 , 4.00 24 100 i 12.00 194

(Continued on page 268)
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Price

] | i i ) ! Price
No. Dividend i per share I No. 1 Dividend | per share
S 4_‘|___.d —_l— = {,7, “
1 i H
101 200 | 23% 151 L1000 874
| TR 1 RY l\ 152 | 120 0 14Y
103 300 40 15% 400 6215
04 230 | 40% | ¢ 100 14
105 ;40 114 158 I 400 ! 86
ws | omeo | g% jase | so0 o7
107 3.00 | 22% 157 160 1 13%
108 | 240 0 25% “ 158 | 600 | 53
109 1 200 1 19 159 L 100, 89
110 1.00 16% | 160 . B00 . B0
111 | 3.60 | 536 " 161 | 5.00 | 37
iz | 50 | 3% |12 | za a3
113 C8E0 ., 20 ' 163 Loemo - 31%
114 | 300 1 16% H 184 | 350 | 65%
115 3.50 17 165 P50 ! 23 %
116 | 800 | 23% | 166 C 240 4 214
17 | 600 1 146 167 L 160 9014
118 | 300 | 50% | 168 L 1a0 - 43%
oo Lol e o
120 | 1 .21 ) .
| i ‘ ! !
121+ 3980 ., 40% \ 171 1 040 22
122 | 200 | a34% |12l o260 . 46
123 | a5 % 173 | s i 19::/,2
124 500 ' 77 t 174 ! . ‘i
125 200 | 20 175 L2501 40%
126 | 300 | 34 176 L 3.00 33
127 t1.00 | 16% 177 | 1.00 1 12%
R Y S SR I SN+ S R -1
129 200 ' 32 1 4
130 1 400 . 21 180 400 2914
131 500 . 26% 181 . 5.00 | 5114
B2 | Zoo | 9% 82 | 400 L 5914
138 i00 | 84 183 ‘ ‘g.gg %3
134 1.20 7 184 . :
135 250 | a8 185 TR T
136 100 | 10% 186 [ 300 | 49
137 60 | ey 187 |30 4%
138 300 1 78 188 . 800 . 46%
139 200 | 30 189 | 800 | 35%
140 240 | 32Y% 190 S - £
i | !
141 5.00 . Bl 191 I 2,50 1914
142 \ 100 | 40w 192 “ 500 | 71
143 600 90 193 400 | 40%
144 1 350 | 40 H 194 {315 0 2l
145 A48 8% 4 195 I 250 | 52%
146 l 9.00 L 136% | 196 i 5.00 45%
147 6.00 | 82% | 197 | 2.00 16
148 | 800 , 182% | 198 100 203
149 120 | 1% | 199 | 300 | 19%
160 | 273
il

8.00 . 212% | 200 \ 1.00
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2. The following items give (a) the closing figures of the Dow-Jones In-
dustrial Averages for each {rading day from April 20 to June 20, 1933, and
(b) the franc-dollar exchange rate on each of these days. Make a scatter dia~
gram from these data, and calculate the coeflicient of correlation,

i Dow-Jones
1933 i Industrial Averages Franc-Dollar
Month-Day I Closing Price Exchange Rate
April—20 $72.27 } $.0431
21 X 69.78 L0420
22 , 72.24 0425
24 5 73.69 L0436
256 ’ 72.45 .0439
26 72.64 0436
29 71.71 L0431
28 | 73.10 ! 10436
29 77.66 .0454
May 1 } T7.79 ' 0467
2 T7.29 ; 0462
3 i 77.37 | .0458
4 ‘ 79.16 ! L0463
b : 7278 i 0471
6 T 77.61 ! 0461
8 ‘ T7.63 i 0458
o] ! 77.23 i L0457
10 | 80.78 | 0461
11 : 82.418 : L0464
12 ! 82.14 ‘ .0463
a 80.85 | 0463
15 79.70 ‘ 0460
16 81.29 0459
17 ‘ 82.64 J 0456
18 82.57 0454
19 i §1.76 | 0449
20 80.21 | 0450
22 79.94 ] 0453
23 i 83.06 0456
24 ! 34.29 : 0457
25 i 83.73 .04b7
26 86.42 L0457
27 89.61 (3466
29 90.02 0473
31 88.11 .0466
June—1 ‘ 89.10 0466
2 92.21 0467
3 20.02 0468
b 91.89 0467
6 ! 91.90 0470
7 92.08 0496
8 92,62 0477
9 ! 94.29 .0480
10 94,42 .0483
12 96.75 L0483
13 94.79 0476
14 94.06 0480
15 88.87 0467
16 89.22 0475
17 90.23 0473
19 95.99 0481
20 95.23 , 10484
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3. The table below gives American figures for (a) area planted to wheat,
(v) production of wheat, and (¢) yield per acre, for the years 1894-1930.
Make a scatter diagram between (a) and (b), and between (¢) and (b), and
ealculate the correlation coefficients for these series. Do your results suggest
that acreage planted, or yield per acre, is more important in wheat production?

Area Planted Production ‘ Average vicld
to Wheat of Wheat per Acre
Year (1,000,000 acres) (1,000,000 bu.) (bushels)
1894 89.4 516.5 ! 13.1
1895 40.8 hG9.56 13.9
1896 43.9 544.2 12.4
1897 46.0 610.3 13.3
1898 51.0 2.2 15.1
1899 52.6 G58.5 12.1
1900 514 602.7 11.7
1901 52,56 T88.6 15.0
1902 49.6 T24.8 14.6
1903 51.6 663.9 [ 12.9
1904 478 £96.9 | 12.5
19056 49.4 726.8 ; 14.7
1906 47.8 756.8 : 15.8
1907 451 637.9 i 14.1
1908 45.9 644.7 i 14.0
1909 44.3 700.4 : 15.8
1910 : 457 635.1 : 13.9
1911 i 49.5 621.3 12.5
1912 ! 45.8 720.3 : 15.9
1913 50.2 763.4 ’ 15.2
|
1814 ! 53.5 891.0 | 16.6
1915 60.5 1025.8 ! 17.0
1916 52.3 636.3 i 12.2
1917 45.1 636.7 ! 14.1
1918 59.2 9214 5.6
1919 T5.7 967.9 12.8
1920 61.1 833.0 13.6
1921 63.7 814.9 12.8
1922 62.3 867.6 13.9
1923 59.7 T97.4 13.4
1924 52.5 864.4 i 16.5
1925 h2.4 676.8 ' 12.9
1926 56.4 8314 14.8
1927 58.8 878.4 14.9
1928 58.3 914.9 15.7
1929 61.1 806.5 13.2
1930 59.1 850.9 14.4

4. Make a scatter diagram for the following data, which give (a) month-
ly average deollar-yen exchange rates from June 1931-May 1933, and (b)
dollar value of American imports from Japan during these same months. Cal-
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culate the coefficient of correlation. What conelusion as to the effect of de-
preciated currencies on export trade is suggested by your answer?

faley

| Value of Imports

Dollar-yen from Japan

Year-Month Exchange Rate ($1,000,000)
1931-—June $.4937 14.99
: July 4936 16.06
Aug, ! 4985 16.05
Sept. | 4934 17.26
Oct. 1 4925 19.47
Nov, 4930 20.41
Dec. 4346 18.80
1932——Jan. : 3599 14.15
Feb. .3432 1272
Mar. 3216 15.16
Avpr. 3281 11.28
May ! B187 8.81
June ! 3029 8.54
July 2745 8.58
Aug. 2449 10.07
Sept. 2363 ; 12.14
Oct. .2306 10.51
Nov, 2062 11.73
Dec. .2073 12.32
1933—Jan. 2074 7.94
Feb. 2079 5.69
Mar. 2126 7.53
Apr, 2209 8.06

5. Make a selection of data from some field in which you are interested
and test for correlation. ¥or example, obtain the figures for the production
and price of some commodity over a period of more than fifty years and see
how supply and demand are correlated. If such data are studied, two factors
must be considered. First, correction must be made for increased population.
This can be made by multiplying each item in the production columm by
100/P, where P is the population;® second, there may be a lag in the price
due to the fact that the effect upon the price of an increased or a diminished
supply may not be felt immediately., This ean be corrected for by shifting
the price figures one year.

5. Lines of Eegression. It is natural next to inquire what are
the best lines which fit the points lying on the regression curves
obtained in section 3. But, upon consideration, it is seen that the
values of ¥ on the regression curve of ¥ on z are themselves averag-
es of the values in each column. It has seemed more desirable,

o 1Annua] population figures, interpolated from the decennial census figures,
are given in the World Almanac and other handbooks,
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therefore, particularly since greater symmetry is gained in the
resulting formulas, to fit the best line to the data by minimizing
the sum of the squares of the deviations for every value of y instead
of minimizing the sum of the squares of the deviations of the av-
erages of y. The result of this is merely to replace ordinary averag-
es by weighted averages in calculating the coefficients in the normatl
equations.
The line is assumed to be of the form

Y =0+ G2T , (1)

and the total frequencies of the column corresponding to x;, ¥ - - -
...z, are represented by fi, fz, ++-- - , fa ; of the rows correspond-
ing to v, Yoy +vr - s YUm DY g1, Goyrovv oo ¢n ; and of the cells; that
is, of the squares in the table corresponding to the points xi, ¥;, by
Fi, where, of course,

f1+f2+ """" "l‘fnzN:
gl.+g2+ ....... ._]_gm:N .
F11+F12+ """" “l—an:N-

One will then have, referring to the work of the preceding
chapter,

Al(x):]- » Az(x):x ’
from which are calculated
[A1A1]’=f1+fz+ """" +fn:N)
[A1A2] = [AZAI:I = fix, -}~ fodg - ev-er —]“ faZn 3
[A,4.] = fro:? + P TERREREE -+ FaZa® s
[A.y] = hth-F GYa 1 + gultm ;
[Ay ] = Fuzw: + FauZo¥e e AR -+ Fontnlim -

Solving the normal equations

[AAda, + [A,A;]a, = f4.y]1 .,

[A.A:]a. -} [A:A.]a: = [4.9]
one has

(A ] [4.4,] — [4:40] [Aw]

[4,4,]1[4.4.] — [4.4,]°

[4:4:][Ay] — [4,A.][4y]
[A,A.] [A:4:] — [4:4.]° '

Ay —
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As shown previously, the following expression holds:

[4:4:][A.4,] — [4,A,)2==N(fix2 + fott? 4 - - - - - ~+ fan?)
—_ (f1x1+f2x2+ """ _l_f”x.ﬂ)z
= N2g2 .

If one makes the abbreviations
2xy =Futh + Fud @+« .. + Fonolim
T = (futy o foty o oen e + faza) /N,
Y= (g% + 9a¥s + -+ + gutin) /N ,
one may then write,
[A:4.][49] — [4:A4,1[A,y] =NZzy — N2z y
and
[A:y][A4:4.] — [4:4:1[Ay J=N y(fizs? 4 fars® F- -+ - - —+Faa?)
— Nz Xy
= Ny(No + Nz*) — N 33 2y = N*ya,> -+ T (N%% § — Nzy)

Thus, for a, and a, are found the values:

o — N3zy — Ny
! N20_:2 ’
o N2yo.2 -+ z (N2xy—NZxzy)
T Nz2g,2

If these values are substituted in equation (1), one obtains

NZzy — Negy ~  z(N*zy— NZzy)
y=2°% x|y ,

.Z\nmcl';,-2 N20'32

or

~  (1/N)Zay—7y

y—1y (x—zx) ,

ot

which may be written
y“‘“"g:T(Uy/‘-"a') (x '—"37) ’ (2)
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where
(UM T2y —Ty

o0y

(3)

The quantity r, as has been stated before, is called the coeffi-
cient of correlation, and the line represented by (2) is called the
line of regression of ¥y on x. In an exactly similar way one can
derive the line of regression of z on y,

t—x=r(o./0) (y —¥) ,

or y—&:; (1/7) (ay/0x) (x —x).

Example: As an illustration, regression lines may be fitted to
the correlation Tables A and B.

For Table A, one finds the values

z = 4.4951 , 7y == 4.4951 , 5. = 1.5858 |
oy, = 1.6134 , r=.9635 .

Hence, the line of regression of ¥ on z is
9 — 4.4951 = 9695 (1.6134/1.5858) (x — - 4.4951) ,

y — 4.4951 == 9864 (x — 4.4951) ,

or
y = .9864x 4 .0611 .

Similarly, the line of regression of x on y is

2 — 4.4951 = .9695(1.5858/1.6134) (y — 4.4951) ,

x — 4.4951 =— .9529 (y — 4.4951) ,

or
2 = .9629y + 2117 .

For Table B, onec has the values

r= 17917 , y — 1.7167 , o, = 2.4593
gy = 2.8901 s r=—.9496 .
Substituting in the formulas, one obtains for the line of re-

gression of ¥ on =z,
y — 1.7167 =—1.1160 (x — 1.7917) ,
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= 1.1160x — 2828 ;

and for the line of regression of z on v,
x — 17917 = .8080 (y — 1.7167)

or

& = .8080y - .4046 .

These results are represented graphically in the accompanying
Figure 46. The angles between the regression lines serve as a
measure of the relative magnitude of the correlation coefficient. In
the case of perfect correlation the lines coincide; in the case of zero
correlation the lines are perpendicular to each other. [See section

6(d)].

(1)

Line of regression of ¥ on =,

(2) Line of regression of x on y,
- - - - Regression curve of ¥ on x,
Regression curve of x on y.
X
a
61 -~
-~
s o
. .
3 £
e
2 - rd
Pl
1 P
x
1 2 2 L) 5

COWLES COMMISSION FOR RESEARCH v ECOMOMICS

FIGURE 46
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PROBLEMS

1. Caleulate and graph the regression lines for the data of problem 8,
section 2.

2. Fit a straight line to the data of problem 5, section 2, i.e., to National
Income (x) and Index of Industrial Produection (y). Compare the coefficient

a,
of @ with the value » — , given ¢, = 19.484, 5, = 6.834,  -= 0.9356.
Oz
3. Tit regression lines to the cerrelation table of problem 2, section 4.

4. Calculate the regression lines for problem 8, sectien 4.

6. Properties of the Correlation Coefficient. The correlation
coefficient, for all its importance in the theory of statistics, is rather
a difficult constani to interpret. A few facts associated with it will
be pointed out in this section, although, unfortunately, the mathe-
matics involved in the proofs is usually too difficult for an elemen-
tary presentation.

(8). The probable error' of the correlation coefficient 7, is
6745[ (1 —72) /v N] ,

where N is the total frequency used in determining it.

Example: In Table A,
p. e. of r—.6745[1-— (.9695)2]//204 = .0028 .

(b). If in the two sequences of statistical values,

Xdata: X, X, X, ---..-. X,
Y data: },1 Yz Y:i """" }!n I

the X and Y sequences are affected by m + n equally probable
causes of which m are common to both, then the correlation coeffi-
cient is equal to

r=m,/(m -}~ n)
or, in other words, the correlation coefficient is the ratio of the
common causes to the total number of causes.

This very beautiful interpretation of the correlation coefficient
is not easily proved, so the discussion must be limited to an illustra-

10n page 161, Statigtical Methods for Research Workers, 3rd ed., London,
1930, R. A. Fisher writes: “It is necessary to warn the student emphatically
against the misleading character of the standard error of the correlation co-
efficient deduced from a small sample, because the prineipal utility of the cor-
relation coefficient lies in its application to subjects of which little is known,
and upon which the data are relatively scanty,” Whenever the sample is less
than 100, it is considered small.
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tion.! For such an illustration, where the elements are under con-
trol, one must turn away for a moment from economic data.

Let five coins be tossed, of which three are marked so that they
can be identified, and record the number of heads that appear. The
value thus obtained will form one item of the X data. The two un-
marked coins are picked up and thrown again, letting the three
others lie as they were. The number of heads now observed in the
five coins is recorded to form one item of the Y data. A series of
such operations provides the X and Y data.

It will be observed that this experiment gives one the control
of the underlying causes of the correlation of the two sequences
and that all the forces at work are identified. It is obvious that the
fundamental cause of obtaining an entry of three heads, for exam-
ple, in the X sequence, is the behavior of the five coins when they
are tossed. Since in each pair of items three coins are always the
same, it is obvious that there are five causes of which three are
common, and the correlation coefficient should equal 3/5. That this
is actually the case is exhibited in the following table, which is made
up of the a priori frequencies:

Heads on First W’I}‘ogs

Y | ; 9! 9g.y|gwr T |T.y
5 o | 2] 1| 4| 0| 100 |\ 16 | 80
4 | 3 8| 7] 2| 20| 80| 320 | 68 |272
3 3| 12| 16 8! 1| 40| 120 | 860 |112 |336
s | 1| 8| 18| 12| 3 40| 80 | 160 | 88 |176
1,27 8 8 20| 20| 20 | 32 | 32
o 1| 2| 1 B ;; 4 o] o] 4| 0
f| 412 )| 40| 40, 20| 4| 128 320 960 896
2| 0| 1| 2| 8| 4] s e
om0 |20 80| 120 | 80 |20 |20 | FTT L ¥TEY
fox2| © |20 | 160 | 360 | 320 {100 | 960 %229_52_ (@5 =125, op=125 .
S 4 32| 88| 112 68 | 16 128
S.;—] 0 |32 " 176 | 336 33};25—;;5 Zay _896_, _T—6%_3
N 128 1.25

iSee D. Brunt, The Combination of Observations, Cambridge, 1923, pp.
169-170; also, T. L. Kelley, Statistical Method, New York, 1923, pp. 189-150.
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One must be careful in applying this suggestive analogy to
economic relationships, where the assumption of a multitude of
independent random causes often cannot be made; in many in-
stances there are common causes at work on several variables.

(¢). Itis also important to know that the value of the corre-
lation coefficient lies between —1 and 1.

When » has the value 1, it is clear that both lines of regression
coincide and the correlation is perfect; but when =0, the two
lines are at right angles to one another and no correlation what-
ever exists. Similarly, when » = —1 there is perfect inverse corre- .
lation, and the regression lines again coincide. The proof of these
facts follows:

Setting ¥; — y = d; and x; — & = D), the following identity
can be formed

S e= Fy [dy — r{oy/e0s) D112 4- Fra{ds — v (0y/02) D2]* + - -
Fi.ldi—7r(o,/0:) D0]?
+ Fuld: — r{oy/0:) D11 + Fos[do — 7 (0y/0:2) Do]* -+
+ Foulds — 7 (y/0:) DJ2 A+ - -

A Fous[dn — 7 (ay/0:) Di1* =4 Foaldn — 7 (0y/00) D2]°
4o Fopldo — 7 (ay/02) D,]*
= [gudl?F g8 -1 + gndntl — 2roy/a.[FudDy -{-Fr.d; D,
oo FoadnDi] A 7202 e D2 D 4 oo fuDi?] -

But one notices that the first term is equal to No,* , and the last
term reduces to 72(e,2/v:2) No,2 — 7*No,® . One also has
FodD, -+ Fd Dy v ovn-- 4+ FundnDn
=Fu(—7) (2. —2) + Fuly—9) (@ —2) 4
+ Fon (Y —¥) (&0 — %)
= (Futhits + Fastita -+ -+ ) — (0% + gt -7 )@

— (fry - folts - )17—1—1\’55
=ny—N§5——NE§—{—NE?7=NGNVT .
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When these values are substituted in the formula for S2, one
gets
S? = No,2 — 2r% N + 7%,°N

= No(1—7%) .

But the left hand member is never negative, and thus it follows
that r can never be greater than 1. When r==1, the two regression
lines are seen to be identical, which means perfect correlation, and
when 7 = 0, they become

y=1 , line of regression of ¥ on x,
and

z=ua , line of regression of z on y,

which means no correlation.

(d). From section 5, it is seen that the regression equations
of yon x and z on y are

y_?_J';”T(‘Ty/ﬂ'a') (x"—i) ’
y—y=(1/7) (oy/0:) (x —2) .

Hence, from section 4, Chapter II, the slopes of the above lines
are found to be #(o,/0,) and (1/7) (¢,/0,) respectively. From ana-
lytical geometry, which says that the tangent of the angle ¢ be-
tween two lines of slopes m, and m, is given by the formula tan ¢ =
(m, — my) /(1 - mym.) , the tangent of the angle between the
regression lines is

rlo/or) — U/r) (o) oumy

Tan ¢ = —
1 + (U'yz/amz) (0':2 —I— Uyz)

Arr—1)/r .

Thus, it is seen that when + — 1, tan # = 0, and the lines of re-
gression are equal. When 7 == 0, then tan ¥ = o« , # = 90°, and
the lines of regression are perpendicular.

(e). A specialization of the correlation coefficient that is in
common use as a method of estimating relationships is what is
called the rank correlation coefficient.

Let the items of a set of data be ranked according to two attri-
butes, X and Y, and let a. and a, be the ranks of the items with re-
spect to X and Y respectively. It will be clear that ¢, and @, are
merely the integers 1, 2, 3, --- , N in some order.
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Then the correlation of the rank g, with the rank a, is meas-
ured by the coefficient,
6 2 (a: —ay)*
N(N*—1)

In order to derive this formula, one will first notice that the
first and second moments of both sets of rank numbers are equal
respectively to

Yn=N(N+1)/2

LI

and

nt—N(N 1) (2N +1) /6 .

1

il

Hence one has,
A=Ay =(N+1)/2 , and o> = o= (N*—1) /12 .,

One also notes the expansion:
N

S(a, — @)= 37 — 20, -k 4,2 = — 2Xaa, 42 Y n?

n 1

= —2%a.a,+ N(N+1)(2N +1)/3 .
Now, consider the correlation coeflicient,
(U/N) Soay— AA,

Uz Oy

Employing the expansion of X (¢, — ¢,)? to replace 2a.a,, one
can then write r in the form,

_(NA1) (2N1) /6 — (1/2N) Z{ar—4,)* — (N+1) /4

(N*—1)/12

which reduces to the formula given above.

(f) The probable error of estimete of y is defined to be the
quantity
6745 0,1 — 7.

That is to say, if one uses the regression equation (2), section 6, to
estimate a value of ¢ from a given value of «x, the probable error of
this estimate is the value just written down. A similar formula
holds for estimating the error in a value of z computed from 2
gwen value of y.

1This co—;ﬁ(;gﬁt ;9,_ p;eneralrgwattrlb\;éaé Ci‘éga;ﬁan Who_.;lliﬂ—léfl_e&iig
in 1904 in the American Journal of Psychology, Vol. 15 (1904}, pp. 72-101.
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Thus for Table A, we get

p. e. of estimate of ¥y — .6745 > 1.6134+/1—(.9695) 2 — .2667,

PROBLEMS

1. Calculate the probable error of the correlation coefficlent given in

Table B.

2. The following table gives the heads in successive tosses where 4 pen-
nies are tossed in the second throw and 8 remain as they fell in the first throw
of 12 coins. (From R. Pearl, p. 298, Medical Biometry and Statistics, Phila-
delphia, 1923, adapted from A. D. Darbishire).t Caleulate the correlation co-
efficient, On the basis of the theory of this section, what should the coefficient
of eorrelation be? Show from the probable error of » that this prediction is

justified.
¥ i ' ! Totals
SN N S Y O S I
12! | | 0
e T
1 | . 1 1
10 0. 13|33 10
R e e R
9 * 1) 1| 4|13 5| 5] 3] 1 33
. 8 1 8l19]13i10]| 1 52
P S T N il Ml Ml
& 7 1| 115 2012713 | 7| 1 94
[ = [ PUNSN, PR PV PR U PUyy_ S——— S (U, U U A— ——
g 6 4012 | 801 36|19 10| 7| 1 119
2 S N R e S R
5 5 4|21 30| 26|13) 4 08
= S T el it Sl Al R A
E 4 s| 1|12 20| 9| 5/ 2 52
3 2| 8 9 7| 4 30
2 42| 3 2 11
1 E 0
0 . 0
f| olol9 2! 58 lme 11388169 |32{11| 8| 1 | 500
x| 0|1 2] 38 4 ‘ 50 6] 7 8| 9101112

Heads in First Toss.

Some Tables for Illustrating Statistical Correlation.” Mem. and Proc,

Manchester Lit. and Phil, Soe., Vol. 51 (1907), 20 »p.
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3. Compute the angles between the regression lines of Table A, Table B.

4. Calculate the angle between the regression line for the table in (b)
seciion 6.

5. Find the rank correlation for the twe series of problem 5, section 2.

6. Compute the rank correlation for the data of problem 2, scction 4.

7. The Corrvelation Surface. A very illuminating way of look-
ing at correlation is that obtained directly from the theory of
probability.

It has been shown in previous chapters that if the frequencies
of two variables © and ¥ are normal, the respective probabilitics
associated with class marks x and y measured from x and y a8
origin are

1 il
Pm'T — [ 20' 2 ’
o\ 2t
and
.
P.U_-.: —_—_ - 20-y‘_1
o,V 2n

If the frequencies associated with & and y are independent of
one another, then the probability of a joint occurrence of x and ¥
will be

Popre—ee e 20 @ (4)

If straight lines, equal in length to P, be erected at each point
on the zy-plane, it is clear that the locus of these points will form a
surface. This is known as the normal frequency surface.

Now it seems very rcasonable to assume that, if the » and ¥
frequencies are not independent; that is to say, are correlated to
some extent, the probability of the joint occurrence of & and ¥y
should be represented by an equation of the form:

P — k euzhbzyi-('uﬂ

The values of a, b, ¢, and &, should all depend upen the correla-
tion coefficient » and be limited by the condilions (1) that I’ should
reduce to P, for » = 0, and (2) that the volume included between
the zy-plane and the correlation surface should be equal to unity.
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The calculations® necessary in the determination of a, b, ¢, and
k, depend upon integral calculus and can not be made here, The
result is what should naturally be expected, i.e.,

1 S S i
P j——t —— £ 2 (1 —_ ’1"2) g-_rz TrOy O'yz
2agop/ 1 — 92

The surface corresponding to this equation is called the correla-
tion surface, and reduces to the normal frequency surface when
r = 0. The following Figure 47 shows an ideal normal frequency
surface. As the correlation increases, this surface shrinks in about
the diagonal of the square, until, in perfect correlation, only a line
is left.

FIGURE 47

8. Non-linear Regression. It sometimes happens that the re-
gression curves obtained by connecting the means of the columns
(or rows) will not approximate straight lines. The correlation is
then said to be non-linear and the theory is considerably more com-
plex than in the linear case.

In order to give a measure of the correlation in this case, Kar!
Pearson, in 1905, introduced two new measures of correlation,
7y and 5, known as the correlation ratio of y on x and the correla-
tion ratio of x on ¥, respectively.z

1F_c_n- these computations gee, for example, E. T. Whittaker and G. liébinj
son, The Caleulus of Observations, London and Glasgow, 1929, pp. 324-327.

2“0On the General Theory of Skew-Correlation and Non-linear Regres-
sion,” Drapers’ Compuny Research Memoirs, Biometrie Series II, 1905.
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These ratios are defined as follows: If the symbols .. and oy
designate the standard deviations of the means of the Y arrays of
X’s and the X arrays of Y’s respectively, then

Tmy Tmz

and #,—

Ty L)

Hyz ==

To put this in form for calculation, note that
o= L1 — 1) 1/N =510/ (N) — v,
where 5,- = [Z, F;w;1/fi=_8:/fi . Similarly, from symmetry, one
finds o%,. to b;
otme == [ g:2%]/ (N) —&*

where &; =[ Y Fi;2;1/9:=Ti/9: -
L)

Substituting these values in the equations of 7, and #, , one
reaches for the correlation ratio the values

/ 1 - Sl_z 5‘2

Ny

Ny == f‘ s
Oy

&

"r 1 Tz -

N
\Nig‘

Ny =
Tz

As an example, consider the following correlation table:
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From this table one ean calculate, as in a previous section, the
following values:

x =4.99, y = 3.84, ot = 3.75, 0,2 = 3.78, = —.86,
o OIBEID) — GEDT VIOW _
V (2720/147) — (3.84)  /3.783
V (4084.5/147) — (4.99)* v/ 2.786
Hry == = = .87

v (4212/147) — (4.99)% \/3.653

1t will be noticed that both of these coefficients are larger than
the value for the linear correlation coefficient, », but this fact is
searcely sufficient to give full assurance that the correlation is non-
linear since the differences, 5%, — 7%, and 5%, -— 7% are not large.

The test for linearity, or non-linearity, must he made by means
of some probable error formula. This question has been carefully
investigated by J. Blakeman’, but because of the intricate character
of the analysis only the result can be stated here. Among the
probable errors which Dlakeman derives for the test of linear re-
gression is the probable error for n* — 72, le.,

p. e. == =& .6745 Ve [T—20p2 —r?) + ot —1'] .

VN

In our example, it is seen that

p. e of 7, — 12 = == .020 ,
W — 17 £ poe.=.072 & 029
p. e of y2., — 7" ==+ .01 |

noey— 17k poe== 015+ .014 .

Since the first of these differences is almost threc times its
probable error while the second is just equal to its probable error.
it is safe to conclude that one regression line shows a mnon-
linear tendency but that the other is probably linear,

A second test which can be used when and r are both small,
or when 5 — »? is small compared with 7, is the following:

1%40n Tests for Linearity of Regression,” Biometrika, Vol. 4 (1906}, pp.
332-350.
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The correlation is non-linear if

N(np*—7r3)> 1137 .
In the example,

147 (9% — 7?) = 147(.072) — 10.58
and

147 (' — 1?) = 147 (015) = 2.20 ,

which confirms the conclusion previously reached.

PROBLEMS
1. Calculate the correlation coefficient for the following table:

1 | i‘ | 8 15i 7!4 1{ -

2 : ““1_?10 5_?7 6 |

3 ‘ 4z 5235, 9 ﬁz

4 ‘2 9216 ;[ 2 4! 3 1

b 127 552 ! 1 1 2

e s oslsi2] | 1l

v leis|el | || 2

— ||

8 2| 2 | 1 1
Class ' _
Marks f 1213416 | 6| 7|8 ! 9 (10 ! 11 [ 1?

2. Test the table of problem 1 for non-linearity. Is it more non-linear
than the table used as an example in the text?

1This is derived from the formula for the probable error by assuming, first,
2Vt —r?
that the p.e. may be replaced approximately by .6745 ~———— and assum-
VN
ing, second, that %2 — #2 is less than 2.5 times this p.e. The formula follows

by solving the inequality for N (22 — »2). See Handbook of Mathematical Sta-
tistics, edited by H. L. Rietz, Cambridge, Mass., 1924, p. 131,
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3. The following data show the relationship between Total Bills Dis-
counted by the Federal Reserve Banks and Interest Rates on 4-6 months prime
commercial paper. Calculate the correlation coefficients and determine whether
this relationship is non-linear,

- — = ‘
; Class | I ! ‘: i
o | Marks ! , ! ‘
z . () | :
g e | =
- T T T R I Y A
E o6 12034
351 A
mE, b 1(38|1]2
S T IR S NN DU RS Ao (S AN RS
Broh .
e 4 | 2 9|41 ‘
g N S PR PR [ PR SRR N N
k3ot . —
7] 3 12 41914 »_
24 e
agl 2 1| 1nls5]|1
A/ e
o 1 4 23] 3|1
‘d‘i . ——_—y—— | ——
—_ 0 2|83 5|3 !
'% I ———— 4‘__*7_{_'—'.__-'::1: _T:|: i Sty '__"‘i:"'i
= Class D 1 L
: Marks o ! | i ;
(=) 01 2'38]415)6]7:8.9

Interest Rates, 4.6 months Commercial Paper (1923-1932)



CHAPTER XI

MULTIPLE AND PARTIAL CORRELATION

1. Multiple Factors in FExperience. Simple correlation is a
measurement of the amount of co-variation between two series, and
may indicate the degree to which one element affects another, or
the degree to which the two are affected by common causes. But
the most cursory thought on the situation will serve to indicate that
most of the economic elements with which one deals are influenced
by a variety of factors rather than by one alone. Crops, for ex-
ample, are a result not only of acreage planted, but also of the yield
per acre. The yield per acre, in turn, is a compound of several
causal factors, the labor expended, temperature, amount of rainfall,
fertilizer supplied, and perhaps irrigation. A consideration of long-
term bond prices would suggest that they respond to such situations
as (1) changes in the cost of living, since the public regards bonds
as relatively undesirable in protracted periods of rising prices, and
vice versa, (2) the earnings applicable to the interest charges, the
bond price responding to variations in earnings which threaten or
fortify the coupon payments, and (3) other interest rates, which
influence the height at which bond prices will capitalize their cou-
pon payments.

Science deals most successfully with those problems in which
two or three primary causes of some phenomenon can be isolated
and analyzed. In economic situations there are often obviously a
multitude of factors at work. Measurements are lacking which
would enable one to assess the relative importance of these factors,
the primary causes are not always adequately identified, and the
elements in the series cannot be controlled in order that their in-
fluences may be evaluated. This last point embraces one of the
major difficulties in economic studies as compared with, say, studies
in chemistry. If one wishes to determine the influences of variation
in money rates on business conditions, he cannot, for purposes of
experimentation, stabilize money rates for a period of years and
then measure what effects ensue in commerce and industry. The
elements of economics lie outside the effective control of the student
of economics.

But statistical procedure has a substitute for lack of control

—293—
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Statistics allows the isolation of any one of several variables in an
economic state, and a study of the influence of the remaining vari-
ables. Or it allows study of the composite influence of several vari-
ables on one variable. These ends are obtained through the tech-
niques of partial and multiple correlation.

Unfortunately, the mathematical theory on which this subject
rests is beyond the scope of an elementary treatment, but analogy
with the theory of simple correlation, which has already been de-
veloped, makes possible some comprehension of the essential fea-
tures.

2, The Relalionship between Wheat Production, Acreage
Planted, and Yield per Acre. The subject of partial correlation is
most profitably approached by means of an example. An example
may be taken in which common sense affords a solution at the be-
ginning, so that onc sees statistical technigue producing results
which appeal a priori as valid.

It is obvious that wheat production is the product of two, and
only two, independent elements, the first being the acreage planted,
and the second being the yield per acre. If acreage never varied,
production would vary only with yield per acre; if yield never
varied, only acreage would influence produection.

However, one may set for himself the statistical problem of
finding out how far production of wheat can be determined from a
knowledge, first, of acreage planted and, second, of yield per acre.

The subscripts 1, 2, and 3, may be used to designate the annual
items in production, acreage, and yield. Using the figures from
1894 through 1930, as given in problem 3, section 4, of the previous
chapter, the following figures are obtained :

Wheat V Mean } Standard Deviation
1. Production J 742.71 {(million bu.) 3 124.68 £ 9.7760
2. Acreage | 52.49 (million acres) 7.36 = 5770
2. Yield d 14.13 (bu. per acre) - 140 = 1098

The correlations among these three items are tabulated thus:

Correlation Coefficients of Zero O_f_dg_eaf

Wheat i Production \ Acreage Yield
] e
1. Production r,, = 1.000 *\ 7, = 782 |  r,= .587
\
2. Acreage Ty, = 782 [ T =1.000 7y, = 016
8. Yield = 58T | 7y, = .016 743 = 1.000




MULTIPLE AND PARTIAL CORRELATION 295

3. Partial Correlations. The table shows that there exist
positive correlations among all three variables, although the coeffi-
cient as between acreage and yield is insignifieant. This last is to be
expected, since there exists no necessary or probable connection be-
tween the acreage which farmers plant and a yield dictated largely
by the accident of weather. From the other coefficients it will be
indicated that acreage planted seems to have been rather more de-
cisive than yield per acre in influencing the production of this
cereal.

A simple question, to which the approximate answer is known,
may be raised. Suppose that through all these yvears acreage
planted had been unvarying, then would not yield per acre have
been much more potent in influencing production than appears from
the table of coefficients of correlation given above? Or, if yield per
acre had been stable through these years, would not acreage planted
have been practically the sole remaining influence in dictating the
level of production?

In other words, it is quite possible that the correlation between
production and acrcage might be materially altered if production
and acreage items were correlated only for those years which had
the same yield. For example, what is the correlation between pro-
duction and acreage planted using only those particular vears in
which the yield was 15 bushels per acre?

It is often difficult to answer a question of this kind from
the data at one’s disposal, since the number of cases is generally
too small to permit the analysis of such subdivisions of the data
without greatly increasing probable errors. The answer to such a
question, however, is inherent in the correlation coefficients them-
selves, and the elegant and powerful theory of partial correlation
enables us to obtain this answer, In other words, from the theory
of partial correlation, one is able to measure the relationship be-
tween two variables when one or more other variables that influ-
ence the situation are held fixed.

The following notation has become standard in this theory.
Let X, X, -o-v-n , X, designate a set of n variables whose mutual
correlations are being investigated. The correlations between them
are denoted by the symbol 7;;, where 7 and 7 may have any of the
values from 1 to n. For example, r,, is the correlation between X,
and X.; 7y, is the correlation between X, and X,, ete. These corre-
lations are known as coefficients of zero order, and the subscripts
are known as the primary subseripts. The student will, of course,
recognize them as the familiar coefficients which he has studied in
the previous chapter.
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If one of the items, say X, is held fixed, and the correlation
then eomputed for two of the other variables, for example X; and
X;, the corrclation coefficient thus obtained is desighated by the
symbol 7, and is called the correlation coefficient of first order.
The subscript k is called a secondary subscript.

Without going into its derivation, which is beyond the scope of
this book, the formula for the second order correlation coefficient
may be griven as follows:

Vi = Tk
Fijup = ————— (1)
VAT — 732 {1 — 742

As an example, calculate the correlation between production of
wheat and acreage planted, when yield per acre has been held fixed.

Referring to the table of section 2, it is secn that one is re-
quired to find the value of r,.. Making use of the values of the
zero-order coefficients, one thus obtains:

T12 —— T13T2s 782 — (.687) (.016)
Ti2:3 =— e —— —
T U ) (=) VIL— (B8N 11 — (.016)7]
o Te2—009 773

\/( B55Y (L9997  .809

This calculation ean be made either by logarithms or from the
very useful tables computed by J. R. Miner.?

Again, calculate the correlation between production and vield
per acre when acreage planted is held fixed. From equation (1),

13— T1aT32 58T — (.782) (.016)
7‘13"‘! == — .
\/(1‘_—‘7'122) (1 —7%) \/[1-—— ( 782)2] [1— (016)2]
_ DOR7 —.013 _ HT4 — 991 .

vV (.388) (.9997) 623

1], R Mmer Tables of \/1 —riand 1 — r2 fm If‘;c in Pmtml C’mrrlrr»
tion and Trigonometry, Baltimore, 1922, 49 pp. ’
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In the third place, one may calculate the correlation between
acreage planted and yield per acre when production is fixed. This
involves the computation of 7..;., as follows:

P25 — T21Tm .016 — (.782) (.b87)

Tog == =

VO—mS (1 —rm® V= (7821 — (587)7]

_ 016 — .459 :—.443 o gT79 .

V (.388) (.655) 504

The following conclusions emerge. The size of the first coefli-
cient of partial correlation indicates that in the absence of any
change in yield per acre, the acreage planted practically dictates
the size of the crop. The size of the second coefficient indicates that
in the absence of any change in acreage planted, the yield per acre
practically dictates the size of the crop. The third coefficient, which
is negative, indicates that in the absence of any change in the size
of the crop, acreage and yield move in almost complete inverse
relationship. If crop production, for example, in two years is iden-
tical, any increase in acreage that may have occurred must have
been compensated for by a decrease in yield, any increase in yield
by a decrease in acreage. These conclusions, statistically reached,
are, of course, entirely agreeable to common sense.

The significant thing about this conclusion is that one is able
to arrive at the fundamental relationships which exist befween
factors without the necessity of actually studying sub-groups of date
taken from the original figures. If one had actually been able to
select statistics from a large number of years when production was
constant, and had calculated the correlation between acreage and
yield, he would have reached the same result, within sampling error.

Example: Relationships between the Dow-Jones Industrial
Averages, Pig Iron Production, and Volume of Sales on the New
York Stock Exchange.

The following table gives the zero-order correlation cocfficients
between monthly items, 1897-1913, of (1) The Dow-Jones Averages
of Industrial Stock Prices, (2) Pig Iron Production, and (3) Shares
of Stock Sold on the New York Stock Exchange:
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These series were chosen for a certain analysis because two of
them correlated fairly well with the third and very slightly with
each other. The partial correlation coefficients of the scries are

7'12.3 = .8221 ’
tige == DOBT ,
?‘-_53.1 o= —_.4:24:4: -

The interpretation of these coeflicients is interesting. Shares
Sold may be thought of as representing speculative interest, and Pig
Iron Production as representing business activity. The coefficients
of zero order would indicate that there is a strong tendency for
stock prices to respond to husiness changes, and a distinet tendency
for stock prices to vary with speculative interest. Curiously, there
seems to be little co-variation between business and speculative
interest.

When the partial correlations are considered, it appears that
when changes in speculation are climinated from the picture, busi-
ness is even more heavily influential on stock prices, and that when
business activity is eliminated from the picture, the importance of
speculative feeling is enhanced.

PROBLEMS
1. Check the compulations of the cocfficients of partial correlation in
the above example. What is the significance of ry,,, = ~—.42447

2. From your own knowledpe of economics, select an instance where
some element is presumably aifected by two or three variables. Calculate the
coefficients of partial covrelation and interpret the answers.

4. Correlation Coefficients of Second Ovrder. Tt is evident that
the definition of the foregoing section can easily be generalized in
case more than three variables are studied. If, for example, one is



MULTIPLE AND PARTIAL CORRELATION 299

considering a problem in which four factors enter, namely, X,, X.,
X, X,, it will obviously be desirable to know the correlations which
exist between any two of the factors when the other two are held
fixed. The correlation coefficients in this case are designated by the
symbol 7., Where the primary subscripts, i and 7, refer to the
variables whose correlation is desired, and the secondary subseripts,
i and m, refer to the variables which are to be kept fixed. The
correlations ;... are spoken of as coefficients of second order, and
are computed in terms of the coefficients of the first order by means
of the following formula:

Tijk — VimekTjmek
Vijekm = . (2)

VAL —720) (1 -——7%,0)

To illustrate the caleulation and use of the coefficients of second
order, one may use the following data, from one of the most in-
teresting periods of American economic history —— March 1, 1932
to Julv 1, 1933:

The Dow-Jones Averages of Industrial Stock Prices,
Frane-dollar Exchange Rate,

Annalist Index of Business Activity,

4. Moodyv’s Index of Wholesale Commodity Prices.

wr Lo

Representing the above four series by the variables X,, X,, X,
X,, respectively, the following significant constants are calculated :

Mean o
For Series X, 64.9269 13.2692
X, 04042709 00276043
X, 69.4357 6.5587
X, 92.0600 12.2332

Table of Correlation Cocfficients

Zero Order »'s First Order #’s Second Order +'s
7y, = .T136 Pip. g== 0810 | 7, ,=.7375 Tiy g4 = —4965
r, = .7837 Tip. 4 — 2238 . 7y ,==.5953 T 04 — D148
r,, = .B6BT Ti3..= 4681 7y, , =.7545 Ty g3 — T487
ry, = .B80L | oy, = 26907 | ¥, ,—.6019 Tyy 14— 0987
r,, — .8817 Ty o= JT247 0 v, = .4282 ¥oq 12— 7188
r,, — .8125 Py s = 6404 Ty 1629 Ty, 12 = — 2896

1The figures are daily except that in the case of (3), since no daily fig-
ures were available, interpolation was made on weekly data.
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As examples of the caleulations involved in the construction of
this table, consider the following:

Example 1: Compute 7., from the coeflicients of zero order.
Using formula (1) with proper subscripts, one finds

Py e Fag — T4 Tas _ .8801 — (.8817) (.8125)
T A=) =) vII— (8817) 7] (1 — (8125)7]
_ 8B0L—.TI64 1637 _ ..o

v ((2226) (.3398) 2750
Example 2: Making use of the coefficients of first order, cal-
culate the value of 72514 .

Making the proper substitution in formula (2), one finds
Puger — Tosor Tsen
V(1 — ) (1= 1%0)
o 1375 — (.7545) (.4282)
VT (15857 1 — (A4282)*]

T2ge14 =

—3 :
I3T5— 3231 4144 oo

v ((4307) (.8166)  .5932

It will be observed from formula (2) that in the general case
of n variables there are two primary subscripts and two secondary
subscripts which can be permuted among the numbers 1, 2, ------ ,
n. It is immediately seen from the formula, however, that the co-
efficient 7:;.m is equal to the coefficient 7.1, since the interchange
of the subseripts ¢ and 7 does not alter the quantities in the formu-
la. One is then led to inquire whether or not this is also true for an
interchange of k and m. In order to answer this question the co-
efficient 7. is expressed in terms of the coefficients of zero order.
After a straightforward algebraic simplification, one has

Pijeorm =
Psj — Tl ik — TimTim == Tix PimPmk 4 TimPik Tom — 7157 km
\/ (1 — i — T2im— T%em + zrik'rim'rkm) (1 _ Irzjk - szm — m +"_2Tjk7ﬂimrkm]
(3)
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This formula remains unaltered when k& and m are inter-
changed, and thus the conclusion is reached that

Pijekem = Tijomk o

Since the figures used in caleulating the first of these quantities are
different from those used in the second, one computation may be
used as a check on the other.

Sinee ¢ and 7 make take any of the values from 1 to » in the
general case, and m and & may then assume any of the remaining
n—2 values, there will be

n!

-nCz - n-zcz _—_—
(n—4) 14

values of the second order coefficients. In the case of four vari-
ables there are thus 6 second order +’s, for five variables 30 7’s, etec.

Partial coefficients of higher order than two are defined in
terms of the coefficients of the next lower order by a formula anal-
ogous to (2). The text will not, however, be concerned with these
higher coefficients.

PROBLEMS

1. Verify by calculation two of the second order coefficients in the table
in this section,
9. Caleulate the values of 7;, , and 7,, ,, and show that they are equal.

8. Derive formula (3) by the direet substitution in formula (2) of the
proper values of the first order coefficients calculated from formula (1) with
proper subseripts.

5. Partial Regression Egquations. In section 5 of the pre-
ceding chapter the regression line for two-variable correlation was
derived, and found to be

y—y=r=2(z—1z) .
Oz

If the notation of the present chapter is employed, ¥ can be re-
placed by X, z by X, % by My, © by M,, and letting the subscripts
1 and 2 refer to the y and x variables respectively, the regression
equation may be written in the following form:

X, — M=t (X, — M)

T3
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or
Xl.—_—g'w&XE—{—ﬂfl-—-—TwEiﬂfz .
L2 oy

This equation, it will be remembered, was obtained by fitting
a straight line by the method of least squares to the correlation
table. In a similar way, it is possible to derive a regression line for
the case of n variables. The involved nature of the calculations does
not make it desirable to present the analysis of derivation here,
but the restrictions which held in the two-variable case carry over
without essential modification to the gencral case.

For three variables one obtains as the regression line for X,
the following:

Xir':b”-ka-{-*bj.k-j Xk+Ce ’ (4)
where the following abbreviations have been used:
bijAk:Tﬁ-kf‘i-_k ; (a)
Uik
Gi=a; V1—7i (b)
and
Ci==M; —byjaM; —bu.; Mi . (c)

The generalized standard deviation, ;. . is usually referred to
as the standard deviation of first order.

Example 1: Calculate the three regression lines for the corre-
lation problem involving the factors of Wheat Production, Acreage
Planted, and Yield per Acre (section 2).

In order to solve this problem, one first calculates the first or-
der correlation coefficients. As illustrated in section 3, these co-
efficients are

Pioug == .956 . Tya0 = -921 N Fozeg == ——.879 .

Next, the values for the zero coeflicients and the standard devi-
ations, given in section 2 of this chapter, are substituted in the
formula for o, (formula b), and one thus finds:

Standard Deviations of First Order (o,,)

Subscripts | ik “ Subseripts 1 TPk
1.2 | 777108 ‘“ 2.3 L 7ssm
1.3 100.9393 3.1 : 1.1234
2.1 l 4.5873 “ 3.2 1.3998
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From the values thus cbtained, the regression coefficients (for-
mula a) are then calculated and tabulated as follows:

Regression Coefficients (b;;4)

o Subscrlpts T by; k ’ Subscripts , bis &
‘ 11127 | 28.1 — 3.5576
13 2 51.1296 \l 31.2 1 .0166
21.38 0697 | 32.1 | — .21

As an example of the above computations, consider the value
of b,..; . From formula (a), one easily gets

Doy == T1geg o == 956 100.9393 —=13.1127 .

Tas 7.3591

The last step is the calculation of the constant term (formula
¢). Substituting the values for the means (see section 2) in the
formula for C; (formula ¢), one obtains the following:

C1:M1 ——bm-a Mz b13~2 Mg y
= T742.71 —(13.1127) (52.49) — (51.1296) (14.13)

== T42.71 — 688.29 — 722.46 — — 668.04 ;
Cz - 50.99 ;
Ca = 1320 .

Using equation (4), three regression lines are at once written
down from these constants:

X, =0...:X, - biseXs "I“ C, :
X, =13.1127 X, |- 51.1296 X, — 668.04 ;

X2 = b X, -+ b2z X + C: ;
X.=.0697 X, — 3.5576 X, -I- 50.99 ;

X = bs1.2X; -+ Do X +C.
X,=.0166 X, — 2172 X, -+ 13.20 .

The meaning of these equations wiil be clear from analogy
with the case of two variables. Consider the third equation, for
example, which expresses the relationship between yield and the
other two factors. Thus, for a year in which production of wheat,
X,, is 850 units (unit, 1,000,000 bushels), and area planted,
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X,, is 60 units (unit, 1,000,000 acres)., the yicld can be calculated
as follows:

X, = (.0166) (850) — (.2172) (60) + 13.20
=-14.28 bushels per acre.

This fizure must not be interpreted to mean that the yield
with the given production and arca figures will be exactly 14.28.
It means merely that 14.28 bushels per acre is a good statistical
guess. In this particular case the yield is actually 14.17 bushels
per acre. Further limitations will be considered in the next section.

The question may very properly be asked how a linear regres-
sion line can be made to approximate the relationship between the
production of wheat (X,), the acreage (X.), and the yield (X4),
when it is known a privii that the relationship between the three
variables is actually

X —=X.-X,.

But if the averages be denoted by M,. M., and M, as above,
then it is clear that the equalion just given can be written in the
form

X, oo My M, = Mo (Xo — M)+ M (Xy—- )
S (X — M) (X — M) .

Now the quantity (X, —- M.) is the devialion of X, {rom its
mean, which is generally small, and (X, — M) is the deviation of
X, from its mean, which is also small. The product is, therefore, a
small quantity of second order, which in general can be neglected
in comparison with either 3, (X, — M) or M.(X, - M), If it be
further noted that M. M, is approximately equal to M., then it will
be evident that the equation

Xl*_ﬂ'fx'::M:;(Xz—Mz)+M2(X:s—ﬂ"1:;) '
that is
X oM, Xok My Xy M, —2M. M, ,

will be a good approximalion to the exact equation given above.!

1Te the reader who is familinr with differential calculus, this explanation
is equivalent to stating that in the Taylor's expansion

f

d of
f ) = e ) +—(E_)O(mpmu) + (5;)0(-:/—%}
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If numerical values be substituted for the three averages, there
is obtained

X, =14.13 X, -} 52.49 X; — 740.66 ,

which is seen to approximate closely the first regression equation.

If the data for the year 1914 be substituted, one obtains for
X, the value 886.6, which may be compared with the exact value,
891.0, or the value 882.2, computed from the first regression equa-
tion,

6. On the Accuracy of Estimate. The next problem that arises
is the determination of the accuracy with which one variable is ex-
pressed in terms of the others. This is done by means of the useful
concept of the probable error of estimate.

By definition, one has

p.e, of est. of X; — 6745 0y , (5)
where

(I,;.jk,:c,'\/ (1 — 'inj) (1 —_ 7'21';;.]') '

This probable error has the same meaning as in previous chap-
ters and gives the probable bounds of error made in calculating X;
from the regression equation.

For example, in the case of the yield of wheat, X, in the pre-
ceding section,

p.e. of est. of X. = .6745 o,/ (1 —77,) (I — 7%55.,)
= (.6745) (1.40) v/ (.65654) (.2274) — .3647 .
The third equation may then be written in the following form
Xy =.0166 X, — .2172 X, -+ 13.20 + 3647 .

This may be interpreted by an example. It was found in the
calculation made in the last section that, with given production
and area figures for wheat, the yield per acre might be expected to
be 14.28 bushels per acre. The probable error of estimate would

1 [/ 0 ) o2y Bef
+ o [(@2—)“ (x —x,)? +2(axay)0(m —x (y—y,) + (éyT)o(y_yo)z ]

+ - ’

terms of higher order than the second may be neglected provided (v — 2,)
and (y — y,)} are sufficiently smail.
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modify this statement to read that the chance is 1/2 that the yield
will be somewhere between 13.92 and 14.64 hushels per acre.

For the problem of accuracy of estimate at a particular point,
see Henry Schultz, “The Standard Error of a Forecast from a
Curve”, Jowrnal of The American Statistical Assgoctation, June,
1930.

7. The Multiple Correlation Coefficient for Three Variables.
Another important constant is the multiple correlation coefficient,
which measures the correlation between the variable X; and the
linear combination of the other variables which makes up the right
hand member of the regression equation. This coefficient, R; ), 18
defined by the equation

1— R = (1—7%) (1 —7%x;) . (6)

The probable error of estimate for the variable X, as given
in equation (5), may obvicusly be expressed in terms of this co-
efficient, giving

p.e. of est. of X; = .6745 (Ti\/]. — R .

Example: For the case of the yield of wheat, X, and the linear
combination of the Production of Wheat, X,, and the Area Planted,
X,, the multiple correlation coefficient Ki.) is found from the re-
lation

1— R23(12) —_ (1 —’rzzl) (1 — 7"232-1)

= (.6554) (.2274) = .1490 .
Hence,
R23(12) — 8510, and R3(12) =.9225 .

Tt is interesting to observe that R;x must be larger than any
of the correlation coefficients of zero or first order which involve
i as a primary subscript. This is proved by noticing from equation
(6) that 1 — R2;, is smaller than either of the two factors
1 — 7%, and 1 — #%;.;, since each is less than unity and hence their
product is less than either separately. Consequently, K2, must be
Jarger than 7%; and #%i.; and thus, since j and k& can be inter-
changed, it must be larger than any of the coefficients having 7 as a
primary subscript.

PROBLEMS

1. The example of section 3 of this chapter gives the zero-order corre-
lation coefficients and the partial correlation coefficients for the three variables
X, = Dow-Jones Averages of Industrial Stock Prices, X, = Pig Iron Produc-
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tion, X, = Shares of Stock Sold on the New York Stock Exchange, monthly
data, 1897-1913. The following table gives the means and standard deviations
for these series:

| Mean i Standard Deviatio;l
X, Dow Jones Industrial Averages | T2.7746 ‘ 14.7228
X,, Pig Iron Production | 55.0134 ‘ 17.9565
X, Stock Sales, N.Y.S.E. k\ 14.6635 ! 6.1050

Calculate the values of the standard deviations Tige -

TT DT T 1] ]

w— DOW JONES INDUSTRIAL AVERAGES
—— REGRESSICN CURVE

i 1 Wi
IRETE A NNE LR
. Lvnm \MM \‘\Jnyl uh! i
g '*

nap

30 507 68 1898 1900 1801 1902 1903 1804 (905 1908 1997 1808 1908 1376 10 1oz 1913

FI1cure 48. Regression of Pig Iron Production and Stock Sold on
Dow Jones Industrial Averages, as discussed in problem 1, section 7.

2. Find the regression equation for the Dow-Jones Industrial Averages,
X, in terms of the other two variables of problem 1.

3. Determine the probable error of estimate for X,.

4. Substituting in your regression equation the latest monthly figures
(end of month) for the Pig lron Production series, X,, and the Stock Salest
geries, X, compare your value for X, with the actual value of the Dow-Jones
Industrial Averages as given for the end of the month under consideration.
Does the actual value lie within the limits determined by X, * p.e. of est. of
X,?

5. Calculate the multiple correlations R, ,;,, R,,;,, and R,,,, for prob-
lem 1.

6. Calculate the multiple correlations, R, ,,, and R, ,;,, and the probable
errors of estimate for the illustrative example of sections 2 and 3.

1These figures may be obtained from the Standard Statistics Company’s
Statistical Bulletin.
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8. Multiple Correlation for Four Variables. The theory and
formulas of multiple correlation apply without essential change to
the case of four or more variables. Since the case of four vari-
ables is frequently met with in application, the explicit formulas
are given below, and the student is referred to advanced treatises
for the general statement covering any number of variables. A
practical method for computing regression equations for the gen-
eral case is given in section 10.

The regression line for X, from analegy with the work of the
previous sections, is written

X == bijm Xj5 -+ Digeim Xz =+ Dimeje Xon —+ C:, (7)
where use is made of the abbreviations

Oickem

Dijoim == Tijkm 1 (a)

Tjskm
ciem = a1V (1 — 72y (1 — 7%t} (b)
CiEMi"_ bij-km ﬂlj—— bik-jm Mk'_‘ bim-jk Mm - (C)

Similarly, the probable error of estimate of X; and the mul-
tiple correlation coeflicient are computed from the formula,

p.e. of est. of X; = .674b oi.jxm , (d)

(:l'z'-'k
1 — R% jum) = e (e)
a;

where

Fiejkm — Ui\/ (1 - szk) (]- —— ’rzi.’l:-j) (1 — TBim-jk-)—

is the standard deviation of second order.

As an example, let the regression line for the variable X; (The
Dow-Jones Averages of Industrial Stock Prices) be computed from
the data given in the illustrative example of section 4.

Making the proper substitutions in formulas (b) and (a), the
following values are obtained for the standard deviations and the
regression coefficients:

Fiang — 6.4050 T1.93 —— 8.2150 b12-34 _ — 3002.0941
T1e34 — 6.3307 T4e03 = 5-6946 b13.24 _— 1-0733
02.34 == 001047 o304 = 3.0721 Digens = 1.0729



MULTIPLE AND PARTIAL CORRELATION 309

As an example of the calculations, consider v.... and by..s .
Substituting in formulas (b) and (a), one obtains

Op.34 — 0'2\/ (1 — 7'223) (1 —_— ?"224.3)
= .00276043+/[1 — (.8801) 2] [T —(.6019) %]
=.001047 ;

Jy.23

= (.7437) (1.4426) = 1.0729 ,

Disns = T142
T4e23

By straightforward calculation one finds from equation (c),
equation (e), and equation (d), respectively:

C,=12,9963 ,
p.e. of est. of X, = =+ 3.7044 ,
R1(234) = .9103 .

The regression equation may now be written down, giving

X, =—23002.0941 X, -} 1.0733 X; - 1.0729 X,
-+ 12.9963 + 3.7044 .

The meaning of this equation can be appreciated from the fol-
lowing example. For June 3, 1933, the franc-dollar exchange rate
(X.) was .0468; the index of business (X,), 83.2; and the index of
wholesale prices (X,), 120.5; from the above equation the Dow-
Jones Averages of Industrial Stock Prices, X,, are calculated to be:

X, == {(—3002.0941) (.0468) -+ (1.0733) (83.2)
+ (1.0729) (120.5) 4 12,9963 = 3.7044
=— 91,0814 =+ 3.7044 .

In other words, the chances were even that the actual average
for the Dow-Jones Industrial Averages on June 3, 1933, would lie
between 87.83770 and 94.7858. {The Dow-Jones Industrial Averages
on June 3, 1933 were actually 90.02.)

9. Appraisal of the Correlation Theory. The theory of par-
tial and multiple correlation is one of elegance and power if, in
the words of Galton, it is “delicately handled” and “warily inter-
preted.” One must first assure himself that the zero correlations
are linear and that the coefficients have been calculated from a suf-
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ficient number of cases. These two points can always be settled by
the probable errors which were studied in Chapter VIII.

The significance of the first and second order correlation co-
efficients can be determined by means of their probable errors,
which are given respectively by the two following formulas:

1 — 74
p.e. of 755, = .6745 7;;-1-5 s  (p.e. of first order )
1 —7%m
p-e. of 7;s5m = .6745 v (p.e. of second order r)

where N is the total number of cases used in the original problem.

Example: The correlations given in section 4 were calculated
from 395 items, In that case

-2 - 2
p.e. of r23.4=.67451—1ﬂ= 6745 L 45998)" o019 .

VN V395

The significance of the multiple correlation of the variable X;
in terms of the others is measured by R, im,, where

. . 1 R%(jkm)
p.e. of multiple correlation E; jxm) = .6746 —————

VN

N being again the total number of cases used in the problem,

PROBLEMS

1. Calculate the regression line for the variable X, in the illustrative ex-
ample of section 8.

2. Compute R, ,,,, and the corresponding probable error of estimate for
the example of section 8.

3. Three hundred and ninety-five items were used in calculating the con-
stants used in the illustrative example of section 8. Calculate the probable
errors of 7,5 Tig.g Togere 80A Boiag).

4. Prove the formula

__bij-k + bi'.k-j bkj-i
i

1—bik.s bpie
5. Compute the regression line for the variable X, in the illustrative
example of section B.

6. Compute the probable error of r,,, for the illustrative example of
section 8.
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10. Extension to a Higher Number of Variables. It will be
obvious to the reader that the direct extension of the methods giv-
en above to the calculation of regression equations of more than
four variables presents great difficulties of computation. As the
number of variables is increased the number of partial correlation
coefficients increases at a terrifying rate. A simple device, how-
ever, makes it possible to extend the method practically to a high-
er number of variables. This device may be illustrated as follows,
where, for simplicity of exposition, the case will be limited to six
variables. One may designate these variables by X,, X, X, X,
X, Xs, their means by M,, M,, M,, M., Ms, M., and their standard
deviations by ¢y, 02, 03, 04, a3, 00 .

The array of correlation coefficients is conveniently exhibited
as Tollows:

X, X, X, X, X X

X, 1 T2 13 T4 715 716

X, T 1 oz Tay V25 Tag

X3 T T30 1 T34 Tas Y16 (’rij == ¥;i )
X T LT T3 1 Tys Tis

Xs I 1 P52 753 N 1 T'se

X } T Tez Tea ¥aq ¥es 1

Selecting X, as the leading variable, the regression for which
in terms of the other variables is desired, one then seeks for a
regression equation of the following form:

— XM+ 5 X+ 2 bty

+-§‘- (Xe—M;) =0 - (8)

The values of the coefficients a,, by, ¢,, --- , e, are then com-
puted as solutions of the following system of equations:

0y + T bl—l""ucl+Tzsd1-{—?'2381=-——-7‘21
T2y -+ by "!—7'34C1+1'35d1+?’3561=—'r31
Ti2 Oy~ Tsa b1+ 1 "|—"'45d1+7"4331=—7'41 (9)
T O+ Tss byt o5 dy 1506 =1y
T82a1+7'63b1+7'e401+r55d1+ € =——"a .

The solution of these equations is most effectively accomplished
by meang of a computing machine. The coefficients of a, in the last
four equations are successively divided into the coefficients of the
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other unknowns. The members of the resulting set are then sub-
tracted successively from the first equation, thus eliminating the
quantity a,. This operation is again repeated on the remaining four
equations, eliminating b.. By continuing this process, the value of
¢, is finally attained, and by successive substitutions the other un-
knowns are then found. This method is only practical when a
computing machine is available, since the divisions must be per-
formed to a number of decimal places in order that the last quantity
shall be determined to a sufficient number of places. The order of
the error in the constants can be estimated by substituting them in
the left hand member of one of the original equations and compar-
ing the resulting quantity with the right hand member.

This same method, of course, can be employed to compute the
regression equations in which X,, X,, ete. are successively selected
as the leading variables. The method is also immediately general-
ized so as to apply to any number of variables.

Ezample 1. In illustration of this method, it will be illuminat-
ing to derive equation (4), section 5.

Adapting to three variables, one writes,

bs (X — M) =0 .

k (10)

Lxi—my + %, — ) +

Equations (9) are replaced by the simpler system,
a; - rpbi = —rj; ,
Tt bi=—"ki »
the solution of which yields,

@ = — (15 — 7)) / (L —125), by = (e — 157%;) / (L — 7).
Equation (10) may then be written,

Xi—Mi:—-ﬁ-U»i(Xj——Mj) _—:r_ibi(Xk‘_Mk)
oy

aj

Referring now to the coefficients of equation (4), one easily
compites

ik Tij— Tix ik oV 1—rix
bi)'-k = Tijxk i l—————r—— e "
aie V(=) (1—r%) oV 1—1*p
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o]
-
G2

Hence

o;
bii-k =—Aa; ,
a;

and, similarly, bi.; == — (0:/0,)b; .

Hence equation (10) is identical with equation (4).

Example 2. The regression equation of the illustrative ex-
ample of section 8 will be computed by the method given above.

Employing the data given in section 4, one first writes down
the following system of equations:

a, -J- .8801b, -1- .8817¢, — — 7136
8801a, - b, 4- .8125¢, — —.7837
.8817a, -+ .8125b, - ¢, = — 8687

Dividing the second and third equations by .8801 and .8817
respectively and subtracting the first from each of them, one ob-
tains,

2561345 b, 1+ .04149053¢, = —.17686698 ,
.04141524p, -1- 2524726 ¢, —= —.27165574 .
Repeating the process, one gets,
5.9341405¢, — -—5.8687945
and hence,
¢, =— —. 9889881 .

From the first equation involving b, and ¢,, there is computed
b, = —.53033468 ,

and from the third equation of the original set,
a, — 6251384 .

When the accuracy of these values is tested in the first equa-
tion of the system, it is found that the values are correct to six
decimal places.

The regression equation is then readily obtained from (8) and
found to coincide with that determined by the original computa-
tions.
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11. A Note on Linear Dependence, To one familiar with the
theory of determinants and linear systems of equations, it is evi-
dent that the subject of regression equations in several variables
is one fraught with certain difficulties of an algebraic sort. For it
might easily happen that one or more of the variables in a system
is not independent of another one of the variables, or of some
linear combination of several of the variables. In technical lan-
guage, one says under such circumstances that the variables are
linearly dependent.

The linear dependence of the variables in an algebraic system
may always be recognized by the vanishing of the determinant
formed from the array of constants (in the present instance the
array of correlation coeflicients given earlier in the preceding sec-
tion) which multiply the variables. But, unfortunately, in statis-
tical studies the system is not strictly algebraic, because of the
probable errors of the correlation coefficients, and hence the cssen-
tial vanishing of the determinant might well be masked by the
magnitude of these errors,

Because of the advanced character of this important ques-
tion, it is not possible to give an adequate discussion of it in an
elementary book. R. Frisch in an elaborate study® to which the
reader is referred has gone carefully into the question of linear
dependence of statistical variables and has advanced empirical de-
vices which he has used to test such dependence. H. Hotelling? has
gone further into some phases of the problem and derives sampling
distributions which enable one to test the relative importance of all
the variables. It is thus possible in this book merely to call attention
to the dangers lurking in a system comprising several variables,
some of which may be cxpressible in terms of others, and to warn
the reader to be on guard whenever intercorrelations between vari-
ables seem to suggest a linear dependence.

As an example, it might be required to find the regression
equation for the Dow Jones Industrial Averages (X,) in terms of
Pig Tron Production (X.) and Industrial Production (X.). For the
period from 1897 to 1913 the correlations between these three vari-
ables are 7, == .B15, 7, == .514, 1., = 994, These correlations show
very clearly that pig iron production and industrial production are
essentially the same variable and hence any regression of X, with

1“Gtatistical Confluence Analysis by Means of Complete Regression Sys-
tems,” Nordic Statistieal Journal, Vol. b (1934) ; also issued by the Economie
Institute of the University of Oslo, 1934, 192 p.

24 Analysiv of a Complex of Statistical Variables into Principal Compo-
Elzegts,” Journal of Educalional Psychology, Vol. 24 (1933), pp. 417-441; 408-
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X, and X; would be spurious. In the case of three variables it is
obvious that the ideal regression would be one formed between

variables two of which correlated highly with the other but not
with one another.,



CHAPTER XII

TYIES OF STATISTICAL SERIES

1. Introduction. In the earlier pages of this book, the discus-
sion of frequency data was limited to the case of skew-normal dis-
tributions, thai is to say, distributions which depended upon ihe
assumption of a constant probability affecting equally all cases.
That this assumption can only be approximaltely true in statistical
series derived from natural phenomena, with all of their complex-
ity of causes, is immediately apprchended. One of the hest ways to
be assured of the truth of this statement is to observe the frequent
occurrence in practical applications of distributions which fail to
correspond to normal or skew-normal patterns.

It is thus important 1o be able to recognize these variant fre-
quency distributions when they appear and to know something of
the probability considerations which underlie their theory.

Unfortunately, a complete mathematical description of series
which do not conform to the pattern of normal or skew-normal
series, as they have been developed in previous chapters, requires
technical knowledge of an advanced nature. Under the leadership of
Karl Pearson, the English school of statisticians has developed the
theory of these higher types of distributions from the standpoint of
differential equations. Twelve lypes have been recognized and
methods devised for fitting them to numerieal data. Good treat-
ments of these types, with numerieal illustrations, are 1o be found
in W. . Elderton’s Frequeney Curves and Correlation, second odi-
tion, London, 1927, and D. C. Jones’ A First Course in Statistics,
London, 1921. On the continent, particularly in Scandinavian
countries, under the influence of J. P. Gram, T. N. Thiele, C. V. L.
Charlier, and others, a1 method of handiing these higher types of
distributions hasg been developed in which the theory of orthogonal
functions has been employed. The method consists essentially in
a generalization of the normal frequency curve and the recoguition
of certain functions of the moments which characterize the dis-
tribution. These functions arc customarily referred to as the semi-
imvariants of Thiele. Thiele's classical paper The Theory of Ob-
servations, published in London in 1903, has been reprinted in The
Annals of Mathematical Statistics, Vol. 2 (1931), pp. 165-308, and
merits careful reading by any one who wishes to get a complete
understanding of the nature of frequenecy distributions of general
type. The work of the Scandinavian school has been made the ba-

—316—
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sis of Arne Fisher's Mathematical Theory of Probabilities, New
York, 1923, and the theoretical development is accompanied by
excellent numerical examples.

Since the methods of both the English and the continental
schools require mathematical tools of a higher order than those
assumed in this book, it will be necessary to limit the discussion to
the description of general characteristics of frequency distribu-
tions which vary from the normal.

2. Fxcess or Kurtosis. In a previous chapter, skewness was
defined as the ratio,
S'= M/ (2N ¢°) ,

where M; is the third moment about the mean, o the standard devi-
ation, and N the total frequency. It will now be assumed that the
skewness is essentially zero. Attention is then ealled to the follow-
ing ratio,

=M,/ (N o*) ,

where M, is the fourth moment about the mean, ¢ the standard
deviation, and N the total frequency.

By methods differing only in algebraic difficulty from those
employed in Chapter VII to compute the second and third moments
about the mean for binomial distributions, it can be established
for a binomial distribution that,

M. /N = npq (1 — 6pq -+ 3npq) .

Sinece one has o — npq, the following value is then readily ob-
tained:

1 6
fo (o — 4 ) -

Since p and ¢ are constant and, as a matter of fact, under the
assumption of a zero skewness are both equal to 14, the first two
terms approach the value zero as n becomes large. Hence one con-
cludes that for a normal distribution,

B2=3 (normal distribution).

By methods rather too complex to be introduced profitably
here, the probable error of 8. may be shown to equal,

p.e. of B,=.6745\/24/N — 3.3044/\/N .
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Hence, one should not regard as normal any distribution for
which |f, — 8] exceeds three times the probable error just written
down,

This variation of a frequency distribution from the normal is
called the excess or kurtosis and it is measured by!

E:ﬁg_g .

If F is positive, the distribution will show a greater cumulation
about the mean thanthe normal curve; if E is negative, the cumula-
tion is less than that of the normal curve, that is to say, the data
tend to dispersion.

Earlier in the book, normal frequency data have been referred
to as forming a Bernoulli distribution. In this hook, distributions
in which the excess is positive will be referred to as Poisson distri-
butions, and those in which the excess is negative as Lexis distribu-
tions. The three types are also referred to as normal, subnormal
and hypernormal respectively.®

It will be instructive at this point to compute the excess for
a rectangular frequency distribution, that is to say, one in which
the frequency over a range from —n to -|-n is a constant, f. This
type of distribution is illustrated graphically in Figure 49.

¥

£=-12

O

Jprmm e - - ——

-2 -1 Q| 1 H

FIGURE 49

18ome authors measure kurtosis by E/2 or E/8. Karl Pearson, who orig-
inated the idea of kurtosis in Biometrika, Vol. 4 (1906), p. 173, says: “Given
two frequency distributions which have the same variability as measured by
the standard deviation, they may be relatively more or less flat-topped than
the normal curve. If more flat-topped I term them platykurtic, if less flat-
topped leptokurtic, and if equally flat-topped mesofurtic. A frequeney distri-
bution may be symmetrical, satisfying both the first two conditions for nor-
mality, but it may fail to be mesokurtic, and thus the Gaussian curve cannot
describe it.”

28ee footnote to section 3.




TYPES OF STATISTICAL SERIES 319

The average is obviously zero, so the square of the standard
deviation is merely,*

S et @t
N 3N

% e

Since 2n f =— N, this may be written,

cf=(n+1)(En+1)/6 .

Similarly, the average value of the fourth moment is,

E"fx‘
e i frn-+1) (2n-+41) (8n*+ 3n —1)
My/N = N 15N

= (n-+1) (2n +1) (30} 3n—1) /30 .

Hence, computing g., one finds,
_ 36(3n*3n—1)
© o 30(n+1) (2n4-1)
If » becomes very large, 3, approaches the limiting value,
ﬁg == 1.8 .

Hence, since a rectangular distribution may be regarded as
a bounding distribution between bell-shaped and U-shaped fre-
quency distributions, one concludes that distributions for which §.
=—1.8, that is to say, for which E ==-—1.2, are U-shaped. This
implies a violent distortion for extreme ranges of the data.

Thus, to summarize, one may say that when

f. =3, £ — 0, the data are normal and belong to the Bernoulli
type;

B» < 3, E < 0, the data are hypernormal and belong to the
Lexis type;

8. < 1.8, E < —1.2, the data are U-shaped; and

B. > 3, E > 0, the data are subnormal and belong to the Pois-
son type.

1For these sums see Chapter IX, section 4.
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These conclusions are based upon the assumption of a zero
skewness in the data. Figure 50 illustrates graphically these types
of distributions.

Exemple: In order to put the problem in concrete form, con-
sider the following table, which gives the deaths from automobile
accidents in thirty-two cities of the United States in 1930 (Data
taken from the Statistical Abstract of the U.S., 1931) :

| Deaths (1930) ‘ Rate per i Population

City (Automohile 100,600 i (1930)
Accidents) ‘ |
‘ | |
Albany 35 ! 277 | 127,412
Baltimore 198 i 24.8 : 804,874
Boston 145 | 18.6 ' 781,188
Buffalo 184 ! 32.4 573,076
Chicago 763 E 23.1 5,376,438
Cincinnati 150 g 33.5 451,160
Cleveland 312 * 34.9 900,429
Columbus 117 40.7 260,564
Denver 69 24.2 287,861
Indianapolis 129 35.8 361,141
Jersey City 73 231 216,715
Los Angeles 3 4320 36.0 1,238,048
Milwaukee ; 112 19.6 578,249
Minneapolis 108 23.5 464,356
Nashville 64 41.8 153,860
Newark ; 126 28.6 442,537
New Haven : 62 8.1 162,605
New Orleans , 124 27.0 458,762
New York City 1342 19.6 6,930,446
Philadelphia ! 381 19.6 1,950,961
Pittsburgh 197 29.6 | 669,817
Providence 1 69 : 274 1 252,081
Reading ; 32 - 28.8 | 111,171
Rochester 58 : 17.8 § 328,132
St. Louis | 172 ; 21.0 - 821,960
Salt Lake City | 58 ; 41.8 , 140,267
San Francisco | 119 19.0 ! 634,194
Scranton ‘ 49 ! 34.3 i 143,133
Toledo ' 106 i 36.8 : 290,718
Trenton j 58 5 47.1 ! 123,356
Wilmington 33 : 30. i 106,597

Yonkers, N.Y. a7 20.4 154,646

It appears from the above table that there is a great differcnce
in the probability of death by automobile aceident in Trenton and
Rochester. Consider, then, the question of whether this difference
is sighificant or whether the variations from city to city represent
what one should normally expect. It is obvious that the cxcess will
tell whether the above distribution is normal or abnormal.
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FIGURE 50

But it is at once evident that it will be necessary to derive from
the data a sub-set of cities with populations which do not differ too
greatly from one another. For a sub-set of cities, one has:

Deaths (1930) Rate per Population
City {Automobile 100,000 (1939)
Accidents)

Buffalo 184 32.4 573,076
Cincinnati 150 33.b 451,160
Indianapolis 129 35.8 364,161
Jersey City 73 231 316,715
Milwaukee 112 19.6 578,249
Minneapolis 108 23.5 464,356
Newark 126 28.6 442 337
New Orleans 124 27.0 458.762
Rochester 58 17.8 328,132
San Francisco 119 1%9.0 634,394
Total 1183 4,611,342

An adjustment to these figures must be made so that the deaths
for each city refer to a uniform population. When the population
figures agree as closely as in the present example, one may, without
appreciable error, adjust the statistical items to the arithmetic
average of the population as a base. This is done by multiplying the
rate per 100,000 by the average population, expressed in units of
100,000, namely 4.611342. A new table is thus obtained:
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! Actual l Deaths Adjusted to an Average

City ‘l Deaths ' Population of 461,134
Buffale ‘ 184 ' 149
Cincinnati i 150 154
Indianapolis | 129 | 165
Jersey City . 73 107
Milwaukee ! 112 | 90
Minneapolis | 108 108
Newark 126 ] 132
New Orleans 124 125
Rochester i b3 ’ 82
San Francisco 119 88

Totals | 1200

Employing these data, one then computes the mean to be 120.1
and the second, third, and fourth moments about this value to equal,

M,=—=1T797 , M, = 423525 , M, = 9947637 .

From these values the skewness and exeess are found to be
Sr==,194 , EF=_-1364 .

Since the number of cases considered is small, the probable
errors are large and conclusions correspondingly insecure. How-
ever, the implication is that there exists a significant variation in
the death rates between the cities studied. In fact, the excess indi-
cates that the distribution is essentially U-shaped.

Frequency distributions derived from time series generally
tend toward the hyper-normal type, The reader is referred for an
illuminating discussion of this problem to a paper by D. H. Leav-
ens: “Frequency Distributions Corresponding to Time Series,”
Journal of the Amevicon Statistical Association, Vol. 26, 1931, pp.

407-415.
PROBLEMS

1. From a table of sines, form a frequency distribution for the ordi-
nates of the function # = sin (27 t/T), where ¢ ranges over the values from
t — 0 to &t = 7. Since the range is over a complete cycle, half the values will
be negative and hence the average is zero. Show that ¢? is approximately equal
to .5 and that the excess is —1.5. This result is significant in business eycie
theory in showing that a frequency distribution formed from the deviations
from a linear trend of a series with a stronpg periodicity will tend to be
U-shaped. Why?

2. The following table gives the frequemcy distribution of Rail Stock
Price Averages for the period from 1859 to 1878:
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Class Interval Frequency Class Interval Frequency
33.0-89.9 | 23 75.0- 819 | 34
40.0-46.9 16 82.0- 88.9 27
47.0-53.9 12 89.0- 959 | 23
54.0-60.9 6 96.0-102.9 | 52
61.0-67.9 ‘ 20 103.0-109.9 16
68.0-74.9 11 ‘ N =240

Compute the excess for these data. The student should note that the
values of the class interval can be replaced by integers without affecting the
final results. Why?

3. The fellowing table shows the frequency distribution of the devia-
tions of Rail Stock Price Averages from the trend during the period 1859-1878

Yy=VZ2oeos [(27t/T) + 7] ,

where o is the standard error of the deviations of the actual data from
a straight line:

Class Interval i Frequency Class Interval ! Frequeney
-24 to -18 6 11 to 17 8
~17 to -11 31 18to 24 ; 9
~10 to-- 4 42 25 to 31 6
-3to 3 9 32 to 38 1

4to 10 47 | N =340

Compute the excess for these data. What do you infer about the move-
ment of Rail Stock Prices during this period? What was the cause of the
deviation from a straight line trend?

4. Compute the excess for the frequency table {b), section 2, Chapter
II1.

5. Make a selection of data of your own and compute the excess. What
conclusions do you derive from this computation?

6. The following table gives the number of banks suspended in 1930 in
ten American states having populations of approximately the same size.
Calculate the excess and determine whether a significant variation exists,
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No. of Banks | Suspensions Population

State Suspended : per 100,000 (1930)
\ (1930} | population
| |
Kansas i 43 ; 22.86 1,880,999
Minnesota | 22 3 8.58 2,563,953
Towa } 86 | 34.80 2,470,939
Virginia ! 20 | 8.26 2,421,851
Louisiana 9 | 4.28 2,101,593
Kentucky 29 : 11.09 2,614,589
Tennessee 28 | 10.70 2,616,656
Alabama 34 1 12.85 2,646,248
Mississippi 52 ‘. 25.87 2,009,821
Oklahoma 23 \ 9.60 2,396,040
Totals 346 ‘ ‘ 23,722,589

7. Determine the excess for the following data:

Number of Commercial | Number of Concerns
State Failures (1930}, ©  in Business (1830},
x ' ¥
Connecticut ! 592 ' 30,974
Nebraska I 202 ‘ 27,622
Kansas !‘ 230 : 35,131
Maryland ' 341 : 30,714
Virginia | 339 | 21,087
North Carolina ‘ 414 i 33,603
Georgia ‘ 387 29,73
Florida ‘! 240 | 27,3506
Tennessee | 298 } 31,234
Washington ! 622 23,524
— | R T I

Totals : 3665 311,022

H
i

Hint: Calculate the number of failures per 1,000 concerns, by dividing
z by ¥, and proceed from this step to compute your adjusted values.

3. The Lexis Ratio and the Charlier Cocfficient of Disturb-
ancy. Another method of detecting the disturbing influence in
statistical series and thus distinguishing between the three types of
distributions has been devised in what are called the Lexis ratio
and the Chavlier coefficient of disturbancy.
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The Lexis ratio is usually denoted by L and is merely the ratio,
L=gq/og ,

where ¢ is the standard deviation calculated directly from the data,
and oy is the standard deviation calculated on the assumption that
the given data form a normal or binomial distribution.

The Charlier coefficient of disturbancy is derived as a natural
measure of variation from the fact that the squares of the standard
deviations of the Poisson and Lexis series as technically defined in
the next section differ from the square of the standard deviation
of the Bernoulli or normal series by multiples of a common con-
stant. [See formulas (1) and (2), section 4]. The Charlier coeffi-
cient of disturbancy, C, is defined to be,

Vo? — gp?

C = 100 3
where A and ¢ are the arithmetic mean and standard deviation,

respectively, of the data; oz is the Bernoulli deviation previously
defined. When

L =1, C=0, the data are normal and belong to the Bernoulli
type,

L>1, C >0, the data are hypernormal, and the distribution
is of the Lexis type, and

L <1, C imaginary, the data are subnormal and belong to the
Poisson type.:

As an example of the application of these two constants, con-
sider the adjusted data given in the preceding section,

In computing the Bernoulli deviation, one may adopt the point
of view that the population in each city is liable to death by auto-

1In the second section of this E};a:pter curves of positive excess were re-
ferred to as Poisson distributions and thosze of negative excess as Lexis dis-
tributions. It will be shown in the next section that ¢p and o, are respectively
smaller than and greater than o,, where oy is the standard deviation of the
corresponding Bernoulli or normal distribution. The fact that the Lexis ratio
9,/0, 15 less than 1 does not, of course, prove that the excess of the Poisson
distribution exceeds that of the Bernoulli distribution. Although Poisson dis-
tributions can be set up in which the excess is less than that of the correspond-
ing Bernoulli distribution, it is generally true that the Lexis ratio of the
Poisson distribution described in the next section earries with it the inequality
K, — Ey > 0, where E, and E, are respectively the excesses of the Poisson
and Bernoulli distributions. The same remark applies also to the Lexis dis-
tribution, that is, that in general, the inequality o, /0 = 1 carries with it the

inequality E, — E, < 0.



326 ELEMENTS OF STATISTICS

mobile aceident, and that the number of deaths constitutes a nor-
mal distribution with a number of instances equal to the average
population of the ten cities, 461,134.2 in each case. Thus, to obtain
the desired Bernoulli deviation o5 — V/upq, the probability, p, of
death by automobile accident in each of the cities is computed
to be

118.3

P 461,1342
q=1—p—1— 0002565 — .9997435 |

= .0002565 ,

and n is taken as equal to the average population of the ten cities,
that is, 461,134.2. Thus, oz becomes,

oz =V (461,134.2) (.0002565) (.9997435) — /118.26 == 10.87 .
From the adjusted data one calculates directly,
o? = [(149—120.1)% 4 (154—120.1)% -} (166—120.1)*
+ (107—120.1)2 4~ (90—120.1)* 4 (108—120.1)*
L (182—120.1) % 4- (125—120.1)2-}- (83--120.1)*

7882.90

-+ (88—120.1)*] /N = - = 788.29 ,

o = 1/788.29 — 28.08 .

Using these two values of the dispersion, one obtains for the
Lexis ratio,
I ~28.08

=—=2.38 ,
10.87

and for the Charlier coeflicient,

. 100+/788.29 — 118.26
- 118.3

—21.88 .

These quantities agree with the conclusion reached in secction
2 that there is a significant disturbance in the automobile deaths
in the cities considered. In other words, the observed variations
cannot be due merely to random sampling, but there are underly-
ing causes which make the probability of death in auntomobile ac-
cidents differ in an essential manner from city to city. Such a con-
clusion has statistical importance in directing attention to such
significant variations.
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PROBLEMS

1. Compute the Lexis ratio and the Charlier coefficient for the data of
problem 6, section 2.

2. Compute the Lexis ratio and the Charlier coefficient for the data of
problem 7, section 2.

3. Make a selection of data of your own and determine to which of the
three series the distribution belongs.

4. On a Probability Clessification of Distributions. Having
now learned the technique of recognizing disturbance in frequency
distributions, the reader will find it profitable to examine more
closely into the probability assumptions which lead to one or the
other of the variants from the normal.

In the case of the Bernoulli distribution which was studied
extensively in earlier pages of this book, the assumption was made
that the frequencies were derived from events subject to a con-
stant probability. When this assumption is changed, then either a
Lexis or a Poisson distribution results.

In order to form a concrete picture of the problem, consider
nurns, U,, U,, .-, U,, which contain white and black balls in such
ratios that the probabilities of drawing a white ball from them are
Dr, P2, oo+, P Tespectively, One drawing of » balls, one from each
urn, will be called a set. TLet N sets be drawn and the frequencies
in the cases where one drew no white ball, one white ball, ---- , m
white balls, be recorded. The following table results:

No, of white balls drawn 0 1 2 3 . n

Frequency fa f fa s - fa
where fo+ fi 4+ fo 4 fs + -+ fa=N.

If the ratios of white to black balls in each urn were the
same, i.e., P, == P, = -+ = P, == p, then a Bernoulli distribution
would be formed with an arithmetic average, Ap, and a standard
deviation, os, equal respectively to,

Ag=mnp , o= \/NpQq .

If the ratios of white to black balls were different from urn to
urn, then a Poisson distribution would result with the following
arithmetic average, Ap, and square of its standard deviation opt

b IR Rl BT had
Ap=mnp , ot =npq—Y (p:i—p)?, (1)

i=1
where p= (p, 4P+ 03+ -+ p)/m, g=1—p .
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If the ratios of white to black balls were the same for each of
m sets of drawings, but were changed for each subsequent set of m
drawings, where m — N/, that is to say, if the ratios P, P2 *** s Prs
were all equal to p, for the first m sets, to p. for the second m sets,
and to p, for the last m sets, then a Lexis distribution would result
with its arithmetic averages, 4,, and the @ square of its standard
deviation, or, equal respectively to,

AL:'np N 021,:npq+m———-2—-—'ﬂ Zr(pb__p)_g [ (2)
s

wherep— (p, - 9. + s+ +2) /7, a=1—0p .

From this point of view, one would then classify the three
types of frequency distributions as follows:

(@) Bernoulli, or binomial distributions, where the probabil-
ity is constant through trials and sets,

(b) Poisson distributions, in which the probability varics
from trial to trial but is constant from set to set,

(¢) Lexis distributions, in which the probability is constant
from trial to trial but varies from sef to set.

The difference between Poisson and Lexis distributions may,
perhaps, be further clarified by two numerical examples.!

In order to construct a Poisson distributicn, suppose that the
drawings are to be made from three urns, U,, U., U, in which the
ratios of white to black balls are respectively 1/3, 1 /2, and 2/3. For
one set of drawings the following eight possibilities present them-
selves: BEB: WBB, BWB, BBW; WWB, WEBW, BWW: WWW.
The probabilities in these cases are respectively 1/9; 1/18, 1/9,
2/9; 1/18, 1/9, 2/9; 1/9. From these values the probability that
no white ball is drawn is found to be 1/9; one white ball, 7/18;
two white bails, 7/18; and three white balls, 1/9. Hence, if 72 sets
are drawn, the following frequency distribution is expected in the
ideal case:

No. of white balls 0 1 2 3
Frequencies 8 28 28

1This discussion is t;ﬁen from a paper by H. T. Davis: “Elementary De-
rivation of the Fundamental Constants in the Poisson and Lexis Frequency
Distributions,” American Math. Monthly. Vol. 34 (1927}, pp. 183-188.
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For this distribution, the arithmetic average and standard dev-
iation squared are respectively 3/2 and 25/36, both values check-
ing with a computation based on the formulas given in (1).

For the construction of the equivalent Lexis distribution, con-
sider the same three urns. Suppose that twenty-four drawings of
three balls each, with replacements each time, are made from each
of the three urns and the number of white balls recorded. The fol-
lowing are the probable frequencies (to the nearest integer) for
each urn, since each set of 24 drawings forms a Bernoulli fre-
quency :

No. of white balls 0 1 2 3

U, 7 11 5 “1
U, a i 3 _ 9 9 3
U, | 1 i 5 11 7
“ Totals. ‘ _1_1 | i 25 25 ’ 11

The arithmetic average and square of the standard deviation
are found to be respectively 3/2 and 31/86, values which agree with
those computed directly from formulas (2).

With these examples in mind, the reader may now proceed to
the general case of « urns, U,, Us, ---, U,, with respective proba-
bilities py, Psy +++ , P

N sets of drawings are now made to form the following Pois-
son frequency:

No. of white balls 0 1 2 - ”
Frequencies fo 1 Foo .o fa
where fo4 fi 4 fot -+ fa=N.

It will be convenient to adopt the following abbreviations:
Ey==1; Ei=p,+pt-+pu;
E,=pp, + D040
By == pap:Ps + PiPels + -0 5
Ey==pDaps--Pa
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that is to say, E. is the sum of the products of the probabilities
taken r at a time,
The following identity from algebra should also be recalled:
(2 —p) (X —1) -+ (& —p,) =FEuo" — Exm?
S B ?— .. = F, .

Since f, represents the number of drawings in which no white
balls are obtained, this frequency may be written,

fo=N[Q—p) (1 —p:) --- (1—p)]
=N[Ey—E, 4+ E,—--« = E,] .

Similarly, one gels

12N[(1"‘"’p1) (1—19z) (1——19:171)%'
(1 —p) (1 —p;) - (Lo P} {1 — D) P -+ -+ ]
= N[E, —2E, 4 3E; —--- = nk,] .

for=NI(1—p) 1 —p2) -+ (1 —Du2) Pral -] .

In order to express f. in terms of the E’s, observe that there
are as many terms similar to the first one given as there are combi-
nations of the p’s taken two at a time, or ,C.. Also, for any value
of r up to # — 2, each product of the form (1 —p,) (1 —p:) -
(1 — Pu-) has ,..C, terms containing r letters each. There are, for
example, »-.Cs terms of the form p,p.p,. Hence, in f, there are alto-
gether ,C. - n.C, terms of 7 4- 2 letters each. But E..., which is the
sum of the products of r 4 2 letters each, contains ,C,.. terms, so
that the coefficient of E,. in f, is equal to .C; - 42C+/2Criz =
(r4-2) 1/ (2r1).

1t thus follows that

g 3 o 4l 5
fe= N — o B oo B = o
nl

i
21(n—2)1

By a similar argument, the other frequencies can be expressed
in terms of the E’s. Thus one gets
41 n!

51
e . : RIS %
fom= NIEs 3!1!E“+3!2:E“ T 5) ! ]

fr=NE,.
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From these values the arithmetic average is readily computed.

AP-:(fo‘0‘—|‘f1'1+f2'2—|—"'+f”°n)/N s
=E1+2(1——1) Eg—-l—3(1-——-—1)2E3_|_..._;_n(1_1)nn1 Eﬂ ,
= (D1 + D2+ LD}/ n=mp .

Since the arithmetic average is equal to E,, the square of the
standard deviation is then computed as follows:

o’ = [fo(Br—0)? + fi (B —1)2 + - fu(B\—n)*]/
=[(f(n+f1+"'+fn)E12——2E,2N
4 (o 0P+ fi- 1 -eee - £ w2} /N
= B (fo- 0P fr 12 - f o 0?) /N

But from the explicit values of the frequencies, one derives,

(fo- 0> fi- 124 fu-n?) /N
=Ey— (2—4) B, + (3—3-2: £ 3)) E, —...

It will now be seen that for » > 2, the coefficient of E, is equal

to
O S G B SR A G I SO
2! 31 1
(r—1}) (r—2) (r—1)!
T T —1)!
— D) [1—(r—p) . LR 2
21 (r—2) !

=7 (1—1)™ — 7 (r—1) (1—1)=* =0

The square of the standard deviation thus reduces to

opf =B+ B 2F, =np— ¥ pl==npqg— ¥, (p:—p)*.

i=1 i-1

The derivation of formulas (2) for the Lexis distribution is
similarly accomplished. Consider first the following frequency dis-
tribution:
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No, of white balls 0 1 2 e n A o2
U, v fi f0 Lo fo mp, mpiqy
U2 fo(z) fl(2) fztz) e fﬂ(2) np, NP, g,
U, foim f.40 f, ven f np, np.q,
Total (Lexis dis- fo f1 {2 N
tribution)

Since each group of drawings made from a single urn is a
Bernoulli distribution, the arithmetic average and standard devia-
tion squared is at once known. These are recorded above under the
captions A and ¢°.

The arithmetic average of the Lexis distribution is immediate-
ly computed as follows:

Ay (0 fode - fok- 2 fak oo 1) /(PN
= (A1+A2+As+"‘+l4r)/r
zn('pl—l—'pz—l—ps+""‘|’pr)/7‘:np .

For the caleulation of the square of the standard deviation,
consider the expression:

ot o= [fo(mp—0)2 -} fr (np—1)2 4 -+ - fu(np—n)*1/ (rN)
e= [ (fo -+ fi 44 fa) /(*N) ]
— [2up(0-fot-1-fid--+n-fa) /(*N)]
+ [0 fo-12fi 422 farte -2 fa) /(PN) ],
—_ .nzpz _Jr_ i: (02 foti) + 12 flh')
+ o fzm + + n2 f,,‘”)/(‘?"N) .
From the fact that

Y 39 (np — §)? = Nnpiq: ,

j=0

one obtains after squaring and collecting terms,

(02 fod - 12 fif0 - 22 f9 oo b £ 9]
= Nnpiqi |- N W p® .

T
1=
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Hence, there is derived

T

Y [0 fo9 412 a0 o £,9]/ (oN) = (), npigs

Fur ¥ ) fr = [n 2 pi(1—ps) + 2 ¥ ¥ /r

izl i=z1

—mp+ 22 Z
Substituting this above, one obtains the formula,

n ks
orf=—'pt+np L —we ¥ p2
r i=1

If one replaces p; by ( p;~p) - p in the last term of the above
expression, he will immediately obtain the form o,2 given in for-
mula (2).

PROBLEMS

1. Make a Poisson distribution of total frequency 120 from sets drawn
from four urns with probabilities 1/2, 1/3, 1/4, 1/5.

2. Make a Lexis distribution by adding the frequencies of the binomial
distributions formed from the expansions of the following:

144 (1/2 + 1/2)2 and 144 (1/3 + 2/3)% .

3. Compute directly the arithmetic average and the standard deviation
for the distribution of problem 1 and compare with the values computed from
the formulas (1),

4. Compute directly the arithmetic average and the standard deviation

for the distribution of problem 2 and compare with the values computed from
the formulas (2).

5. The following is a Poisson distribution:

0 1 2 3

Class marks

Frequency i 24 44 24 4

Notmgthat fo——N(E — E, + E, —E) fl—N(E — 2E, + 3E,),
f, = N(E, — 3E,), f; = NE,, N = 96, compute the numerical values of
the E’s. Then from the fact that the probabilities which entered into the con-
struction of the distribution satisfy the equation:

Ext*—Eu? +Ex—E, =0,
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compute the values of these probabilities. (Note: the cubic equation has been
so devised that the roots are rational fractions. The E’s should be kept in
fractional form and not reduced to decimals).

5. Testing the Series When the Items are Not of Uniform Size.
In sections 2 and 3 the disturbance in the series of automobile
deaths for a set of ten cities with populations of approximately
the same size was considered. It is clear, however, that most sta-
tistical series will show considerable variation in individual items,
and thus the scope of the theory will be severely limited without
a method for studying the variation in series the items of which
are not of uniform size.

In the example of section 2, the ten cities, while of approxi-
mately the same size, varied somewhat in total population. The
present theory will be applied to find corrected values for the Lexis
ratio and the Charlier coefficient. When there is a wide variation
in the size of the items compared, the device of adjusting the data
to a fixed base cannot be employed, although in the example under
discussion, where the variation is essentially small, the T.exis ratio
of this section should agree closely with that obtained previously.

Arne Fisher® gives weighty arguments in favor of the follow-
ing adjustment: Designate by s the number of persons or things
involved in each item of the series, by m; the number of persons or
things affected by the phenomenon studied, by s some convenient
base to which the items may be referred, and by N the total num-
ber of items in the series.

In the example under discussion, one means by s, the popu-
lation, by . the number of deaths, by s some base number such as
100,000, and by N the number of items, namely, 10.

For the calculation of the standard deviation, the following
formula is then employed:

) 3
o= 2 — (g — sxp)?

X sy 8k
where
. =z My
p= 2 S ’

and the summations are taken over the N items of the series.

1Tkeory of Probabilities, New York, 1923, pp. 157-161.
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For the Bernoulli deviation one has,

? e spq
TFR" — ¥
2 Sk
and for the arithmetic mean, the value
A s Zmy
X 8y

The application of these formulas is illustrated in the follow-
ing caleulation based upon the data of section 2.

It is convenient to make an arbitrary choice of s = 100,000.
The value
» _2m 1183

Ss 4,611,342

is then ealeculated and the following table formed:

= .0002565

my | ' g .p | (My—8p) | (my—-5,p)? i il . 2
(No. of Deaths) ! (Population) f Py o)
| | ‘ — —_
| I !
184 _ 573,076 | 147 . 37 1369 17450 239
150 " 451,060 ¢ 116 | 84 1156 |.22165 256
129 364,161 93 | 36 1296 27460 356
73 316,715 | 81 . -8 64  |.31574 20
112 578,249 148 . -36 1296  |.17204 224
108 464,356 119 | 11 ‘ 121 121535 26
126 : 442337 113 13 j 169 1.22607 3
124 ; 458,762 ' 118 6 | 36  |.21798 8
58 ‘ 328,132 84 -26 * 676  |.30476 206
119 634,394 163 44 i 1936 115763 305
‘ :
| .
1183 4,611,342 ‘ ‘ | 1678

The two standard deviations are readily calculated to be,
100,000

o= ——————(1678) —= (.021686) (1678) = 36.39 ,
4,611,342

o = \/36.30 = 6.03 ;

(10) (100,000)
4,611,342

2

(100,000) (.0002565) (.9997435)

OB
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25,643,4
op = 22N 56

B —
4,611,342
o5 =\ 5.56=-2.36 .

The Lexis ratio is then found to be,

which is in close agrecment with the former calculation.

Using the formula for the arithmetic mean, one finds that

100,000

= _(1183) ==25.65 -

4,611,342
Substituting this value and the standard deviations in the for-
mula for the Charlier coeflicient, one obtains,
_ 100V/36.39-—5.56  555.25

C—= =
256.65 25.65

—21.65 ,

which is in unusually close agreement with the previously caleu-
lated value.

PROBLEMS
1. Find the Lexis ratio and the Charlier coefficient for the complete
table of automobile deaths in cities, section 2, by using the method of this
section,

2. Apply the theory of this section to the data of problem & of section 2
and compare your result with the results reached in problem 1 of section 3.

6. The Poisson-Borlkewitsch ©Law of Small Nunmbers.,” The
“law of small numbers” or, as it is sometimes more properly called,
“the law of small probabilitics,” assumes that in a group of quan-
titative phenomena selected without bias, a small proportion of
the group will be found to deviate sharply from the characteristics
of the remainder of the group, and this tendency will persist no
matter how large the group may be made and irrespective of the
number of samples selected- Thus, if an analysis were made of
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balances of savings accounts in a large number of banks located
in different sections of the country, the analysis would reveal that
each bank had a small number of savings accounts in which the
balances were more than $10,000. Similar experiences may be
found in other economic data, such, for example, as the number of
days in each year in which the volume of trading on the New York
Stock Exchange exceeded 5,000,000 shares, or the few large devia-
tions from trend of some series such as the Dow Jones Industrial
Averages.

The law of small numbers is applied only to events which hap-
pen rarely, that is, events in which the probability of their occur-
rence is very small. Small frequency distributions of this type ean
best be fitted by the so-called Poisson exponential function,

AIe—A

z!

y—N , (3)

where N is the total frequency, # the class mark measured by in-
tegers from 0, and A the arithmetic average. Formula (3) was
first derived by S. D. Poisson in 1837, but L. von Bortkewitsch
pointed out its statistical importance and formulated his ideas in
the “law of small numbers” in 1898.

As an example, consider the following frequency distribution
in which is recorded the number of times ten tails appeared in
100 samples of 1024 tosses of ten coins:

Number of times ten i

tails appeared in | Number of samples
1024 tosses :
(x) ! ()
0 35
1 36
2 19
3 7
4 2
5 1
Total 100

The average is easily found to be 4 =—= 1.08. Hence the Pois-
son exponential becomes,
I.Osx 6—1.08

¥ =100
x!
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When the values of x from 0 to 5 are substituted in the above
equation, the corresponding values of y are readily calculated and
the graduated frequencies found to be,

| !
Number of times ten * Frequency ! Frequency

tails appearedin | (cbserved) : (calculated)

1024 tosses | |
I ‘

0 35 ! 22.96

1 26 i 36,68

2 19 19.81

3 ! 7 7.13

4 I 2 | 1.93

5 ! 1 43

The problem of the graduation of Lexis and Poisson series is
left an open one in this book because of the mathematical difficul-
ties that bar the way. The reader is now upon the threshold of mod-
ern mathematical statistics and the problems are both numerous
and difficult.

PROBLEMS

1. In the penny tossing experiment cited in the illustrative example the
following distribution was obtained for the number of times ten heads ap-
peared in 100 samples of 1024 tosses of ten coins:

Number of times ten 0 1 2 3 4 5
heads appeared
Number of samples 29 a7 20 9 4 1

Graduate these data by the Poisson exponential formula.

2. Both in the illustrative example and in problem 1 the average should
ideally have equalled 1. Compute the ideal graduation and compare with the
observed distributions.

3. The following data give the frequency distribution of commercial
paper rates in the United States which were 15% or over for the one hundred
years, 1831-1930 inclusive:
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Number of months in which |

commercial paper rates were 0 1 2 3 4 5 6 7
15% or over i
Frequency in years : 90 4 1 1 1 1 1 1
|
Graduate these data by the Poisson exponential formula.
4. Show from the sum,
841 Acg-4 . Ad Asi1
e- +
E ® —ed | At Az+ ..., ... + .
=0 x! 21 g!

where s is a large number, that the arithmetie average of the frequenecy dis-
tribution equals A. Hint: Use formula 7, section 5, Appendix 1I.

5. Show from the summation,

§
hl
5,

I-0

Are-4
—Az,

x!

where s is a large number, that the standard deviation for the “small num-
ber” distribution is equal to VA .

7. Conclusion. By way of conclusion, some words of counsel
may be offered. The student is now equipped with some mastery
of at least elementary statistical methodology. The danger is that
he will over-estimate rather than under-estimate the value of this
equipment. Statistical methodology is no magical, or even mechan-
ical, instrument that automatically grinds out valid conclusions
and allows the suspension or avoidance of personal judgment. In-
deed, it may be said flatly that a statistical conclusion is no better
than the judgment of the statistician who produced it. Knowing
what tool to employ is just as important as knowing how to em-
ploy it. The second can be taught, but the first must be learned.
The novice will tend to think that the more high-powered his meth-
ods the more cogent his analysis. This is not at all necessarily true.
A scatter diagram may well yield more information than a corre-
lation coefficient. The fact that the latter may be carried to sev-
eral decimal places gives a spurious appearance of accuracy, while
it may really be concealing such facts as that the relationship is
curvilinear or that some of the observaticns are evidently grossly
distorted. In such a case, the apparently erude method is really en-
lightening, the apparently precise method is really deceptive. Very
often a free hand curve drawn through a graph will tell as much
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about the trend as will ever be revealed by logistics or quintics.
Again, the methods may be too refined for the data. Using a jewel-
ler’s instruments on a locomotive doesn’t give the latter the pre-
cision of a chronometer. Very often the student may be misled by
talk of “first and second approximations” into thinking he is at-
taining an accuracy he really is not getting at all Finally, good
statisticians are not made by studying textbooks but by working on
statistical problems. There is a world of wisdom to be gained by
wrestling with the hard figures instead of manipulating the ideal
situations of the theorist. One soon learns in actual statistical work
that the facts are often unyielding and intractable and the precision
instruments of methodology, instead of reducing them to ideal
shapes and forms, are merely blunted in the attempt. It is in
wrestling with such difficulties that one becomes a statistician, for
the final mastery of statistical methodology comes only from han-

dling statistics.



APPENDIX I

BIOGRAPHICAL NOTES ON MATHEMATICAL ECONOMISTS

Antoine-Augustin Cournot' (1801-1877), was born in Gray, in
Haute-Sadne, France, and educated at the Lycée de Besancgon and
the Ecole Normale in Paris. He was successively Professor of
mathematics at Lyons, Rector of the Academy at Grenoble, In-
specteur Général des Etudes, and Rector of the Academy at Dijon.
Despite the existence of earlier, though much less competent, work
by others, his Recherches sur les Principes Mathématiques de la
théorie des richesses, published in 1838, may be pronounced the
first notable success in the application of mathematics to econo-
mics. Of this book Edgeworth wrote: “It is still the best statement
in mathematical form of some of the highest generalizations of
economic science.” “Cournot’s genius,” said Alfred Marshall, “must
give a new mental activily to everyone who passes through his
hands.” Cournot employed mathematics, not merely as a trans-
lating device to express tersely conclusions that might as readily
and adequately be expressed in words, but as an instrument of re-
search through the use of which he might arrive at hitherto un-
discovered conclusions. Briefly, he proposed to elaborate a theory
of value, or of the determination of prices. He started with the
cage of pure monopoly, for which the solution is most easily acces-
sible to a mathematical approach. When the cost of production is
zero, monopoly price is, of course, that price which will yield the
largest gross return, that is, where the product of price and quan-
tity is a maximum. Where there are costs of production, monopoly
price 1s that which yields the maximum net return. Cournot then
expanded his analysis by the introduction first of one, then of more
competitors, and by extension came, if the expression may be per-
mitted, to an infinite number of monopolists, that is to say, to a
régime of absolutely free competition, However masterly his treat-
ment of the initial condition of monopoly, he was unable to avoid
pitfalls in his expansion of his analysis. Cournot’s approach was
based on the law of demand, that the demand for any commodity
is a continuous decreasing function of its price. The first geomet-

! See René Roy: “Cournct et 1’école mathématique”, Feonometrica, Vol.
I (1933), pp. 13-22.

—341—
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rical figures descriptive of the demand function appeared in Cour-
not’s epochal treatise, and he pioneered in a field which is now as
intensively worked as any in economics. Unfortunately, it must
be recorded of Cournot’s Recherches that it met with a signal lack
of recognition. The author was not mentioned in the bibliogra-
phies of the day, his name faded, his book passed even from li-
braries. A generation elapsed before the name of the first great
mathematical economist was rescued from oblivion by the glowing
tributes of Walras and Jevons. In a peculiar measure, the English-
speaking peoples may be said to have established his fame, through
Edgeworth’s article in Palgrave’s Dictionary of Political Kconomy,
and by N. T. Bacon’s English translation of his work in 1897.

William Stanley Jevons' (1835-1882), one of the next notable
fiures in econometrics, was an example of many-sided genius. He
was marked from earliest youth by the sense that he would write
something which, in Milton’s words, ‘“‘the world would not willingly
let die.” Born in England, before he was 19 he was assayer to the
mint in Sydney, Australia. After five years of this work, which
trained him to habits of scientific precision, he returned to Eng-
land to continue his studies. After taking his degrees at the Uni-
versity of London, he taught Logie, Moral and Mental Philosophy,
and Political Economy, at Owens College, Manchester, and later
Political Economy at University College, London. He was an ac-
complished musician, built his own organ, conversed “like an carly
Greek philosopher, rather than a contemporary,” and his work
served to make him a figure of exceptional distinction, equally in
logic, applied economics, pure economics, and statistics. He wrote
on many subjects, including currency, bimetallism, social reform,
and scientific method. His study of the Coal Question, it is said,
served to reverse the government’s fiscal policy, and led to an at-
tempt to discharge the English national debt. He discovered the
principle of marginal utility independently, though it had previous-
ly been set forth, unknown to him, in Gossen’s work. However, the
clarity and force of Jevons' exposition were such as to give the prin-
ciple wide acceptance, and possibly to date the birth of pure econom-
ics. Ignoring the dietum of John Stuart Mill (1806-1873) that every-
thing had been said about value, he set out to reconstruct econom-
ics as a calculus of satisfactions. While his contemporarics held
that cost of production was the principal element in determining

1 Qee “William Stanley Jevons”, by H. Stanley and H. Winefrid Jevons,
Econometriea, Vol. I1 (1933), pp. 225-237.
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value, Jevons held that production took its significance entirely
from consumption, that is, from the satisfactions to which it minis-
ters, and that the significance of any special unit of production is
due to the increment of satisfaction it is capable of producing.
Hence, the scale of equivalence of any two commodities is deter-
mined by the scale of equivalence of the increments of satisfaction
they are capable of producing and exchange value is determined
by incremental efficiency as a producer of satisfactions. In other
words, marginal utility governs prices. Just as the demand curves
started by Cournot have been a constant and fruitful source of
economic speculation and research, so has Jevons’ marginal utility
provoked numerous attempts at its measurement. In any considera-
tion of the fecundity of Jevons’ labors in so many fields, it should
be remembered that he was drowned at the age of 47.

Mavrie Fsprit Léon Walras' (1834-1910), professor at the Uni-
versity of Lausanne from 1870 to 1892 and founder of the “Lau-
sanne School,” first established the general conditions of economic
equilibrium, and this achievement the inscription on his memorial
at Lausanne cites as his peculiar claim to fame, Walras wrote on
social economy and applied economics, but the definitive exposition
of his pure economics is found in the fourth edition (published
in 1900) of his Elements d’économic politique pure ou théorie de la
richesse sociale. Pure economics he defined as “the theory of the
determination of prices under a hypothetical system of absolutely
free competition.” In dealing with the exchange of two com-
modities, he concluded that “the equilibrium prices are
equal to the ratios of ‘rarity’” (i.e, the marginal utility of Jevons’
work}. His point of departure was his desire to apply the calculus
of functions, indicated by Cournot, to a theory of exchange value
set forth by his father, A. A, Walras. His work on pure economics
is, therefore, really a monument of filial piety. Though his point
of departure was different, he arrived at Jevons’ conclusions, of
-which, however, he had not known. When they were called to his
attention he was the first to proclaim Jevons’ priority. Walras,
therefore, like Gossen and Jevons, was an independent discoverer
of this keystone of the economic arch. From the exchange of two
commodities, as determined by their marginal utilities, he advanced
to a theory of exchange of any number of commodities. His theory
sets forth the conditions which the quantities of goods exchanged

1See “Léon Walras,” by J. R. Hicks, Econometrica, Vol. IT (1934), pp.
348-348.
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in a market and the corresponding prices must satisfy to establish
equilibrium. The conditions are (1) the realization of maximum
satisfaction for each individual, (2) balance of receipts and ex-
penditures for each individual, (3) equivalence between the quan-
tities of producer services offered and asked, and (4) equality be-
tween net cost and sale price.

Walras was a particularly prolific writer, and those who con-
ceive of mathematical economists as entirely abstracted from the
actual concerns of life may note that he wrote voluminously for
newspapers. He was himself for several years editor of a paper
devoted to the advancement of the cooperative movement. He
wrote extensively on the land guestion and favored nationalization
as a solution of the tax problem. To solve the monetary problem,
Walras advoecated a gold currency supplemented by a token cur-
rency of silver, which would serve to keep prices stable. In gen-
eral, he was a man of wide interest in social problems. His ap-
proach may best be indicated by a quotation. “We count today,”
he said, “many schools of political economy. For me, I recognize
but two: the school of those who do not demonstrate, and the school
—which T hope to see founded—of those who'demonsirate, their
conclusions.”

Vilfredo Pareto (1848-1928) was a disciple of Walras and his
successor in the chair of Political Economy at the University of
Lausanne. His principal works bearing on pure economie theory
are Cours d’économic polilique, published in 1806 at Lausanne,
Manuale di economia politica con una introduzione alla scienza so-
ciale, published in Milan (1906), and Manuel &’économue politique,
published in Paris (1909). For twenty-seven years after gradua-
tion from the Polytechnical Institute at Turin, Pareto practiced
his profession as engineer. His thesis had been a study of the
mathematical theory of the equilibrium of elastic bodies and his
economic contribution was, in effect, an effort to expand this sub-
ject in the social sciences. Pareto proposed to treat ceconomics from
a purely scientific point of view, so that he was led to cxamine, in
addition to a régime of free competition, the various types of mo-
nopoly, among which, of course, are the socialist régimes. Further,
he strove to take as objective a position as possible, to make putre
economics the first approximation in the study of concrete eco-
nomic phenomena. He introduced certain fresh conceptions be-
yond those of Walras, which assured wider generality for his the-
ory of economic equilibrium, while his method of analysis per-
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mitted him greater profundity, for Walras had employed no mathe-
matics other than algebra and analytical geometry. Following
Fdgeworth’s and Fisher’s lead that the utility produced by con-
sumption of a commodity frequently depends on the consumption
of other commodities, he was led to distinguish other kinds of de-
pendence, such as those that rise because certain things give more
pleasure united than separated, because they supplement each
other, or because a total of several consumptions may be influenced
by their order, as a dinner served from soup to dessert presumably
occasions greater satisfaction to the diner than if it started with
the dessert and ended with the soup. His study of the dependence
of consumption allowed Pareto to explain why bread-eating in-
creased in famine years despite the impediment of higher prices.
Malthus had explained this paradox on the assumption of the stu-
pid obstinacy of consumers, who were determined to have bread
at any price. The more reasenable solution of Pareto was that
consumers are deprived of superior foods and must concentrate on
bread despite its higher price. ILike Marshall and others, Pareto
was led to economics through mathematics. His reputation as a so-
ciologist is certainly not inferior to his reputation as an economist.

Francis Ysidro Edgeworth' (1845-1926) was born in Ireland
of mixed Irish-Spanish-French descent, and educated at Trinity
College, Dublin and Balliol College, Oxford. After being called to
the Bar, he pursued a desultory legal carecer for several years be-
fore becoming a lecturer in Logic, and afterwards Tooke Professor
of Political Economy, at King’'s College, Loondon. In 1891 he ac-
cepted the Drummond Professorship of Political Economy at Ox-
ford and held this chair till 1922. In 1891 he also founded the
Economic Journal, of which he was at first Editor-in-Chief, and lat-
er Joint-Editor, till his death in 1926. His views on pure cconomics
are set forth in Mathematical Psychics (1881) and in the many
articles published in the journal which he edited. These articles
were collected in 1925 into three volumes of Papers Relating io
Political Economy. His Mathematical Psychics justifies the use of
mathematics in the moral sciences and applies the calculus of
hedonism, the economic calculus, and the utilitarian calculus, the
economic calculus having as its object the determination of condi-
tions permitting certain individuals or groups to obtain for them-

18ee “F. Y. Edgeworth”, in Fssays in Btography, by J. M. Keynes, pp.
267-293, New York, 1933; “Francis Ysidro Edgeworth”, by A. L. Bowley,
Econometrica, Vol. 1T (1934), pp. 113-124,
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selves the maximum of utility, the utilitarian calculus relating to
the realization of the greatest possible sum of utility by a com-
munity. Edgeworth introduced into pure economics certain ideas
which underlie many modern works on the subject, notably the
idea of dependence of consumption, where the curve of utility is
replaced by a surface in the case of two goods, and by hypersur-
faces in the case of a number of goods. He also set up equations
similar to those of Walras, but whereas Walras had studied com-
mercial competition only, Edgeworth added another type we may
call industrial competition. In commercial competition, disutilities
are necessarily equal to the utilities of the products received in ex-
change but, as Edgeworth showed, in industrial competition the
disutility of a labor is not necessarily measured by the utility of a
service rendered. This introduced new factors into the conditions
of general equilibrium. When we pass, he said, to the complexities
introduced by the division of labor, the problem of economic equi-
librium ceases to be a simple one of algebra or geomelry. Iven
were we in possession of the numerous data relative 1o the motives
acting on each individual, one can hardly conceive that it would be
possible to deduce a priori the state of equilibrium which a compli-
cated system would reach. “I will never,” said Edgeworth, “re-
proach mathematical economists for not having formulated the
problem of industrial competition. Abstract symbols must often
fail to represent reality fully.” Edgeworth also took up and com-
pleted certain of the theories of Cournot. He also advanced the
notion, which met with little approbation, that pleasure is meas-
urable, that all pleasures are commensurable, and that the proper
unit of measurecment is the least possible assimilable quantity of
pleasure. This venture of Edgeworth’s into psychology met with
general disfavor as tending to make economics restore long dis-
credited metaphysical concepts. Kdgeworth also wrote on prob-
ability and statistical theory, dealing especially with the law of
error. “The connccting line between Edgeworth’s different works,”
writes J. M. Keynes, “is to be found in his interest in the prob-
lem of measurement applied to the so-called moral sciences or, as
he called it, ‘mathematical psychics.’ To him it had five branches,
{he measurement of utility, or ethical value; the algebraic or dia-
grammatic delermination of economic equilibrium; the measure-
ment of belief, o probability; the measurement of evidenee, or
statistics; and ti.c measurement of economic value, or index num-
bers. His work un index numbers was particularly important.”
Again, Keynes says, “Most present day students of mathematical
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economics would probably consider Edgeworth the most eminen!
of nineteenth century pioneers in this subject.”

This necessarily sketchy notice of some of the historic leaders
in econometrics is given so that the student may at least be ac-
quainted with some of the more famous names associated with the
econometric movement in the past. In a textbook on statistical
technique it is not amiss to emphasize that Cournot was a notable
writer on probability, which underlies all statistical reasoning, and,
as Edgeworth has indicated, did statistics a signal service by point-
ing out the application of the caleulus of variations. Cournot’s also
was the first casual suggestion that the investigator must distin-
guish between secular trend and periodic fluctuations, a distinction
that is now a commonplace in analysis of economic time series.
devons’ statistical work, especially on prices, was of the first order.
He segregated seasonal movements, secular trends, and cycles,
much as modern writers have done. He has been accorded the title
of “the father of index numbers,” and may be said to have put sta-
tistics into economics once and forever. Of Pareto’s Cours d'Eco-
nomie Politique, Irving Fisher said, “No other book contains such
a compact, varied, and comprehensive collection of statistical data.”
Statistics was of major interest to Edgeworth and his studies of
index numbers and correlations were especially notable. In speak-
ing of the mathematical interests of these leaders of econometrics,
it should not be thought that they were negligent of, or incompe-
tent in, the statistical field.
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LOGARITHMS

1. A Note on Compulation. The manipulation and analysis of
stalistical data must sooner or latler lead to numerical ealculations.
In well-equipped statistical laboratories, the burden of this work
has been greatly lessened by a number of mechanical devices, such
as adding and multiplying machines, slide-rules, card-sorting ma-
chines, and correlation calculators.

Since these useful devices are not always available to many
who must study statistical materials, it is necessary to have re-
course Lo more easily accessible tools, such as tables of logarithms,
tables of square roots, cube roots, reciprocals, and so forth. In
this appendix the employment of a table of logarithms in making
calculations will be explained, and also some of the properties of
logarithms which are used in various parts of the book will
be developed.

1t will be assumed that the studenl is already familiar with
the theory of exponents, the laws of which will merely be restated
for convenience in reference,

2. The Laws of Exponcnis. In arithmetic, one learns that
237 2% 2 multiplied by 2 3 2 equals 2% » 22 = 25, The theory of
exponents is a generalization of this simple arithmetic fact. Thus,
if « is a positive number, and m and » are any numbers whatso-
ever, it will be assumed that the {ollowing law, called the index lnaw,
holds between the base, ¢, and the exponenis, m and n:

amat: -ghtm a >0, (1)

If m and n are positive integers, this law is sclf-evident, but
if m and » are not positive integers, the meaning of the law is not
immediately clear. The student is referred to a textbook on alge-
bra for proofs of the following three theorems derived as imme-
diate consequences from the index law:

1. ¢ =1,
II. ™ =1/a" ,
—348-—
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L. art— Y= (Va)*,

where p and ¢ are integers.

If, in the index law, n is replaced by —n, as may be done
since n is a wholly arbitrary number, and then use is made of
theorem II, another useful identity in the theory of exponents is
obtained, i.e.,

am et =—a"/a" . (2)

A third identity,
(C*rf‘m)ﬂﬁa'mﬂ 3 (3)

is readily obtained from the index law in case n is an integer, but
involves an assumption whose justification is proved only in books
on advanced algebra when = is not an integer.

When more than one base is employed, the following two iden-
tities are fundamental ;

arb" = (ab)" , (4)
a”/b" = (a/b)" . (5)

Ezample 1. Find the value of (64/27)%% -} (81/16)-%1 .
By theorems II and III, this can be written in the form
(64/27)*° 4 (16/81)%+ = ({¥64/27 )* 1+ (¥16/81 )3

= (4/3)*+ (2/3)?
= 16/9 1+ 8/27 = 56/27 .

Ezample 2.
2-3 . g/ 1/8+2

B+ ()7 241/8

Example 3.
[xlf(?—l) xutml)] (-1} p-2p [xmp-n + :/(pu)] (P%-1} p-2p

== [P/ (P-D] -1 o2 — 202 — g0 ],

3. Logarithms. Logarithms were invented by John Napier,
(1550-1617), Baron of Merchiston in Scotland, as a calculating de-
vice. They have since appeared in many theoretical connections
and have numerous uses in applied mathematics besides that of
affording a powerful aid in numerical calculations,
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A logarithm is customarily defined in terms of the theory of
exponents as follows: By a logarithm to the base a of a number N,
is meant a number y to which power the base @ must be raised in
order to produce the number N, This definition is expressed in
symbols thus:

Ifev=N , then log, N=1y .

From this definition one obtains the following theorems re-
garding logarithms:

I. log,1=0, sincea"=—1,
II. log.ay-—log.x + log.y .
Proof: Let log,x = n and log,y — m. From the definition of a
logarithm, one has ¢® = z and o™ = y. Therefore, from the index

law, zy = a™ - ™ =— o™, and from the definition again one gots
log,xy = m - n—log.x -I- log,y .

1I1. log.x/y = log.x — log.y .

Proof: Letting log,x == m and log.y = %, one has from the
definition ¢™ — z and a” =— y. Then, by (2) in the theory of ex-
ponents, z/y = a™/a* — " and, consequently,

log.z/y —= m — n=—log,x — log.y .

IV. logar=mnlog.x .

Proof: If one lets log.x = m, it follows by definition that
a™ = 2. Therefore, raising both sides to the power n and referring
to the theory of exponents, one has z" = (a”)" = a™". Consequent-

ly, log.z™ == mn == n log.x.

Sometimes it is necessary to transfer from one base a to a
second base b. For example, common or Briggsian' logarithms are
computed to the base 10, and natural logarithms are computed to
the base designated by the symbol e, where ¢ =— 2.71828 - - - - , This
number, often called Napier’s number, is one of the most impor-
tant in mathematics and it is particularly useful in statistics. Its

1Named after Henry Briggs (1556-1630), who was the first to calculate
a table of logarithms to the base 10.
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significance has appeared elsewhere. The following formula al-
lows one to change from one system of logarithms to another:

1

b

IOng .

V. log,N=— ]

Proof: Let log,N = y; then, by the definition of a logarithm,
@’ — N. Taking logarithms to the base b of both sides of this equa-
tion, one has
logya¥ = log,N .

Applying 1V, it is found that
logya” — logN
y logya —= loguN
substituting y = log,N, then
log.N log,a — log,N ,

and hence

Ing.N —_ 1 IOng -
loga

It is useful to specialize this theorem for the case of common
and natural logarithms. Thus, to go from the common to the natural
system, one uses

V (a). log.N = 2.30259 log,,N ,
and from the natural to the common system,

V (b). log,\N — .43429 log N .

Example 1, Calculate the value of

83/2
r=log, ——— .
V16 (4)°

Making use of the properties above, one finds that
x =— log,8%? — log,¥16 — log,4%% (by II and III),

= (3/2)10g.8 — (1,/3)log,16 —- (3/5)log.4 (by 1V},
= (3/2) -8— (1/8) -4— (3/5) -2=159/30 .
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Ezxample 2. Given log,,2 = .301, calculate the value of
% == log,, 1/625 .

By the properties of logarithms, one has

x =log;s 1 — log, 625 , (by II1),
:0""""'].0g10 54 3 (by 1)!
= —log:,(10/2)* = — 4 log,, 10/2 (by IV},

= —4(log,, 10 — log, 2) = —4(1 — .301) = —2.796 .

Example 3. Given log,,2 == .301 and log,,6 = .778, calculate
the value of log.6.

By V, one has

log.6 =

log,.2 301

Example 4. Calculate log.100.
By V{(a), one has
log.100 = 2.30259 log,,100 = 2.30259 > 2 = 4.605138 .

PROBLEMS

Express the following in terms of the logarithms of prime numbers:

1. log(¥21.156-2.V35) .
log ¥49/(45) (20) .

log[ (21) (¥25) (V32)] .
log[77-1/2/ (T5%/5) (556-2)] .
log[ V26/ (39 -172) (52%/3)] .

g ok o

Using the values log,,2 = .3010 and log, 3 = .4771, calculate the fol-
lowing logarithms:

6. log,, V9/V125 . Hint: log,,5 = log,,10 —log,,2 .
7. log,, V4. ¥125./27 .

8. log,,625. V8/V15 .

9. log,,V32-V72/V45 .
10. log,,22.3%.5° .-
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11, Prove that log b= 1/loga .
12.  Given log,,3 = .4771 and log,,9 = .9542, what is log 9?
13. Given log,,3 = 4771 and log, 6 = .6990, what is log,5?

14. Given log 2 = .301 and log,,6 = .699, calculate the value of « for
which 2% = 5. Hint: x log,,2 == log,,5 .

15. From the fact that 2:1=2, 22:==4, 2:=238, 24=16, estimate log,b
and log,10 .

16. Given log,,2 = .301, for what value of x does 2¢ = 100? What is
the value of log,100?

17. Given log,2 = .6931 and log,27 = 3.2958, for what value of = does
2 = 277

18. Calculate log,125, given log,, 2 = .30103 ,

19. Caleulate x where log,a = 6.90776. Hint: Convert log,s to log, % .

20. Calculate log, 65, given log,65 = 4.1744 ,

4. Calculation by Logarithms. Logarithms to the base 10 are
adapted to numerical computation. Because of their frequent oc-
currence, the base need not be repeated in each symbol, but log z
may stand for log,,z. A table of common logarithms is easily con-
structed for special values of x. Thus one has;

10°=1 log 1 == ()
10" =10 log10 =1
102 = 100 log 100 =2
10% == 1000 log 1000=—=23

and for negative exponents:

10t=.1 log.l ——1
10*=.01 log .01 ——2
10 =.001 log .001 ——3

It will be seen that the integral part of the logarithm of any
number can be determined from the above table and its extension.
Thus, log 643.2 lies between 2 and 3, since 643.2 lies between 100
and 1000; similarly, log .06432 lies between —1 and —2, since
.06432 lies between .1 and .01. Hence, one may write

log 6432 — 2 1 a,
and log .06432 —= —2 {q,

where « is a positive number less than one. The numbers 2 and —2
are called the characteristics of the logarithms and e the mantissa.
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Definition: The integral part of a logarithm is called the
characteristic and the decimal part, when it is written as a positive
number, is called the mantissa.

The characteristic of a number may be found from the follow-
ing rule:

The characteristic of a number greater than unity is one less
than the number of digits to the left of the decimal point; the
characteristic of a positive number less than unity s negative and
numericelly equal to the place of the first digit of the number.

For example, the characteristic of 57.6 is 1; of 8543.2 is 3; of
768 is 2; of .623 is —1; of .000243 is —4.

The mantissa of 2 humber is found from a table of logarithms.
Table I at the end of this book gives the mantissas of logarithms
from 1 to 10,000, computed to five significant figures.

The following examples sufficiently illustrate how the logarithm
of a given number is found and, conversely, how a number is found
which corresponds to a given logarithm.

To find the logarithm of a given number.
Example 1. Find log 864.2 .
The characteristic is 2. To find the mantissa, enter the table

with the first three digits 864. Then under the column headed 2
find the required mantissa, i.e., 93661. Hence log 864.2 -— 2.93661.

Example 2. Find log .08642.

The characteristic in this case is —2, and the mantissa, as in
the first example, is 93661. We thus have log 08642 — —2 1 .93661.
This logarithm may be written in either of the following ways:

log .08642 = 2.93661 ,
or, log .08642 — 8.93661 — 10 .

In the first case the minus sign is written above the 2 to indi-
cate that it pertains to that number alone, The advantage of the
second case lies in the fact that the logarithm is written as the
difference of two positive numbers.
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Ezample 3. Find log 86.426 .

Since the logarithm of a number of five figures cannot be looked
up directly in the table, one must use interpolation. The mantissa
corresponding to 86426 lies between the mantissas of 8642 and 8643,
i.e., between 93661 and 93666. If to the former is added 6/10 of the
difference between the two numbers, one will have the mantissa of
86426, Thus,

mantissa of log 86.43 — 93666
mantissa of log 86.42 — 93661

tabular difference — 5

Therefore, the mantissa of log 86.426 — 93661 4- (6/10) - 5 =
93664 ; hence, log 86.426 — 1.93664 .

To find the number corresponding to a given logarithm.
Example 1. Find z, where log x — 2.71139 .

Entering the table of mantissas with the number 71139, one
sees that this corresponds to the number 5145. Since the character-
isticis 2, x =514.5 .

Example 2. Find z, where log z — 871139 — 10 .

Since the mantissa is the same as in the first example, the prob-
lem is merely in the placing of the decimal point. Hence x — .05145 .

Example 3. Find z, where log x = 0.51371 .

The table of mantissas does not include the number 5137 1, so
one must interpolate ; thus, one has

mantissa of log 3264 — 51375 mantissa of log 2 == 51371
mantissa of log 3263 — 51362 mantissa of log 3263 — 51362

tabular difference — 13 difference = 9

Hence, the number corresponding to the mantissa 51371 is
3263 4-9/13 ==3268.7 . Since the characteristic of log z—1is 0,
one finds x —= 3.2637 .
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PROBLEMS

Find the logarithms of the following numbers:

1. o= 3.1416 2. 16.2715

3. e=27183 4. 561.83

5. 1/7=.31831 6. .0081235

7. log 10 == 2.3026 8. .12345

9. log,,e —.43429 10. .076541
11, ¢ (Euler’s number) =.57722 12. 34434

Find the values of x:

13, logax = 1.49145 14. log x = 8.56317 — 10
15. log x = 1.90633 16. log x = 6.13542
17. log x = 2.98860 18. log x = 4.42412
19, log x = 0.50000 20. logx =7.17244— 10
21, logx =8.01140 — 10 22, logx — 012174

The use of logarithms as a calculating device depends upon
the properties discussed in the preceding section. It may be re-
marked here that much computation, where expensive machines
are not available, is greatly facilitated by the use of the slide rule,
an instrument which is based, of course, on logarithms. The follow-
ing examples will sufficiently illustrate the various types of prob-
lems that can be handled by logarithms:

(1257) (.4277)

Example 1. Find the value of x =
2.6431

Taking logarithms of both sides and applying the rules of
section 8, it is found that

log x = log 1257 -}- log .4277 — log 2.6431 .
Considerable simplification in actual computation is obtained

by making an outline of the problem first and then filling in with
the values of the logarithms. The finished work should look like this:

log 1257 — 3.09934
log .4277 == 9.63114 — 10

sum — 2.73048
—log 2.6431 — 0.42212

log z — 2.30836
x = 203.40
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v062.173v/ 8419
\V8.499 )

Example 2. Find the value of x:

By the rules of section 3, one has

log x = (1/3) log 62.173 - (1/2) log 84.19 — (1/2}1og 3.429

The actual calculation is shown below :

(1/3) log 62.173 = .59787
(1/2) log 84.19 == .96263

sum == 156050
—(1/2) log 3.429 = .26758

log z = 1.29292
x=19.630 .

Ezxample 3. Find the value of 2 == ¥/.00064172 .
log = (1/3) log.00064172 ,
log .00064172 —=4.80734 — 6.80734 — 10 .

Since this logarithm must be divided by 3, it is obviously more
convenient fo write it in the equivalent form 26.80734 — 30. One

thus gets
(1/3) log. 00064172 — (1/3) (26.80734 — 30) |,
log # =—8.93578 — 10 ,
x = .086254 .

PROBLEMS
Find the values of the following:
763.12 v 863.1

V43414
2. x= (1.0632)65 (1.0754)-52 ,

. =
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5. A formula much used in statistics is

o-{zY/207)

¥y= —
o V2T
where ™ == 8.1416 and e = 2.7183. If o2 (read “sigma squared”) = 2.5,

x = 2, N = 1024, calculate the value of y.
6. Find the value of the standard deviation of the binemial secries, o ==

Vnpq , where n = 72, p = .3162, ¢ —= .6888 .

7. A common statistical formula is G = Yz z,myer-e--2, . lf n =5
and the z's have the values 1.04, 1.05, 1.09, 1.11, and 1.15, caleulate G.
g
8. The probable error of the mean is 0.6745 — . If v = 56.324 and
2

n = 1987, caleulate the probable error.

9. The value of factorial », i.e., n! = 1.28.... n, is given approximately
by the expression nm1/2 ¢-» V27, where 7 == 3.1416 and e¢ = 2.7183. By how
much does this approximate value of 6! differ from the true value?

10. Calculate the value of y — 87699(2/3)1¢0 . (1/3)%0 |

11. Calculate the value of (1/\’72—71'"3 %1, where 7 == 3.1416, e = 2.7183,
and £t = 2.45.

12. The following coefficient occurs in the theory of curve fitting:
12(2p+ 1) (8p + 11)
pp—Np—2(@+ 1 {p+2) "
Calculate its value for p = 15, m, = 15,328 .

13. If a frugal Roman of Augustus’ time had put by one cent to com-
pound at 6 per cent over the centuries, and his Italian descendants of today
wished to convert their fortune into a gold sphere, what would the radius of
the gold sphere be? (Use n == 1932.)

When one approaches the problem presented by the study of an economic
state into which enter (1) rates of interest and (2) a fixed monetary gold
standard, the following formula is relevant:

R (n) = 0000003548494 g.01942207n

where R{n) is the radius in miles of a ball of gold equivalent to the compound
amount of one cent put out at 6 per cent for n years. The formula is com-
puted from the following values:

o (specific gravity of gold) = 19.27 ,

¢ (price of gold per Troy ounce) — $20.67183462! ,

12 Troy ounces = 1 Troy pound = .8228571429 avoirdupois pounds ,
& {weight of cubic foot of water) — 62.5 pounds .

1As the events of 1933 instruct us, this is not a constant but is subject
to abrupt changes,
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Let the student show that for n = 1932,

E(1932) = 7.0809 X 10° miles = 75 times the distance from the earth

to the sun.

In reflecting upon the significance of this result, one immediately specu-
lates on whether the periodic fluctuations of finaneial and business phenomena
do not rise from the necessity of periodically repudiating an intolerable bur-
den of accumulated interest.

5. The Number “e” — The Exponential Series. In section 8,
it was stated that tables of logarithms have been computed to two
bases, one of these being 10, the radix of our own number system,
and the other the interesting number e =— 2.71828 . .. . Since this
number plays an important part throughout statisties, it is well
to acquire some familiarity with it.

The number e is most conveniently defined by means of a limit-
ing process. With this in mind, consider the expression (1 + ryvr,
and see what values are assumed as r is given successively smaller
values. For r =1, one finds the value (14 1)*=2; when =5,
one has (1 4- .5)% = 2.25. Replacing » by still smaller values, the
numbers recorded in the following table are obtained:

7 f (1+r)yvr
.1 [ 2.5937
.05 | 2.6533
01 2.7048
005 ! 2.7115
.001 ; 2.7169

It appears plausible from the table that a finite limit exists for
the expression: lim (1 -+ 7)*7. This limit is, in fact, the number e.
r—0

Its value to six significant figures, i.e., 2.71828, is seen to be only
slightly larger than the last value in the table.

A geries expansion for ¢ is readily obtained from the limiting
form of (1 4 r)*7 if this expression is first expanded by means of
the binomial theorem and # is then set equal to zero.

Referring to equation (2) of section 12, Chapter I, one replaces
z by r and n by 2/r. Then

(1+r)"'m1—i—x—r+ (z/7) (2x‘/r—1)rz
r :

(2/r) @/r—1) (5/r—2) |
3!

+
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(lw-}a'r)‘«"‘r: 142 -{»—._(.].'_._._.é_'[’.._/_x_)_xz
(6)

(l—r/z) (1 —2r/2) G .

T 3!

Letting » approach zero in the series which forms the right
hand member of this equation, and recalling the definition just
given for ¢, there is obtained what is called the exponential series:

HIgl (I4+ryr=e=1+xLa?/20 -} 23/81 2o . AT

This series has the important property of converging for all
values of x, that is to say, the value of ¢* can be calculated by
means of the series for any given 2.

Values of ¢* and e are given in Table II at the end of this
book.

Example 1. Calculate to four decimals the value of e2? and
2 and show that their product equals 1.

er=1-1.21 .04/2 1+ .008/6 1+ .0016/24 - --------
=1-4.2-4+.024.0013 -+ .0001 —1.2214 ,
and
e?e=1— .21 02— .0013 -1 .0001 — .8188 .

Multiplying these values together, one has 1.2214 > .8188
= 1.0001 .

Ezxample 2. From Table II calculate the values of ¢+ and
es.&a .

Since one has from the theory of exponents e*3 — e*.¢ %,
one finds from the table

g4t — g4 g3 — (.01832) (.72615) — .013303 .
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By logarithms,
loge* —8.26293--10
log &% = 9.86103 - 10

log 432 =—=8,12396 — 10
e — 013308 .

Similarly €34 = - e? = (20.08554) (1.53726) = 30.87670 .

By logarithms,
loge? = 1.30288
log ¢4 = 0.18675

log €43 =— 1,48963
€345 — 30.8767

PROBLEMS
1. Compute the values of e, e, and e-1, by substituting z = 1, = .1,
and x = —.1, in series (7), using enough terms to have the answer correct to

four places of decimals.
2. Using Table II, calculate the values of ¢-1-63 and e-2.14 |
8. Using Table II, calculate the values of ¢1-85 and e2.1¢ |
4. Prove that the expansion of a® is
af =1+ zlog,a + [22(log 0)2/2!] + [22(log.0)3/81] +....... .

. o log.a .
Hint: Write ¢ in the form a = ¢ . Explain,

5. Given log,a = .5, calculate the value of & by means of the series of
problem 4. Show that the answer equals V2.7183 .

6. Show that e = 2/3! + 4/5! + 6/7! + ...... ‘.

Hint: Combine in pairs the terms in the expansion e-1 .

7. Show by direct multiplication that

(14 x/3) + a2/20 +28/81 + ..., V(1 —2/11 + x2/2!
—3/81+...)=1.
et — g2

8. Prove that llurgl == 2. Hint: Replace ¢ and e? by their ex-

x
pansions and then remove the factor common te both numerator and denomi-
nator.

6. The Logarithmic Series. Another series often encountered
in statistical work is the logarithmic series. In its derivation one
may make use of the following device. Let a relationship between
2 and ¥ be defined by means of the equation

(1+4my)ym=1+=2. (8)
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From the discussion of the last section, it will be seen that
Hm (1 4 my)¥m =lim[ (1 4 my) "]V = m[(1 4 r)Vr]r=ev .
m=0 m=0 =0
Therefore, for the limiting value m = 0, equation (8) becomes
e = 1+ x, or y = log, (1-{-x) . Solving for y in (8), one has
y=(1/m)[(142)"—1] .

Expanding (14-x)™ by the binomial series (section 12, Chap-
ter I), one obtains

y= (1/m) [mx 4- m(m—1)x*/21 4 m(m—1) (m—2)x*/3!
+] y
=z -+ (m—1)?/2! + (m—1) (m—2)x*/31 +--- .

As m approaches zero as a limiting value, ¥ approaches
log.(1-+=z), and one has the logarithmic series,

y=log.(1-ta) =x —2*/2f 2°/3 —@*/d 4 -+ . O

This series is not very well adapted for calculating purposes
since it converges slowly, that is to say, a comparatively large
number of terms must be taken to obtain reasonable accuracy in
the value of the logarithm.

Since, however, by replacing x by 2 one also has

log, (1—x) = —[x + x2/2 4 2%/3 -+ a*/4d 4 -+ 1,

this expansion can be combined with the one for log.(14-z), thus
obtaining

log, (1-4-z) — log.(1—=x) =log, [(1+=x) /(1—x)]
=2(x 4 23/34-2/5 -+ ), (10)

which converges much more rapidly than (9) .
Example 1. Calculate the value of log.2 .

In order to use (10), set

1+x= , orx=1/3 .
1—=x
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Hence

1
log,2 == 2 Sz : ..
& Jr3 27+5 243+7 2187

==2(.3333 4 .0123 4 .0008 - .0001)
= 2(.3465) = .6930 .

Ezample 2. Given log.2 = .6931, log.5 = 1.6094, log.10
= 2.3026, log.20 — 2.9957, calculate the value of C, = 1 4 1/2

4+ 1/84+ ...+ 1/n — logn .

Using the table of reciprocals, Table V, one has

C, =1 .5000 — 6931 = 8069 ,

Cs = 1 5000 4 .3333 + .2500 4 .2000 — 1.6094
— 2.2833 — 1.6094 — .6739 ,

Cro — 2.9290 — 2.3026 — .6264 |

Cao = 3.5977 — 2.9957 = .6020 .

The limit of C,, as n assumes successively larger values, is
called Euler's number,
lim C, —C—.5772 ,

n=00

and will be met elsewhere in the book.

PROBLEMS

1. Calculate log, 1.1 and log,1.02 by substituting * = .1 and x = .02 in
the logarithmic series.

2. Calculate (1/m)[(1.02)m — 11 for values of m equal to 1, .2, .1, .01,
and compare with the value of log,1.02= 0198 .

3. Calculate log,3. Hint: let (1 + z)/(1 — )} = 3 and use series (10).

4. The following formula is used to convert logarithms from the base
10 to the base e [see formula V (a), section 3].

log,y = log,10 log, .y = 2.3026 log, ¥ .

Calculate log,10 = 2.3026. Hint: Since log,10 = log,2 + log,h, let
(1 + x)/(1 — x) = b, use series (10), and make use of the calculation of the
first illustrative example above.

5. Derive the series

! a a—b 1 sa—b 2+1 a—b\2
og, — = S - —ee .
g~ b 2( 5 ) 3( 5

6. Calculate the value of C, for n = 30, given log, 30 = 3.4012 .




APPENDIX III.

THE USE OF TABLES

1. Inlerpolation. The use of tables is greatly aided by means
of interpolation formulas. An elementary form of interpolation
has already been used in connection with logarithms, but the the-
ory has an elegant and useful generalization.

Suppose that one has the tabular values of a function, f(x},
beginning with @ and proceeding by d units of the argument. This
table can be represented symbolically as follows:

| Tabular

i First Sccond | Third
Argument i Value i Difference Difference | Difference
z  fw A ar
a flay |
i _Ao |
a+d | flata) | A \
i ] J—
| | a4 | A
a+ 2d | fla + 2d}) Az i
| | A A
o+ 8d C flet3d) | A,z
S
a -+ 4d P fle + 4d) ;

Where, by deﬁmtlon 4, = f(a+ d,) — f(a) Al f(a-{- Zd)
— f(a--d), ete., and 4,2 = A, — A, A48 = 4,2 — 4,2 ete.

By means of Newton’s formula of interpolation, f(x) can be
expressed in terms of these differences, as follows:

x{x—1)

flatwd) = f(a) + 2 4y —— 4¢°
_ 2
+x(x 15?!(9: )A03_|_...., (1) .

In order to illustrate the use of this formula, consider the fol-
lowing examples.
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Ezample 1. Calculate the cube of 2.4 from the following table:

x flx) =x8 A A2 J A3
1 1
26
3 27 72
o8 4
53 125 120
218 48
7 343 168
386 48
9 ; 729 216
i 602
11 | 1331 |

Since it is required to find the cube of 2.4, it is clear that one
must choose ¢ == 1 and use the difference A, = 26, A2 = 72,
A4, == 48, Moreover, it is known that d = 2, xd = 1.4, and conse-
quently, z == .7.

When these values are substituted in formula (1), one obtains,

(24)*=14-.7(26) - _,____'7('79— 1) 1o +-7(-7— 1{: (1—2),,

=1--182—17.56 - 2.184 =13.824 .

Example 2. Calculate the reciprocal of 1/1.56 from the table:

% flz) =1/ A A2
14 0.7143
-.0476
1.5 0.6667 0069
—.0417
1.6 0.6250 0049
—.0368
1.7 0.5882 0042
—0326
18 0.5556 .0033
‘ . ~.0293
1.9 | 0.5263

It should be especially noticed in this example that the first
differences are negative. Since it is required to find 1/1.56, one
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must choose ¢ == 1.5, and f(atwxd) becomes f(1.5 -+ .06),
from which it is seen that xd = .06. Since d = .1, 2 == .6. Sub-
stituting in formula (1), one has

1 6(.6 —1)
—==,6667 — .6 (.0417 —_— (.0049
156 ( )+ 5 ( )

= .6667 — .0250 — .0006 — .6411.

2. Inverse Interpolation. 1t is sometimes important to be able
to reverse the process explained in the preceding section and find
the value of the argument corresponding to a given value of the
function. The problem is this: Given a value, f(a+2xd), to calcu-
late .

It is at once seen that an approximate answer may be ob-
tained by calculating z from the formula,

fletzd) =f(a) -2 4 ,

which is merely (1) with all terms except the first two omitted.

In order to indicate that x so obtained is merely a first ap-
proximation, it is given a subscript 1, and one calculates,

_flatad) —fla)
— -

(2)

1

It will usually happen that the value #, is not in error by a
large amount, so it may be used to obtain a second approximation.
In order to do this the following formula is employed,

f{a+ xd) — f(a)
) S xlm xl_'
A, + i T A2 -E v A

which is obtained from (1) by replacing all of the 2’s except the
first in each term by the approximate value x,.

This value, ., is in turn substituted in (3) in place of x, to
obtain a third approximation, and the process thus continued to
any degired accuracy.
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Example: Calculate the square root of 2.4 from the following
table: '

% Fla) = a2 A Az
l— _

1 1
3

2 4 2
5

3 9 2
7

4 16 2
9

5 | 25

Since f(a + 2d) = 24, f(a) = 1, x = 1, and 4, = 3, one
reaches as a first approximation,

241 eer

X

Using this value in formula (3), one finds as the second ap-
proximation,

_ 24—1 _ 1.4 — 5676
4667 — 1 0 2.4667
—

Similarly, using this value in (3) one reaches as the third ap-
proximation,

¥, = 14/2.6676 — .5453 ,

and for other approximations,

z.=.5500 ,
r; =.5490 ,
e =.5492 ,

the last being correct to four places. Hence the desired square root
is equal fo 1.5492.

8. The Caleulation of Areas. A third problem easily solved
by the use of differences is the calculation of the area under a
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function from a table of numerical values. In order to understand
the symbols used, consider the following table:

x fix} : A ‘» Az
! _
1
a fo !
i A, '
a+d i : ‘ A2
8,
a+ 2d fa ; A2
| o
o+ 3d ‘ fs ‘
..... [ PR 1 cer Ar_22
..... ; Ar«l i
a + red ‘l /e ‘ i
i

In terms of this notation, the area I(¢) fromz =cectox =1
= @ -} rd is given by the formula,

1) = Ao+ Fo - Fob o oo+ 10— 5 Ga 1)
1 1 ! L2 T
W-]E (A,»_I—Ao) —"2—1 (;’1,..-_; 5 ;.‘(. ) + } .

Example 1: Calculate the area under the parabola y — x* from
x — 0 to x = B, by means of the following table:

|

T Yy — x? | A : Az
. | - — _ - _

0 0 '
I §

1 1 | 2
. 3

2 4 : 2
: b

3 9 ' 2
T

4 16 i 2
f 9 -

5 25

Sinced =1, 4y=1, A% =2, 4., =9, andA,., — 2, we
easily calculate the area to be,
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I:(0—|—1—}—4-—j—9—(—16—|—25)—-§1(0+25)-—i-l-2-(9—1)

1 2
——(242) =412,
YA 3

Example 2: Calculate the area under the normal probability
curve from & == 0 to xr = .4.

From Table VI the following values are obtained:

P Y ‘ A Az
}

0 39894 |
| _00199

1 39695 | —.00392
| 00591

2 39104 ! 00374
| —00965

3 38139 | —.00347

-.01312
4 36827

Since d = .1, one easily finds the value of the area to be,

I=.1{(.39894 + .39695 }- .39104 4 .38139 + .36827)

—u-;—(.39894 -+ .36827) — %(—.01312 —+ .00199)

1
— = (—.00347 — .00392
5 4( 392) }
= .1{ (1.93659 — .38361-1- .00093 -}- .00031) } — .15542 .

This value is seen from Table VIT to be correct to five places.

4. References. In this section only the briefest exposition of
the use of tables has been possible. The reader will find the fol-
lowing works useful in a further exploration of this subject :

E. T. Whittaker and G. Robinson: The Calculus of Observa-
tions, London, 1924, 395 pp.
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Karl Pearson: On the Construction of Tables and on Interpo-
lation. Tracts for Computers, No. 2, London, 1920, Uni-variate
Tables, 70 pp., No. 3, London 1920, Bi-variate Tables, 54 pp.

J. F. Steffensen: Interpolation, Baltimore, 1927, 248 pp.

H. L. Rice: The Theory and Practice of Interpolation, Lynn,
Mass., 1899, 234 pp.

J. B. Scarborough: Numerical Mathematical Analysis, Balti-
more 1930, 416 pp.

. T. Davis: Tables of the Higher Mathematical Functions,
Vol. 1, Bloomington, Ind., 1933, Part 3.

Max Sasuly: Trend Analysis of Statistics, Washington, D. C.,
1934, 421 pp.

Milne-Thomson, L. M.: The Caleulus of Finite Differences,
London, 1933, 558 pp.



TABLES



SOME USEFUL CONSTANTS

7 == 3.14159 26526

e = 2.71828 18285

log, 7 == 0.49714 98727

M =log e 7= 0.43429 44819

1/M —=log, 10 == 2.30258 56910

log, .M == 9.63778 481153-10

Var == 1.77245 38509

log,, V7 = 0.24857 48263

1/V7 =: 0.56418 95825

log,, (1/V 7Y == 9.75142 5063710

1/ =- .51830 98862

log,,(1/7) = 9.50285 01273-

V27 == 2.50662 82740
log,,V 27 = 0.89908 99342

1/V 37 == 0.30894 22803

10

log,,{1/V27) = 9.60091 00658-10

TABLE 1

THE COMMON OR BRIGGS LOGARITHMS OF THE NATURAL NUMBERS

2
o

W oo bo =&

Lo,

Log. No.  Log. No.
20 1.30103 | 40

0.00000 | “21 132992 | 41
0.30103 | 22 184242 | 42
047712 | 23 1386173 | 43
0.60206 | 24 138021 | 44
069897 | 25 1.39794 | 45
077815 | 26 1.41497 | 46
084510 | 27 143136 | 47
0.90300 | 28 144716 | 48
0.95 424 | 29 1.46240 | 49
1.00000 | 30 147712 | 50
104139 | 31 1.49186 | 51
107918 | 22 150515 | 52
111394 | 33 151851 | 53
114613 | 34 153 148 | 54
1.17 609 g 36 1.54407 | 55
120412 | 36 1.55630 ' 56
123045 | 27 1.56820 | 57
125527 | 38 157978 | b8
127875 | 39 159106 | 59

|
1.30 103 | 40 160206 | 60

FROM 1 TO 10,000

Log. | No. Log. l No.
| i
1.60206 | GO 1.77815 | K0
1.61278 | 61 1.78533 | 81
1.62325 « 62 1.79 239 89
163847 + 63 1.79934 l 83
1.64 345 | 64 180618 84
165821 = 65 1.81291 ! 85
1.66276 | 66 1.81954 | 86
167210 ' 67 1.82¢07 R7
168124 | 68 1.87251 ! 88
1.69020 ' 69 1.83 885 89
i |
1.69897 | 7O 181510 | 9O
L70 757 | 71 1.85126 91
171600 | 72 1.85733 \ 92
172428 | 73 1.865832 | 93
173239 | 74 1.86923 | 94
1.74 036 i 75 1.87506 | 95
174819 | 76 1.88081 ! a6
1755687 | 77 188649 97
1.76 843 | 78 1.89 209 98
1.77 085 1 79 1.89 762 5 99
19 '

177815 | 80

Log.

1.90 309
1.90 849
1.91 381

1.91 908

—372—



TABLE I — LOGARITHMS

1

2

Wy
=]
o}

3

00 043 00 087 00130

00 475
00 903
01 326
01745

02 160
02 572
02979
03 383
03 782

04 179
04 571
04 961
05 346
05729

06 108
06 483
06 856
07 225
07 591

07 954
08314
08672
09 026
09 377

09 726
10072
10 415
10 755
11093

11 428
11760
12 090
12 418
12743

13 066
13 386
18704
14 019
14 333

14 644
14 9563
15259
15 6564
15 866

16 167
16 465
16 761
17 056
17 348

1

00 518
00 945
01 368
01 787

02 202
02 612
03 019
03 423
03 822

04 218
04 610
04 999
05 385
05 767

06 145
06 521
06 893
07 262
07 628

07 990
08 350
08 707
09 061
09 412

09 760
10106
10 449
10 789
11 126

11 461
11793
12 123
12 450
12975

13 098
13 418
13 735
14 051
14 364

14 675
14 983
15290
15 694
15 897

16197
16 495
16 791
17 085
17377

2

00 561
00 988
01 410
01 328

02 243
02 653
03 060
03 463
03 862

04 258
04 650
05 038
05 423
05 805

06 183
06 558
06 930
07 298
07 664

08 027
08 386
08 743
09 096
00 447

09 795
10 140
10 483
10 823
11 160

11 494
11 826
12156
12 483
12 808

13 130
13 450
13 767
14 082
14 395

14 706
15014
15 320
156 625
15 927

16 227
16 524
16 820
17114
17 406

3

4

00 173
00 604
01030
01 452
01 870

02 284
02 694
03 100
03 503
03 902

04 297
04 689
05 077
05 461
05 843

06 221
06 595
06 967
07 335
07900

08 063
08 422
08 778
09132
09 482

09 830
10 175
10 517
10 857
11193

11 528
11 860
12 189
12 518
12 840

13 162
13 481
13 799
14114
14 426

14737
15 045
15 351
15 655
15957

16 256
16 554
16 850
17 143
17 435

4

5

00 217
00 647
01072
01 494
01 912

02 325
021735
03 141
03 543
03 941

04 3386
04 727
05115
05 500
05 881

06 258
06 633
07 004
07 372
07 737

08 099
08 458
08 814
09 167
09 517

09 864
10 209
10 551
10 890
11 227

11 b61
11 893
12 222
12 548
12 872

13194
13 513
13 830
14 145
14 457

14 768
15 076
15 381
15 685
15 987

16 286
16 584
16 879
17173
17 464

S5

6

00 260
00 689
01115
01 536
01 953

02 366
02 776
03 181
03 583
03 981

04 376
04 766
05 164
05 538
05 918

08 206
06 670
07 041
07 408
07773

08 135
08 493
08 849
09 202
09 552

09 899
10 243
10 58b
10 924
11 261

11 594
11926
12 254
12 581
12 905

13 226
13 545
13 862
14 176
14 489

14 799
15106
15 412
15715
16 017

16 316
16 613
16 909
17 202
17 493

6

7

00 303
00 732
01 157
01578
019985

02 407
02 816
03 222
03 623
04 021

04 415
04 805
05192
05 576
05 956

06 333
06 707
07078
07 445
07 809

08171
08 529
08 884
09 237
09 587

09 934
10 278
10 619
10 958
11 294

11 628
11 959
12 287
12 613
12 937

13 258
13 577
13 893
14 208
14 520

14 829
15137
15 442
15 746
16 047

16 846
16 643
16 938
17231
17522

7

8

00 346
00 775
01199
01620
02 036

02 449
02 857
03 262
03 663
04 060

04 454
04 844
05 231
05614
05 994

06 371
06 744
07115
07 482
07 846

08 207
08 565
08 920
09 272
09 621

09 968
10312
10 653
10 992
11327

11 661
11 992
12 320
12 646
12 969

13 290
13 609
13 925
14 229
14 551

14 860
15168
15 473
16 776
16 077

16 376
16 673
16 967
17 260
17 551

8

9

00 389
00 817
01 242
01 662
02078

02 490
02 898
03 302
03 703
04 100

04 493
04 883
05 269
05 652
06 032

06 408
06 781
07 161
07 518
07 882

08 243
08 600
08 955
09307
09 656

10 003
10 346
10 687
11 025
11 361

11 694
12024
12 352
12 678
13001

13 322
13 640
13 956
14 270
14 582

14891
15198
15 503
15 806
16 107

16 408
16 702
16 997
17 289
17 580

9
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|
|
|
|
%
|
l
|
|
|
|
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TABLE I — LOGARITUMS

No. = O

150 ; 17 609
151 17 898
152 ' 18 184
153 | 18 469
154 18752

155 | 19033
156 | 19 312
157 |19 590
158 | 19 866
159 © 20 140

160 20412
161 | 20 683
162 | 20 952
163 | 21219
164 | 21 484

165 ‘ 21748
166 | 22011
167 | 22272
168 | 22 631
169 | 22 789

170 | 23045
171 23 300
172 | 23 553
173 ' 23 805
174 | 24 055

176 | 24 304
176 ' 24 551
177 24797
178 | 25 042
179 - 25 285

180 25 527
181 | 25768
182 | 26 007
183 © 26 245
184 ' 26 482

185 126 717
186 | 26 951
187 | 27 184
188 | 27416
189 | 27 646

190 ;27875
191 @ 28103
192 |28 330
192 |28 556
194 izs 780

195 {29003
196 | 29 226
197 (29 447
198 | 29 667
199 |29 885

No. 0

1

17 638
17 926
18 213
18 498
18 780

19 061
19 340
19618
19 893
20 167

20458
20710
20 978
21245
21 511

21 775
22 037
22298
22 ba7
22814

23 070
233825
23 578
23 830
24 080

24 329
24 576
24 822
25 066
256 810

25 55l
25792
26 031
26 269
26 505

26 741
26 976
27 207
27 439
27 669

27 898
28 126
28 3563
28 578
28 8O3

29 026
29 248
29 469
29 688
29 907

1

-
17 667

17 9565
18 241
18 526
18 808

19 089
19 368
19 645
19921
20194

20 466
20737
21005
21292
21 537

21 801
22 063
22 324
22 583
22 8B40

23 096
23350
23 603
23 855
24105

24 363
24 601
24 846
25091
25 334

25 575
25 816
26 035
26 293
26 529

26 764
26 998
27 231
27 462
27 692

27921
28 149
28 375
28 601
28 825

29048
29 270
29 491
29 710
29 929

2

3

17 696
17 984
18 270
18 554
18 837

19 117
19 396
19673
19 948
20 222

20493
20 763
21032
21 299
21 564

21 827
22 029
22 350
22608
22 8606

23121
23 376
23 629
23 880
24130

24 378
24 626
24 871
25115
25358

25 600
25 840
26079
26 316
26 553

26 788
27 021
27 2564
27 485
27715

27 944
28 171
28 398
28 623
28 847

29070
29 292
29 513
29 732
29951

3

4

17725
18013
18 298
18 183
18 865

19 145
19 424
19 700
19 976
20249

20 520
20 790
21059
21325
21 590

21 B54
22 116
22 376
22 634
22 891

23 147
23 401
23 6564
23 905
24 155

24 403
24 650
24 895
25139
26 382

25624
25 864
26 102
26 340
26 576

26 811
27 045
27277
27 508
27738

27 967
28 194
28 421
28 646
28 870

29 092
29314
29 535
29 754
29973

4

5

17 764
18 041
18 327
18 611
18 893

19 173
19 451
19 728
20 003
20 276

20 548
20 817
21085
21 352
21 617

21 880
22 141
22401
22 660
22 917

25 172
23 426
23 679
23920
24 180

24 128
24 674
24 920
25 164
256 406

25648
25 888
26 126
26 364
26 600

26 834
27 068
27 300
27531
27761

27 989
28 217
28 443
28 668
28 892

291156
29 336
29 5567
29 776
29994

S

6

17782
18070
18365
18 639
18 921

19 201
19 479
19 756
20 030
20 303

20 575
20 844
21112
21 378
21 643

21 906
22 167
22 427
22 686
22943

23 198
23 4562
23 704
23 955

24 204

24 452
24 699
24 944
25 188
25 431

25672
25 912
26 150
26 387
26 623

26 BHB
27 091
27 323
27 564
27 Ts4

28 012
28 240
28 466
28 691
28914

2913

29 358
29 579
29 798

o

17 311
18 099
18 384
18 667
18 949

19 229
19 507
19783
20 068
20 330

20602
20 871
21139
21 405
21 669

21 932
22 194
22 463
22712
22 968

21 223
23477
23 729
23 980
24 229

24 477
24 724
24 964
an 212

25 455

25 696
25 9356
26174
26 411
26 647

26 881
27 114
27 346
27 577
27 807

28 036
28 262
28 488
28 713
28 937

29 169
29 380
29 601
29 820

30016 30038

8

17 840
18 127
18 412
18 696
18971

19 257
19 635
19 811
20 085
20 358

20 628
20 898
21165
21 431
21 656

21 958
22 220
22 479
22 737
22 994

23 249
23 502
23 754
24 005
24 254

24 H02
24748
24 994
2b 237
25479

25720
25 959
26 198
26 435
26 670

26 905
27138
27 370
27 600
27 830

28 058
28 285
28511
28 735
28 959

29181
29103
29 623
29 842
30 060

9

17 869
181586
18 441
18 724
19 005

19 2856
19 G2
19 838
20112
20385

20 656
20 925
21192
21 458
21722

21 985
22 246
22 5056
22765
23 019

23 274
23528
23779
24 030
24 279

24 527
24 773
25018
25261

25 503

25 744
25 984
26 221
26 458
26 691

26 928
27 161
27 393
27 623
27 852

28 081
28 307
28 533
28 758
28 981

29 203
29 425
29 645
29 BG3
30 081

9
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No.

200
201

o

202, 80535

203
204

205

206
207
208
209

210
211
212
213
214

2156
216
217
218
219

220
221
222
223
224

225
226
227
228
229

230
231
232
233
234

235
236
237
238
239

240
241
242
243
244

245
246
247
243
249

No.

30750
30 963

31175
31 387
31597
31 806
‘ 32 0156

32 222
32 428
32634
32 838
33 041
’ 33 244
33 445
33 646
] 33 846
Jf 34 044

34 242

34 439

34 635
| 34830
i 835025

35 218
35 411
35 603
' 35793

35 984

36173
36 361
36 549
36 736
36 922

37107
37 291
37 475
37 658
37 840

38 021
38 202
S8 382
38 561
38 739

38 917
39094
39270
39 445
39 620

0

35238
35 430
35622
35 813
36 003

36 192
36 380
36 568
36 754
36 940

37125
37310
37493
37 676
37 858

38 039
38 220
38399
38 678
38 757

38934
30111
39 287
39 462
39637

1

30 103 30125
30 320 30841
30 5567
30971
30 984

31197
31 408
31618
31 827
32 035

132 243
32 449
32 654
32 858
33 062

33 264
33 46b
33 666
33 866
34 064

34 262
34 459
34 655
34 850
35 044

1

2

30 146
30363
30 578
a0 792
31 0086

31218
31 429
31 639
31848
32 066

32 263
32 469
32 676
32 879
33 082

33 284
33 486
33 636
33 885
34 084

34 282
34 479
34674
34 869
35 064

35 267
30 449
35 641
35 832
36 021

56 211
36 399
36 586
36713
36 959

37144
37 328
37511
37 694
37876

38 0a7
38 238
38 417
38 H96
38 775

38 962
39129
39 305
39 4380
39 665

Z

3

30 168
30 334
30 600
30 814
31027

31239
31 450
31 660
31 869
32077

32 284
32 490
32 695
32 899
33 102

33 304
33 506
33 706
33 905
34 104

34 301
34 498
34 694
34 889
35083

35276
35 468
35 660
35 8561
36 040

36 229
36 418
36 605
36791
36 977

37 162
37 846
37 530
37712
37 894

&8 075
38 256
28 435
38 614
38 792

38 970
39 146
39 322
39 498
39672

4

30 190
30 406
30 621
30 835
31 048

31 260
31471
31681
31 890
32 098

32305
32510
321715
32919
33122

33 325
33 526
33 726
33 925
34124

34 321
34518
34713
34 908
35102

35 295
35 488
35879
35 870
36 059

36 248
36 436
36 624
36 810
36 996

37181
37 365
37 h48
37731
37912

38093
38274
38 453
38 632
38 810

38 987
39 164
39 340
39 516
39 690

4

5
30211
30 428
30 643

30 856
31 069

31281
31 492
31702
31911
32118

32 326
32531
32 736
32 940
33 143

33 345
33 b46
33 746
33 945
34 143

34 341
34537
34 733
34 928
35122

35316
36 b07
35 698
365 889
36 078

36 267
36 455
36 642
36 829
37014

37 199
37 383
37 566
37749
37 931

38 112
38292
38471
38 650
38 828

39 005
39182
39 358
39 533
39 707

5

6

30233
30 449
30 664
30 878
31091

31302
31513
31723
31931
32139

32 346
32 bb2
32756
32 960
33 163

33 365
33 566
33 766
33 965
34163

34 361
34 557
34 753
34 947
356141

356334
35 526
35 717
35 908
36 097

36 286
36 474
36 661
36 847
37033

37218
37 401
37 585
371767
37 949

38 130
38 310
38 489
38 668
38 846

39023
39199
39376
39 550
39 724

6

7

30 255
30 471
30 685
30 899
31112

31 323
31 534
31744
31 952
32160

32 366
32 H72
32777
32 980
33 183

33 385
33 bBb
33 786
33 985
34183

34 880
34 577
34 772
34 967
35 160

35 353
3b h4b
35 736
35 927
36 116

36 305
36 493
36 680
36 866
37051

37 236
37 420
37 603
37 785
37 967

38 143
38 328
38 507
38 686
38 863

39 041
39 217
39393
39 568

8

30276
S0 4952
30 707
30 920
31133

31345
31 565
31 765
31973
32181

32 387
32 593
32797
33 001
33203

33 405
33 606
33 806
34 005
34203

34 400
34 596
34 792
34 986
35 180

35 372
35 564
356 755
35 946
36 135

36 324
36 511
36 698
36 884
37070

37 254
37 438
37 621
37 803
37 985

38 166
38 346
38 526
38 703
38 881

39 058
39 235
39 410
39 585

9

30 298
30514
30 728
30 942
31154

31 366
31 576
31785
31 994
32 201

32 408
32613
32818
33 021
33224

33425
33 626
33 826
34 025
34 223

34 420
34 616
34 811
35005
351569

353892
35583
35 774
35 965
36 154

36 342
36 530
36 717
36 903
37088

37273
37 457
37 639
37 822
38003

38134
38 364
38 543
38 721
38 899

39 076
39 252
39 428
39602

39 742 39 759 39777

7

8

9




No.

251 |
252 |
253 |
254 |

255 |
256 |
257 |
258 |
259

260 ]
261
262
263
264

265 ;
266
267
268
269

270
271
272
273
274

275,
276 |
277
278
279 |

280
281
282
283
284

285 -
286 |

0

1
250 39 794

39 967
4 140
40 312
40 483

49 654
40 824
40 993
41 162
41 330

41 497
41 664
41 830
41 996
42 160

42 326
42 488
42 651
42 813
42 975

43 136
43 297
43 457
43 616
43 775

43 933
44 091
44 248
44 404
44 560

44 716
44 871
45 025
45179
45 332

45 484
45 637
45 788
45 939
46 090

|
290 ' 16240
291 | 46 389
292 | 46 538

203 | 46 687
294 ¢ 46 835

205 1 46 982
296 ; 47129
297 | 47 276
298 l 47 422
299 | 47 567

0

LNO. |

1

392811
39 985
40 1567
40 329
40 500

40 671
40 841
41 010
41179
41 347

41 514
41681
41 847
42012
42 177

42 341
42 504
42 667
42 830
42 991

43 162
43 313
43 473
43 632
43 791

43 949
44107
44 264
44 420
44 576

44 731
44 886
45 040
45 194
45 347

45 500
45 652
45 803
45 954
46 105

46 255
46 104
46 553
46 702
46 850

46 997
47 144
47 200
47 436
47 582

1

TABLE I — LOGARITHMS

p-

39 829
40 002
40 175
40 346
40 518

40 683
40 858
41 027
41196
41 363

41531
41 697
41 863
42 029
42193

42 357
42 521
42 684
42 846
43 008

42 169
43 329
43 489
43 648
43 807

43 965
44 122
44 279
44 436
44 592

44 747
44 902
45 056
45 209
45 362

45 515
45 667
45 818
45 969
46120

46 270
46 419
46 H68
46 716
46 864

47012
47 159
47 305
47 451
47 596

Z

3

39 846
40 019
40 192
40 364
40 535

40 705
40 875
41 044
41 212
41 380

41 547
41 714
41 880
42 045
42 210

42 374
42 537
42 700
42 862
43 024

43 185
43 345
43 505
43 664
43 823

43 981
44138
44 295
44 451
44 607

44 762
44 917
45071
45 225
45 378

45 530
45 682
45 834
45 984
46 135

46 285
46 434
46 583
46 731
46 879

47 026
47173
47 319
47 465
47 611

3

4

39 863
40 037
40 209
40 381
40 552

40 722
40 892
41 061
41229
41 397

41 564
41 731
41 896
42 062
42 226

42 390
42 553
42 716
42 878
435 040

43 201
43 361
43 521
43 680
43 838

43 996
44 154
44 311
44 467
44 623

44778
44 932
45 086
45 240
45 393

45 545
45 697
45 849
46 000
46 150

46 300
46 449
46 598
46 746
46 894

47 041
47 188
47 334
47 480
47 625

4

5

39 881
40 054
40 226
40 398
40 569

40 739
40 909
41 078
41 246
41 414

41 581
41 747
41 913
42 078
42 243

42 406
42 570
42732
42 894
43 056

43 217
43 577
43 h3aT
43 696
43 854

44 012
44 170
44 326
44 483
44 638

44 793
44 948
45102
45 265
45 408

45 161
45 712
45 864
46 01H
46 165

46 315
46 464
46 613
46 761
46 909

47 056
47 202
47 349
47 494
47 640

54

6

39 898
40071
40 243
40 415
40 586

40 756
40 926
41 095
41 263
41 430

41 597
41 764
41 929
42 095
42 239

42 423
42 586
42749
42 911
43 072

47 233
43 393
43 5h3
43712
43 870

44 028
44 185
44 342
44 498
414 654

44 809
44 963
45117
4h 271

45 423

45 576
45 728
45 879
46 030
46 180

46 330
46 479
46 627
46 776
46 925

47 070
47 217
47 363
47 5609
47 654

6

v

39915
40 038
40 261
40 432
40 603

40 773
40 943
41111
41 280
41 447

41 614
41 780
41 946
42111
42 275

42 43¢
42 602
42765
42 927
43 088

43 249
43 409
43 H6Y
43 727
413 886

14 044
44 201
14 358
44 514
44 669

44 824
44 979
45133
45 286
45 430

45 H1
45H 745
45 8H4
46 045
46 195

46 345
46 494
46 642
46 790
46 938

47 OBL
47 232
47 378
47 524
47 669

-4
d

<]

59 935
40 106
40 278
40 449
40 620

40 790
40 960
41 128
41 296
41 464

41 631
41 797
41 963
42127
42 292

42 4505
42 619
42 781
42 943
47 104

43 265
43 426
43 584
423 743
43 902

44 059
44 217
44 573
44 529
11 G85H

44 840
44 994
45 148
45 301
4h 4h4

45 606
45 758
45 908
46 060
46 210

46 559
46 509
46 617
46 805
46 953

47 100
47 246
47 592
47 538
47 683

8

9

39950
40123
40 295
40 466
40 637

40 807
40 976
41 145
41 313
41 481

41 647
41 814
41 979
42144
42 308

42 472
42 635
42797
42959
43 120

3 281
43441 |
43600

43759

43917 |

14 07H
44 232
44 389
44 545
44 700

44 855
45010
45 163
45 817
45 169

45 621
45 T73
45924
46 075

46 225

46 574
46 523
46 672
46 820
46 967

47114
47 261
47 407
47 5538
47 698

9




No. |

300

501
302
303
S04

305
506
307
308
308

310
311
312
313
314

315
316
317
318
319

320
321
322
323
324

325
326

327

328
329

330
331

332

333
334

335
336
337
338
339

0

47712
47 857
48 001
48 144
48 287

48 430
48 572
48 714
48 865
48 996

49 136
49 276
49 415
49 554
49 693

49 831
49 969
50106
50 243
50379

a0 515
50 651
50 786
50 920
51 055

51 188
561 322
51 455
51 587
51 720

51 851

! 51 983

|
340
| 53 275
| 53 403
| 53 529

341
342
343
344

345
346

247 |
348 |
349 |

No.

52114
52 244
52 37h

52 504
52 634
52763
52 892
53 020

53 148

53 6h6

53 782
53 908
54 033
54 158
54 283

0

1

47 727
47 871
48 015
48 159
48 302

48 444
48 586
48 728
48 869
49 010

49 150
49 200
49 429
49 568
49 707

49 845
49 982
50 120
50 256
50 393

50 529
50 664
50799
50 934
51 068

51 202
51 335
51 468
516401
51733

51 865
51 996
52 127
52 257
52 388

52 517
52 647
521776
52 905
53 033

53 161
53 288
53 415
53 542
£3 668

53 794
b3 920
54 045
54 170
54 285

1

TABLE 1 — LOGARITHMS

>

47 741
47 885
48 020
48 173
48516

48 4b8
48 601
48 742
48 883
49 024

49 164
49 504
49 443
49 582
49721

49 859
49 996
50 133
50 270
50 406

50 542
50 678
50 813
50 947
51 081

51 215
51 348
51 481
51614
b1 746

51 B78
52 009
52 140
52 270
52 401

52 530
52 660
52 789
52 917
53 046

53 173
53 301
53 428
53 bba
53 681

53 807
53 933
54 058
54 183
54 307

2

3

47 7H8
47 900
43 044
48 187
48 350

48 473
48 615
48 756
48 897
49 028

49178
49 318
49 457
49 596
49 734

49 872
50 010
50 147
50 284
50 420

50 556
50 691
5( 826
50 961
51095

b1 228
51362
51 495
a8l 627
o1 7569

51 891
52022
2153
52 284
52 414

52 543
52673
b2 802
52 930
53 058

H3 186
53314
53 441
b3 b67
53 694

53 B20
53 945
54 070
54 195
54 320

3

4

47770
47 914
48 058
48 202
48 344

48 487
48 629
48 770
48 911
49 062

49 192
49 332
49 471
49 G610
49 748

49 886
50 024
50 161
50 297
50 433

50 569
50 705
50 840
50 974
51 108

51 242
b1 375
51 508
51 640
1 77

51 904
52 035
52 166
52 2907
52 427

52 556
52 686
52 816
52 943
a3 071

b3 199
53 326
53 4563
53 580
53 706

63 832
53 958
b4 083
54 208
54 332

4

5

47 784
47 929
48 073
48 216
48 359

48 501
48 643
48 785
48 926
49 066

49 206
49 346
49 485
49 624
49 762

49 900
50 037
50174
50 311
50 447

50 583
50718
50 853
50 987
51121

51255
51 388
51 521
51 654
51 786

519017
52 048
52179
52 310
52 440

52 569
52 699
52 827
52 956
53 084

53 212
53 339
53 466
53 593
63 719

53 845
53 970
54 095
54 220
54 345

S5

6

47799
47943
48 087
48 230
48 373

48 515
48 657
48 799
48 940
49 080

49 220
49 360
49 499
49 638
49776

49914
50 051
50 188
50 326
50 461

50 596
50 732
50 866
51 001
51135

51 268
51 402
51 534
51 667
51799

51930
52 061
52192
52 323
52 453

b2 582
52 711
52 840
52 969
83 097

53 224
53 362
53 479
53 606
53 732

53 857
53 983
54 108
54 233
54 357

6

v

47 813
47 958
48101
48 244
48 387

48 530
48 671
48 813
48 954
49 094

49 234
49 374
49 513
49 651
49 790

49 927
50 065
50 202
50 338
50 474

50 610
50 745
50 880
51014
51148

51 282
51 415
51 548
51 680
51 812

51 943
52 075
52 205
h2 336
52 466

52 595
52724
52 853
52 982
53 110

53 237
53 564
53 491
53 618
53 744

53 870
63 995
54 120
54 245
54 370

7

8

47 828
47 972
48 116
48 259
48 401

48 544
48 686
48 827
48 968
49 108

49 248
49 388
49 527
49 665
49 803

49 941
50079
50 215
50 352
50 488

50 623
50 7569
50 893
51 028
51 162

51295
51428
51 561
51 693
51 825

51 957
52 088
52 218
h2 349
52 479

52 608
52737
52 8G6
52 994
53 122

53 250
Hh3 377
53 504
53 631
63 757

53 882
54 008
54133
54 258
54 382

8

9

47 842
47 986
48130
48 273
48 416

48 558
48 700
48 841 |
48 982
49122

49 262
49 402
49 541
49 679
49 817

49 955
50 092
50 229
50 365
50 501

50 637
50 772
50 907
51 041
51175

51308
51 441
51574
51 706
51 838

51 970
52101
52 231
52 362
52 492

52 621
52 750
b2 879
53 007
53 136

53 263
53 390
53 517
53 643
53 769

b3 89b
54 020
54 145
54 270
b4 394

9




1

350 | b4 407
351 | 54 531
352 | 54 664
353 | 54 777
354 | 54 900

355 | 55 023
356 | 55 145
357 | bb 267
358 | b5 388
259 { 55 502

360 | 55630
361 | 55 751
562 | bb 871
363 | 66991
264 | 56 110

365 | 56 229
366 | 56 348
367 | 56 467
368 | b6 585
369 56 703

370 | 56820
371 | 56 937
372 | b7 054
373 | 57171
374 | 57 287

376 | 57403
376 | b7 519
377 | 57634
378 | 57 749
379 | 57 864

380 | 57978
281 ; 58092
282 | 58 206
383 | 58320
384 1 58 433

285 | 58 b46
386 ' 58 659
387 | HBTT1
388 | HB 883
389 | 58 995

390 | 59106
291 | 59218
392 | 59 329
293 | 59 439
394 | 59 550

395 | 59 660
296 | 59770
397 ; 59 BT
398 | 59 988
399 60 097

l
No.\ 0

54 419

54 543 I
54 667 &

54 790
54 913

55 08

55 157
55 270
55 400
55 522

55 642
5b 765

hh 883 !

56 003
h6 122

56 241
56 360
56 478
H6 5T
56714

56 832
506 949
57 066
57 183
57 299

57415
5T 530
57 646
BT 761
BT 875

57990
hy 104
58 218
58 331
58 444

58 5b7
58 GT0
58 782
58 894
59 006

59 118
h9 229
59 340
59 4h0
5% 561

59 671
59 780
59 890
59 999
60 108

1

TABLE I — LOGARITHM

h4 925

55 047
55 169
55291
55413
55 534

654

g e g v |

croagten A
[=r )
=0 =]
] =)

[

56 253
56 372
56 490
56 608
56 726

56 844
56 961
57078
57194
57310

57 426
57 h42
57 6a7
hTTT2
5T 887

58 001
58 115
h8 229
58 343
n8 156

58 569
58 681
58 794
58906
59017

59 129
59 240
59 351
h9 461
59 572

59 682
59 791
59 901
60 010
60 119

2

54 444
54 568
54691
54 814
54 907

55 060
55 182
55 303
5b 425
55 546

55 G66
55 787
5h Y07
56 027
50 146

h6 265
56 384
56 H02
56 620
hi 738

56 855
56 972
57 089
57 206
57 322

57438
57 553
57 669
071784
57 848

58 013
h8 127
58 240
58 3h4
n8 467

58 580
h3 692
58 805
h8 911
59 028

59 140
59 251
h9 362
59472
59 583

n9 693
59 802
59912
60 021
60 130

3

54 456
54 580
54 704
h4 827
54 949

55 072
55 194
55 316
55 437

oh 558

55 678
55 799
55 919
56 038
56 158

56 277
56 306
56 514
56 632
56 750

56 867
56 984
57101
57217
57 354

57 449
57 565
h7 6RO
57 795
57910

58 024
58 138
58 2h2
58 365
58 473

58 591
58 704
58 816
58 028
59 040

59 151
59 262
59 373
59 483
59 594

59704
59 813
59 923
60 032
60 141

4

S5

54 469 5

54 593
54 716

54 839 !

54 962

55 084
55 206
55 328
55 449

55 570

55 691
55 811
55 931
56 050
56 170

50 289
56 407
56 526
56 644
56 761

56 879
56 996
a7 113
37 229
57 345

57 461
57 576
57 692
57 807
57 921

H8 035
58 149
58 263
58 377
58 490

58 602
58 715
58 827
58939
59 061

59 162
59 273
59 384
59 494
59 605

59 715
59 824
59 934
60 043
60 1562

o

£

55943
56 062
56 182

56 301
56 419
50 538
56 606
56 773

56 891
57 008
57 124
hT 241
AT 857

5T 4TS
57 588
57708
78134

HT 933

H8 047 |
8161 !

58 274
58 388
58 501

58 614
h3 726
58 838
58 950
59 062

59 173
59 284
59 395
59 506
59 616

59 726
59 835
59 945
60 054
60 163

6

54 494
54617
54 741
H4 864
54 986

Gb 108
55 23

55 352
55 473

55 Hhyd

55 T1h

3 5hH 8IS

55 955
56 074
56 194

a6 312
h6 431
5G 549
56 667
56 78H

56902 I
57019

57 136

b8 280
h8 399
h8 512

v

-

7
0

-

[L=lis o o

iy vy )

o= oo she o]

v
ki r

=
pi LR

3
58 961
59 073

LT
=

> 184
59 295
59 406
59 1T
59 627

59 737
59 846
h9 9506
60 065
60 173

7

8

54 506
54 630
54 753
54 876
54 998

55121
ah 242
b5 364
55 485
55 606

hh 727
55 847
55 967
6 086
56 205

h6 524
56 443
56 561
H6 67H
56 797

57 496
57611
BT 726
A7 841

4 57955

59 195
59 306
50 417
59 528
59 638

h9 748
59 857
59 966
60 076
60 134

8

9

54 518
54 642
54 765
54 888
55011

133
255
376
497
618

1

wnen STt Lt

5
5
5
5
5

55 739
55 559
55 979
5G 098
56 217

56 336
56 1455
56 573
56 691
56 808

1 56 026

57 043
57 159
57276
57 392

5T 507
57 623
57738
57 852
5T 967

58 031
58 196
L8 309
58 422
58 535

58 647
58 760
H8 872
58 984
59 095

59 207
h9 218
59 428
59 539
59 649

59 159
59 868
59 977
60 086
60 195

9




400
401

402
403

405
406
407

410
411
412
413
414

416
417

419

420
421
422
423
424

425
426
427
428
429

430
431
432
433
434

435
436

438
439

440
441
442
443
444

445
446
447
448
449

404 |

No.

408 |
409

0

60 206
60 314
60 423
60 531
60 638

60 746
60 853
60 959
61 066
61172

61278

. 61 384
' 61490

61 5695

- 61700

415 |

418 ¢

437 :

61 805
61 909

i 62014

62118
62 221

62 326
62 428
62 531
G2 634
62 737

62 839
62 941
63 043
63 144

| 62 246

63 347
63 448
63 548
63 649
63 749

63 849
63 949
64 048
64147
64 246

64 345

i 64 444

64 542
64 640
64 738

64 836
64933
65 031
65 128
65 225

0

1

60 217
60325
60 433
60 541
60 649

60 756
60 863
60 970
61 077
61183

61 289
61 395
61 500
61 606
61711

61 815
61 920
62 024
62 128
62 232

62 335
62 439
62 H42
62 644
62 747

62 849
62 951
63 063
63 155
63 266

63 357
63 458
63 558
63 659
63 759

63 859
63 959
64 068
64 157
64 256

64 355
64 454
64 552
64 650
64 748

64 846
64 943
65 040
65 137
65234

1

TABLE [ — LOGARITHMS

2

60 228
60 336
60 444
60 552
60 660

60 767
60 874
60 931
61 087
61194

61 300
61 405
61511
61 616
61721

61 826
61 930
62 034
62 138
62 242

62 346
62 449
62 5562
62 655
62 757

62 859
62 961
63 063
63 165
63 266

63 367
63 468
63 568
63 669
63 769

63 869
63 969
64 068
64 167
64 266

64 365
64 464
64 562
64 660
64758

64 856
64 953
65 050
65 147
65 244

2

3

60 239
60 347
60 456
60 563
60 670

G0 778
60 885
60 991
61 098
61204

61 310
61 416
61 521
61 627
61 731

61 836
61 941
62 045
62 149
62 262

62 356
62 459
62 562
62 665
62 767

62 870
62 972
63 073
63 175
63 276

63 377
63 478
63 679
63 679
63779

63 879
63 979
64 078
64 177
64 276

64 375
64 473
64 572
64 670
64 768

64 865
64 963
65 060
65 157
65 254

3

4

60 249
60 368
60 466
60 b74
60 681

60 788
60 895
G1 002
61 109
61215

61 321
61 426
61 532
61 637
61742

61 847
61 951
62 055
62159
62 263

62 366
62 469
62 572
62 675
62 778

62 880
62 982
63 083
63 185
63 286

63 387
63 488
63 589
63 689
63 789

63 889
63 988
64 088
64 187
64 286

64 385
64 483
64 582
64 680
64 777

64 875
64 972
65 070
65 167
65 263

4

S5

6

7

60 260 60271 60 282

60 369
60 477
60 b84
60 692

60 799
60 906
61013
61119
61 225

61331
61 437
61 542
61 648
61 752

61 847
61 962
62 066
62170
62 273

62 377
62 480
62 583
62 685
62 788

62 890
62 992
63 094
63 195
63 296

63 397
63 498
63 599
63 699
63 799

63 899
63 998
64 098
64 197
64 296

64 395
64 493
64 591
64 689
64 787

64 885
64 982
65 079
65176
65 273

S5

60 379
60 487
60 595
60 703

G0 810
60 917
61 023
61130
61 236

61 342
61 448
61 553
61 658
61 763

61 868
61972
62 076
62180
62 284

62 387
62 490
62 593
62 696
62 798

62 900
63 002
63 104
63 205
63 306

63 407
63 508
63 609
63 709
63 809

63 909
64 008
64 108
64 207
64 306

64 404
64 503
64 601
64 699
64 797

64 895
64 992
65 089
65 186
65 283

6

60 390
60 498
60 606
60713

60 821
60 927
61 034
61 140
61 247

61 352
61 458
61 563
61 669
61 773

61 878
61 982
62 086
62 190
62 294

62 397
62 500
62 603
62 706
62 808

62 910
63 012
63 114
63 215
63 317

63 417
63 518
63 619
63 719
63 819

63 919
64 018
64 118
64 217
64 316

64 414
64 513
64 611
64 709
64 807

64 904
65 002
65 099
65 196
65 292

7

8

60 203
60 401
60 509
60 617
60 724

60 831
60 938
61 045
61151
61 257

61 363
61 469
61 574
61679
61784

61 888
61 993
62 097
62 201
62 304

62 408
62 511
62 613
62 716
62 818

62 921

63 022 63 033

63 124
63 225
63 327

63 428
63 528
63 629
63 729
63 829

63 929
64 028
64 128
64 227
64 326

64 424
64 523
64 621
64 719
64 816

64914
65 011
65 108
65 205
65 302

8

60 304
60 412
60 520
60 627
60 735

60 842
GO 949
61 065
61162
61 268

61374
61 479
61 584
61 690
61794

61 899
62 003
62 107
62211
62 3156

62 418
62 521
62 624
62 726
62 829

62 931

63 134
63 236
63 337

63 438
63 538
63 639
63 739
63 839

63 939
64 038
64 137
64 237
64 335

64 434
64 532
64 631
64 729
64 826

64 924
65 021
65118
65 215
65 312

9




2}

a80

No.

0

65 321
65 418
65 514
65 610
65 706

65 801
65 B9G
65 992
66 087
66 181

66 276
66 370
66 464
66 558
66 652

66 745
66 839
66 932
67 025
67 117

67 210
67 302
67 394
67 486
67 578

67 669
67 761
67 852
67 943
68 034

68124
68 215
68 305
68 395
68 4856

68 574
68 664
68 7H3
68 842
68 931

69 020
69 108
69 197
9 285
69 373

69 461
69 548
69 636
69 722
69 810

0

1

65 331
65 427
65 523
65 619
65 715

65 B11
65 906
66 001
66 006
66 191

66 285
66 380
66 474
66 567
66 661

66 755
66 848
66 941
67 034
67 127

67 219
67311
67 403
67 495
67 687

67 679
67770
67 861
67 952
68 043

68 133
68 224
(8 314
68 404
68 494

68 583
68 673
68 762
68 851
68 940

69 023
69 117
69 205
69 294
69 381

69 469
69 557
69 644
69 732
69 819

1

TABLE I — LOGARITHMS

6b 841
65 437
65 533
65 629
65 725

65 820
65 916
66 011
66 106
66 200

GG 295
66 389
66 483
66 577
66 671

66 764
66 867
66 950
67 043
67 136

67 228
67 321
67 413
67 504
67 596

G7 688
67779
67 870
67 961
G8 052

68 142
68 233
68 323
68 413
68 502

63 592
6B 6381
68 771
68 BGO
68 949

69 037
69 126
69 214
69 302
69 290

69 478
69 H66
69 653
69 740
69 827

P

3

65 350
65 447
65 543
65 639
65 734

G5 830
65 925
66 020
66 115
66 210

66 304
66 398
66 492
66 586
66 680

60 773
66 867
66 960
67 062
67 145

67 257
67 330
67 422
67 514
67 605

67 697
67 788
67 879
67970
68 061

68 161
68 242
68 332
68 422
68 511

68 601
68 690
68 T8O
GE 8G9
G8 958

69 046
69 135
69 223
69 311
69 399

69 487
69 574
69 662
69 749
69 836

3

4

66 360
65 456
65 552
65 648
65 744

65 839
65 935
66 030
66 124
66219

66 314
66 408
66 502
66 596
66 689

66 783
66 876
66 969
67 062
67 154

67 247
67 359
G7 431
67 523
67 614

67 706
67 TH7
67 888
67 979
68 070

68 160
68 2h1
68 341
68 431
68 520

68 610
G8 699
68 789
68 RT18
68 966

69 0565
69 144
69 232
69 320
(9 408

69 496
69 583
69 671
69 758
69 845

4

5

65H 369
65 466
65 562
65 6568
65 7563

65 849
65 944
66 039
66 134
66 229

66 323
66 417
66 511
66 605
66 699

66 792
66 885
66 978
67 071
67 164

67 2566
67 348
67 440
67 532
67 624

67 715
67 806
67 897
67 988
68 079

68 169
68 260
68 350
68 440
68 529

68 619
68 708
68 797
68 886
68 975

69 064
69 152
69 241
69 329

.69 417

69 504
69 692
69 679
69 767
69 854

5

6

65 379
G5 475
65 571
65 667
65 763

65 808
65954
66 049
66 143
66 238

66 332
66 427
66 521
66 614
66 708

66 801
66 894
66 987
67 080
67173

67 265
67 357
67 449
67 541
67 633

67 724
67 815
67 906
67 997
68 088

68 178
68 269
68 359
G8 449
68 538

G8 628
68 717
68 300
68 895
68 984

69 073
69 161
(9 249
69 33

G9 425

69 513
69 601
69 688
69 775
69 862

6

v

65 389
65 485
65 581
65 677
65 772

65 868
65 963
66 058
66 153
66 247

66 342
66 436
66 530
66 624
66 717

66 811
66 904
66 997
67 089
67 182

67 274
G7 367
67 459
67 550
67T 642

67 735
67 825
67 916
68 006
68 097

68 187
68 278
63 368
68 458
G8 547

68 63

68 T26
68 815
68 904
68 993

69 082
69 170
649 2h8
64 346
69 434

69 b22
69 609
69 697
69 784
69 871

7

8

65 398
65 495
65 691
65 686
65 782

65 877
65 973
66 0068
66 162
66 257

66 351
66 445
66 539
66 633
66 727

66 820
66 913
67 006
67 099
67 191

67 284
67 376
67 468
67 H60
67 651

67 742
G7 K34
67 925
68 015
¢8 166

G8 196
(68 287
68 377
68 467
68 H56

68 616
68 735
68 824
68 913
69 002

69 090
69 179
GO 267
69 355
69 443

69 531
69 618
69 70b
69 793
69 880

8

9

65 408
65 504
65 600
65 696
65 792

65 887
65 982
66 077
66172
66 266

66 361
66 4565
66 b49
66 642
66 736

66 829
66 922
67 015
67 108
67 201

47 293
67 385
67 477
67 569
G7 660

67 752
67 843
67 034
68 024
68 116

G8 205
68 296
68 386
(8 476

G8 H65

G8 6L5
68 744
68 B
68 922
69 011

49009
69 188
6 376
G9 364
69 452

69 53

69 627
69714
69 801
69 388

9




TABLE I — LOGARITHMS

500
501
502
503
504

505
506
507
508
509

51¢
511
512
513
514

515
516
517
518
b19

521
522
523
524

525
526
527
528
529

030
531
532
533
534

535
536
537
538
! 539

540
541

542
543
544

545
; 546
. 547
| 548
I 549

I

No. -

920 |

| 0

" 69 897
| 69 984
70050

70 157
70243

70 829
| 70 415
70 501
70 586
70 672

70 757
70 842
70927
71012
71 096

71181
T1 265
71349
71433
71517

171600
| 71 684
| 71967
[ 71 850
71933
|

72016
| 72 099
L 72181
| 72 263
' 72 346

172 428
| 72 509
| 72 591
72 673
|72 754

| 72 835
: 72916
‘72 997
73078
73 159

| 73239
|73 320
| 73 400
73 480
73 560

| 73 640
73 719
73 799
L3 878
173 957

0

1

€9 906
69 992
70 079
70 165
70 252

70 338
70 424
70 509
70 595
70 680

70 766
70 851
70 935
71 020
71105

71189
71273
T1 357
71441
71525

71 609
71 692
71775
71 858
71941

2024
72107
72 189
72272
72 3b4

72 436
72 518
72599
T2 681
72762

72 843
T2 925
3 006
73 086
3167

T3 247
73 328
73 408
T3 488

o 568

T4 648
3727
73 807
o 886
o 965

1

2

69 914
70 001
70 088
T0 174
70 260

70 346
70 432
70 518
70 603
70 689

70774
70 8569
70 944
71029
71113

71198
T1 282
T1 366
71450
71 533

71617
71900
71784
71 867
71 950

72032
72115
72198
72 280
72 362

72 444
72 526
72 607
72 689
72790

72 852
72 933
73 014
73 094
73 175

73 260
73 336
73 416
73 496
73 576

78 656
73 735
73 815
T3 894
T3 9493

2

3

69 023
70 010
76 096
70183
70 269

70 355
70 441
70 526
70 612
70 697

70 783
70 868
70 952
71037
71122

71206
71290
71374
71 458
71 542

71625
71709
71 792
71 875
71958

72041
72123
72 206
T2 288
72370

72 452
72 534
T2 616
72 697
72779

72 860
72941
73 022
73102
73 183

73 263
73 544
73 424
73 504
73 584

73 664
T3 743
73 823
73902
73 881

3

4

69 932
70018
70105
70191
70298

70 364
70 449
70 535
70 621
70 706

70 791
70 876
70 961
71046
71130

71214
71299
71383
71 466
71550

71634
71717
71 800
71883
71 966

72049
72132
72214
72 206
72378

T2 460
72 542
72624
72705
72787

72 868
72949
73 630
73111
73 191

3292
73 362
T3 432
73 512
73 592

73672
73 751
73 830
73910
73 989

1

5

69 940
70027
70 114
70200
70 286

70372
70 458
TO 544
70 629
70714

70 800
70 885
70 969
71 064
71139

71223
71307
71391
71475
71 559

71 642
71725
71 809
71 892
71975

72057
T2 140
72 222
72 304
72 387

72 469
72 560
72632
721713
72795

72 876
72 957
73 038
73119
73 199

73 280
73 260
73 440
73 520
73 600

73 679
73 759
73 838
73 918
73 997

S5

6

69 940
70 036
70 122
T0 209
70 285

70 381
T0 467
T0 552
70 638
70723

70 808
70 893
70978
71 063
71147

71231
71315
71399
71 483
71 567

71 650
71734
71 817
71 800
71983

72 066
72148
72 230
72313
72 395

72 477
T2 568
72 640
72722
72 803

T2 8BB4
72 965
73 046
73127
73 207

73 288
73 368
73 448
T3 28
73 608

73 687
73 767
73 846
73 926
74 005

6

7

69 958
70044
70131
70 217
70 303

70 389
70 475
70 561
70 646
70731

70 817
70 902
70 986
71071
71156

71 240
71324
71 408
71492
715675

71 659
1742
T1 825
71 908
71991

72 074
72 156
72 239
72 321
72 403

72 485
T2 567
72 648
72730
72 811

72 892
T2 973
73 054
73135
73 215

73 296
73 376
73 456
73 636
73 616

78 695
73775
73 8b4
73 933
74013

7

8

69 966
70 053
70 140
70 226
70 312

70 398
70 484
70 569
70 655
70 740

70 825
70 910
70 995
71079
71164

71248
71332
71 416
71 500
71 584

71 667
71750
71 834
71917
71999

72082
72165
72247
T2 329
72 411

72 493
72 575
T2 656
72738
72 819

72 900
72 981
73 062
73 143
73 223

73 304
73 384
73 464
73 b44
73 624

73703
73 783
73 862
73 941
74 020

8

69 975
70 062
70148
70 234
70 321

70 406
70 492
70 578
70 663
T0 749

70 834
70 919
71003
71088
71172

71 257
71341
71425
71 508
71592

71675
71769
71 842
71925
72008

72090
72173
T2 255
72 337
72419

72 501
T2 683
72665
72746
72 827

72908
72 989
73 070
73 151
73 231

73 312
73 392
73 472
73 5h2
5632

73711
73791
73 870
T3 949
74028

9




TABLE I — LOGARITHMS

568
559

560
561

b62
563
b64

56b
566
567
568
569

570
BT1
572
573
574

575
576
571
578
579

580
581
582
583
584

685
586
o87
588
589

590
591
592
593
594

595
596
b97
598
599

0

74 036
74 115
74 194
T4 273
74 351

74 429
T4 507
74 586
74 663
T4 741

74 819
74 896
74 974
75 0561
76 128

75 205
75 282
75 368
75 435
75511

76 587
75 664
75 740
75 815
75 891

75 967
76 042
76 118
76 193
76 268

76 345
76 418
76 402
76 67
76 641

76 716
76 790
76 864
76 938
77012

77 085
77159
77234
77 305
77 379

77 4562
77 52h
77 597
77670
77 743

0

1

74 044
74 123
74 202
74 280
T4 359

T4 437
74 516
74 593
74 671
T4 749

T4 827
74 904
74 981
750569
75 136

75 213
75 289
75 366
75 442
75 519

75 595
75 671
76 747
7b 823
75 899

75974
76 050
76 125
76 200
76 275

76 350
76 425
76 500
76 574
76 649

76 723
76 797
76 871
76 945
77 019

77 002
T7 166
77 240
77313
77 386

77 459
77 532
77 605
77 677
77 750

1

2

74 052
74131
74 210
74 288
74 367

T4 445
74 523
74 601
74 679
74 757

74 834
T4 912
74 980
T5 066
75143

75 220
75297
75374
TH 450
75 526

75 603
75679
70 7565
75 831
75 906

75982
76 067
76 133
76 208
76 283

76 358
76 433
76 507
76 582
76 656

76 730
76 805
76 879
76 353
77 026

77 100
77113
77 247
T7 320

77393

77 466
77 539
77 612
770685
77757

2

3

74 060
74139
74 218
74 206
74374

T4 453
74 531
T4 609
T4 687
74 764

T4 842
74 920
T4 997
75074
75151

75 228
76 306
75 381
75 458
75 534

75 610
75 686
75 762
75 838
756 914

75 989
76 065
76 140
76 215
76 290

76 365
76 440
76 515
76 589
76 664

76 738
76 812
76 886
76 960
77 054

77 107
77 181
77 2564
77 327
77401

71474
77 546
77 619
77 692
77 764

3

B

74 068
74 147
74 225
74 304
T4 382

74 461
74 539
T4 617
74 695
74772

74 850
74 927
75 005
75 082
75 158

75 236
756312
75 389
75 465
75 542

75618
75694
75 770
75 846
75 921

75 997
76072
76 148
76 223
76 298

76 373
76 448
76 522
76 597
76 671

76 745
76 819
76 893
76967
77041

77 115
77 188
77 262
77 335
77 408

77481
17 564
7 6217
77 699
77772

4

5

74 076
74 155
74 233
74 312
74 390

74 468
74 547
T4 624
74 702
74 780

74 858
74 935
75 012
75 089
75 166

75 243
75 320
75 397
75473
7h 549

75 626
5 702
75 778
75 853
T 929

76 005
76 080
76 1565
76 230
76 306

76 380
76 406
76 530
76 604
76 678

76 7563
76 827
76 901
76 975
77 048

77122
77 1956
77 269
77 342
77 415

77 488
77 561
77 634
77706
77779

S

6

74 084
74 162
74 241
T4 320
74 398

74 476
74 bb4
74 632
74 710
T4 788

74 865
T4 943
75 020
76 097
75174

75 251
76 328
75 404
75481
75 657

756 633
75 709
75786
7H 861
75 937

76 012
T6 087
76 163
76 238
76313

76 388
76 462
76 537
76 612
76 686

76 760
76 834
76 908
76 982
77 056

77129
77 203
77276
77 349
77 422

77 495
77 568
77 641
77714
77 786

6

7

74 092
74 170
74249
74 327
T4 406

74 484
T4 562
74 640
74718
74 796

74 873
T4 950
75 028
75 105
75 182

75 259
75335
75 412
TH 488
75 565

75 641
75717
75 7893
75 868
75 944

76 020
76 095
76 170
76 245
76 320

76 595
76 470
76 545
76 619
76 693

76 768
76 842
76 916
76 989
77063

TT 137
77 216
77 283
7T 357
77420

77 503
77676
77 648
T7 721
T 793

7

8

74 099
74 178
74 2h7
74 335
T4 414

74 492
74 670
74 648
74726
74 803

74 881
74 958
75 035
75113
75 189

75 266
75 845
75 420
75 496
T5 572

75 648
756 724
75 800
75 876
75 952

76 027
76 103
76 178
76 253
76 528

76 403
T6 477
76 5H2
76 626
76 701

76 775
76 849
76 923
76 997
77070

77 144
77 217
77291
77 364
TT 437

T 510
77 583
77 656
77728
77 801

8

9

74 107
74 186
74 265
74 343
T4 421

T4 500
74 578
74 656
74 733
74 811

74 889
74 966
75 043
75120
75197

75 274
75361
76 427

75504 |

75 580 |

75 656
75 732
75 808
75 884
75 959

76035 |
76 110 |
76 185
76 260
76 835

76 410
76 485
76 559
76 634
T6 708

76 782
76 856

76 930 -

77004 |
77078

77151
77 225
77 298
77371
77 444

77 517 |
77 590
77 663
77735
77 808

o




. 77815
77 887

© 78032

1

77 822
77 8956
77967
78 039
78 111

77 960
78 104

78182
78 254
T8 326
78 398
78 469

78 176
78 247
78 319
78 390
78 462

78 533
78 604
78 675
78746
78 817

78 888
78 958
79 029
79 099
79169

79 239
79309
79379
79 449
79518

79 B8]
79 657
79727
79 796
79 865

79 934
80 003
80 072
80140
80 209

80 277
80 346
80 414
80 482
80 550

80 618
80 686
80 Tb4
80 821
80 839

80 956
81023

78 540
78611
78 682
78 753
78 824

T8 895
73 965
79 036
79106
T 176

79246
79 316
79 386
70 456
79 525

7% 595
79 664
79 734
79 803
79 872

79 941
80 010
80079
80 147
80 216

80 284
80 353
80 421
80 489
80 557

80 62b
80 693
80 760
80 828
80 895

80 963
81 030
81090 81 097
B1 158 81164
81224 81231

0 1

TABLE 1

— LOGARITHMS

2

77 830
77 902
77974
78 046
78 118

78 1%0
78 262
78 333
78 406
78 476

78 547
78 618
78 689
78 760
78 831

78 902
789072
79 043
79112
79 183

T9 253
79 323
79 393
79 463
79 532

79 602
79671
79 741
79 810
79 879

79 948
80 017
80 085
80 154
80 223

80 291
80 359
80 428
80 496
80 564

30 632
80 699
80 767
80 835
80 902

80 969
81 037
81 104
81171
81 238

2

3

77 837
77 909
77981
78 053
78 125

78 197
78 269
78 340
78 4112
78 483

78 554
78 625
78 696
78 767
78 838

78 909
78 979
79 050
79120
79 190

79 260
79 330
79 400
79 470
79 539

79 609
79678
79 748
79 817
79 886

79 955
80 024
80 092
80 161
80 229

80 298
80 366
80 434
80 502
80 570

80 638
80 706
80 774
80 841
80 909

80976
81 043
81111
81 178
81 246

3

4

77 844
77 916
77 988
78 061
78132

78 204
78 276
78 347
78 419
T8 490

78 561
78 633
78 704
78 774
78 845

78 916
78 986
79 057
79 127
79 197

75 267
79 337
79 407
79 471
79 546

79 616
T9 685
79 754
79 824
79 893

79 962
80 030
80 099
80 168
20 236

80 305
80 373
80441
80 509
8D 577

80 645
80 713
80 731
80 848
80 916

80 983
81050
81117
81184
81 251

4

S5
77 851

6

77 859
77924 77931
77996 78 003
78 068 T8 075
T8 140 78 147

78 211 78219
78 283 78290
78 355 7B 362
78 426 78 433
78 497 T8 o4

78 569 T8 576
78 640 78 647
78711 78 718
78 781 T8 789
78 852 78 859

78 930
79 000
79071
79 141
79211

79 281
79 351
79 421
79 491
79 560

79 620
79 699
79 768
79 837
79 906

78 923
78 993
79 064
79134
79 204

79 274
79 344
79 414
79 484
79 563

79 623
79 692
79761
79 831
79 900

79 969
36 037
80 106
80 175
80 243

80 312
80 380
80 448
80 516
80 584

80 652
80 720
80 787
80 855
80 922

80 990
81 057
81124
8119
81 258

5

79975
80 044
80 113
80 182
80 250

80 318
80 387
80 455
80 523
80 591

80 659
80 726
80 794
80 862
80 929

80 996
81 064
81131
81198
81 265

6

7

77 866
77 938
78010
78 082
78 154

78 226
78 297
78 369
78 440
8 512

78 583
78 654
78 725
78 796
78 8G6

78 937
79 007
79 078
79 148
79 218

79 288
79 358
79 428
79 498
7% 567

79 637
T3 706
79775
79 844
79913

79 982
80 0561
80 120
80 188
80 257

80 325
80 393
80 462
80 530
30 598

80 665
80 733
80 801
80 868
80 936

81 003
81 070
81 137
81 204
81271

7

8

77873
T7 945
T8 017
78 089
78161

78233
T8 305
78 376
8 447
78 519

78 590
78661
78 732
78 803
78 873

78 944
TH014
79 085
79 155
79225

79 295
79 365
79 435
79 505
79 574

79 644
79713
79 782
79 851
79 920

79 989
80 058
80 127
80 195
80 264

80 352
80 400
80 468
80 536
30 604

80 672
80 740
80 808
80 875
80 943

81010
81077
81 144
81211
81278

8

9

77 880
77 952
78 025
78 097
T8 168

78 240
78312
78383
78 455
78 526

78 597
78 668
78 739
78 810
78 880

78 9561
79 021
79092
79 162
79 232

79302
793872
79 442
79 511
79 581

79 650
79720
79 789
79 858
79 927

79 996
80 065 |
80134
80 202 |

80271

80 339
80 407
80 475
80 543
80 611

80 679
80 747
80 814
80 882
80 949

81017
81034
81151
81218
81 285

9




384

No.

630
Gb1
652
653
654

a5
656 \
657

658

660 |
661

662 g
663
664

665
666
667
668
668

670
671
672
673
674

6575
676
677
678
679

630
681
682
683
684

685
686
687
688
659

690
691
692
693
694

GO
696
697
698
699

No,

0

81241
81358
81425
81491
81 558

81624
81 690
81 757
81 823
81 889

81 954
82 020
82 086
82151
82 217

82 282
82 347
82 413
82 478
82 143

82 607
82 672
82737
82 502
82 8068

82 930
82 995
83 059
83123
83187

83 251
83316
83 378
83 442
83 b6

83 569
8" 632
83 GY6
83 159
83 822

83 885
83 118
81011
84 073
84 136

84 198
84 261
84 323
84 386
84 448

0

i |

81208
81 364
81431
81 498
81 564

81631
81 697
81763
81 829
81 895

81961
82 027
82 092
82 158
82 223

82 289
82 354
82 419
82 484
82 549

82 614
82 679

w2745 82

82 808
82 872

82057
#3001
K3 065
83129
83193

8.3 257
3 8¢

8” !58 ¥
83 448
83 5h12
83 5ThH
83 639
83 702
83 765
85 824

&3 801
83 951
84017
84 080
84 142

84 205
84 267
84 330
84 392
84 454

1

TABLE 1 — LOGARITHMS

2

81 303
81371
51 438
21 505
81571

81637
81 704
81770
81 836
81 902

81 968
82 023
82 099
82 164
82 230

82 295
82 360
82 426
82 491
82 556

82620
82 685
Thi
82 314
82 879

82 943
83 008
83 072
83 156
83 200

823 264
0o
[y

83 .‘}91
B3 455
83 ‘318

83 582
83 645
&3 70
83771
&3 839

83 897
83960
81022
84 186
84148

84 211
84 273
84 236
84 398
84 460

2

3

81311
#1378
81 445
815611
81 578

81644
81 710
81776
81 842
81 908

81974
82 040
82105
82171
82 236

82 302
82 367
82 432
82 497
82 562

82 627
82 gu2
B2 7hH6
82 821
82 885

52 950
83014
83078
83 142
3 206

833 270
83

83 208
5 82461

h:r)r

%1} 588
&3 651

2

u

8 83715

-

778
&1

83
83

53 904
85967
81029
84 092
84155

84 217
84 280
84 342
84 404
84 466

3

81318
81385
81 451
81518
81 584

81 651
81717
81783
81 849
81915

81 981
82 046
82112
82178
82243

82 308
82373
82 439
82 504
82 569

82 633
82 698
82 763
82 827
82 892

82 956
83 020
85 085
81 149
83213

B3 276
g 840
81 404
83 467

85 531

8 594
83 658
83721
83784
54 847

8% 910
813 973
84 036
84 098
84 161

84 223
84 286
84 348
84 410
84 473

4

e

19 ]

81325
81391
81 458
81 525
815M

81 657
81723
81 790
81 Ba6
81921

81 9387
82053
82119
82 184
82 249

82 315
82 380
82 445
82 510
82 375

82 640
82 705
82 760
82 834
82 898

82 063
83027
8001
33105

5219

83 2832
83 347
83 410
85474
83 537

83 601
83 664
83 727

3 790
84 854

8% 916
83979
84 042
84 105
84 167

8423

84 292
84 3h4
84 417
84 479

S5

6

81351
81348
831 463
31 867

81 598

81 664
81730
81796
81 862
81928

31994
82 060
82 125
82 i1
82 256

82 321
82 387
B2 442
82517
82 LR2

B2 616
82711
B2 776
82 810
82 905

82 969
83 0.4
823 007

5161
B3 245

83 289
B3 343
83417
873 180
33 hid

83 607

3670
B3 T
83 707
85 860

83 923
83 985
81018
84111
84173

81236
84 298
84 261
84 423
84 485

6

-

[

81 338
81 405
81471
81 538
81 604

81671
81 7457
81 803
81 849
81 935

82000
82 066
82112
B2 1497
82265

82 328
82393
82 458
B2 523
82 588

82 650
82718
82 782
82 847
$2 011

82075
83 040
83104
801448
/13290

A Ll
B3 296
g3 300
85428

81180

81212
81300
B4 367
81 429
B1 494

7

8

8145
81411
£1 478
81 5H44
81611

81 677
81 743
81 309
81 875
81941

82 007
82073
82 138
82201 8§
82269 &

82133

82 100
82 165
82 b30
82 195

82 Ly
82 724
82 789
82 8h53
82918

82 vR2
83 046
83 110
83174
83238

30020
&5 a6
s5120
/598
83 0o

83620
83 683
84 T46
B B9
85872

81455

89098

h 81011

81123
24184

84 248
84011

84373 B4

81135
84 197

]

H ]

81 351
¥1 418
81 485
81561
81 617

81 684
817450
81 816
81 882
81 948

R2 014
R2 079
R2 145
() ‘)IO
()l"’“

492 341
2 406
82471
82 536
#2601

R
K2 750
82705
B2 860
82924

K82 988
83052
83 117
83181
85245

08
BN

xmxf

Rt B b
,_ﬂ — -A o oo

o
.
0
i

DiGe

-u-DCJ!u_O

"

K626
853689
85 Thl
KRG
s0s7Y

85942
#1004
S 067
#4130
84192

84255
¥4 317
379
84412
34 504

9
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TAPBLE I — LOGARITHMS

No.

700

0 1
84 510 84 516

701 | 84 572 84 578
702 | 84 634 84 640
703 | 84 696 84 702

704 |

706
706
T07
708
709

710
711
712
713
714

715
16
717
718
719

720
721
722
723
724

726
726

727 |

728
729

730
731
732
733
734

735
736
737
738
739

740
741
742
743
744

745
746
747
T48
749

No.

84 757 84763

84 819 B4 825
84 880 84 887
84 942 B4 948
85 003 85009
85 065 856 071

85126 85132
85187 85 193
85 248 85 254
85309 Bb 316
85370 85376

85431 85437
85 491 85497
86 652 8b 558
85612 85618
85 673 85679

85733 85739
85 794 85 800
8b 854 85 860
85914 85 920
85974 B85 980

86 034 86 040
86 094 86 100
86 153 86 159
86 213 86 219
86 273 86 279

86 332 86 338
86 392 86398
86 451 86 467
86 510 86 516
86 570 86 576

86 629 86 635
86 688 86 694
86 747 86 753
86 806 86 812
86 B64 86 870

86 923 86 928
86 982 86 988
BT 040 87 046
87099 87105
87157 87163

87216 87221
87274 87230
87332 87338
87 390 87 396
87 448 87 4564

0 1

A

84 522
84 584
84 646
84 708
84 770

84 831
84 893
84954
85016
85 077

85138
85199
85 260
85321
85382

85 443
85 503
85 564
85 625
85 685

85 745
85 806
85 866
85 926
85 986

86 046
86 106
86 165
86 225
86 285

86 344
86 104
86 463
86 522
86 581

86 641
86 700
86 759
86 817
86 BTG

86 9356
86 994
87 052
87111
87 169

87227
87 286
87 344
87402

3

84 528
84 590
84 652
84 714
84 776

84 837
84 899
84 960
85 022
85 083

85 144
85 205
85 266
85 827
85 388

85 449
85 509
85 570
85 631
85 691

85 751
85 812
85872
85 932
85992

86 052
86 112
86171
86 231
86 291

86 350
86 410
86 169
86 H28
86 b&7

86 646
86 7056
86 764
86 823
BG 882

86 941
86 999
87 053
87116
87175

87 233
87 291
87 549
87 408

]
oo
ot

4

84 535
84 597
84 658
84 720
84 782

84 844
84 905
84 967
85 028
85 089

85150
85 211
85 272
35333
85394

85 455
85516
85 h76
85 637
85 697

85 757
85818
86 878
85938
85 998

86 058
86 118
86 177
86 237
86 297

86 356
86 415
86 475
86 534
36 593

86 652
86 711
86 770
86 829
86 388

86 947
87 005
87 064
87122
87181

87239
BT 297
87 355
87 413

87 460 87 466 87 471

2

3

4

5

84 b4l
84 603
84 665
84 726
84 788

84 850
84911
84 973
85 034
85 095

85156
85 217
85 278
86339
85 400

85 461
85 522
85 582
85 643
85 703

80 763
85 824
85 884
85 044
86 004

86 064
86 124
86 183
86 243
86 303

86 362
86 421
86 481
86 540
86 599

36 6b8
86 717
86 776
86 835
86 894

86 953
87011
87070
87128
87 186

87 245
87 303
87 361

6

84 547
84 609
84671
84733
84794

84 856
84 917
84 979
85 040
85 101

85 163
85 224
85 286
85 3456
85 406

85 467
85 528
85 H88
85 649
85 709

85 769
85 830
85 890
85 9560
86 010

86 070
86 130
86 189
86 249
86 308

86 368
86 427
86 487
86 b46
86 605

86 664
86 723
86 782
86 841
86 900

86 9568
87 017
87075
87134
87192

87 251
87 309
87 367

7

84 553
84 616
84 677
84 739
84 300

84 862
84 924
84 98b
85 046
85107

86 169
85 230
85 291
85352
85 412

85 473
85 534
85 594
85 65D
85716

85 776
85 836
86 896
8b 9566
86 016

86 076
86 136
86 195
86 250
86 314

86 374
86 433
86 493
86 552
86 611

86 670
86 729
86 788
86 847
86 906

86 964
87 023
87081
87 140
87198

87 256
87315
87313

87 419 87 425 87 431
87 477 87 483 BT 489

5

6

v

8

84 559
84 621
84 683
84 745
84 807

84 868
84 930
84 991
85 052
85114

85175
85 236
85 297
85 358
85418

85 479
85 540
85 600
85 661
85721

85 781
85 842
85 902
85 962
86 022

86 082
86141
86 201
86 261
86 320

86 380
86 439
86 499
86 558
86 617

86 676
86 735
86 794
86 853
86 911

86 970
37029
87 087
87 146
87 204

87 262
87 320
87 3879
87 437
87 495

8

9

84 566
84 628
84 G689
84 751
84 813

84 874
84 936
84 997
85 068
85 120

85181
85 242
85 303
B5 364
85 425

85 486
86 546
85 606
85 667
85727

85 738
85 843
85 908
85 968
86 028

86 088
86 147
86 207
86 267
86 326

86 386
86 445
86 504
86 Ho4
86 623

36 632
86 741
86 800
86 859
86 917

86 976
87 035
87 093
87151
87210

87 268
87 326
87 384
87 442
87500

9




TABLE I — LOGARITHMS

No. & 0O
|
750 87506
751 | 87 64
752 | 87 (22
753 | 87 679
754 | 87 737

755 | 87795
756 | 87 &52
757 | 87 910
758 | 87 967
759 | 88 (24

. 760 | 88081
761 8813
762 | 88 195
763 | 88 252
764‘ 88 509

765 | 88 566
766 | 88 423
767 | 88 480
768 | 88 b6
769 | 88 443

w70, BB G40
771 | 88 705
772 | 88 762
773 | 88 818
774! 88 874

775! 88030
776 | 88 V86
777 | 89042
778 | BYH (498
7791 89 1h4

780 89209
781 89 265
782 | 89221
783 ' 891376
784 | 89 432

785 | B9 487
786 | 89 542
787 | 89 697
788 | 89 6h3
789 | 89 708

790 89 763
791 \ 89 318
792 ' 89 873
793 | 89 927
794J 89 982
795 | 90 037
796 | 90 091
7971 90 146
798 | 90 200
799 | 90 255

No. | ©

1

87512
87 570
87 628
87 685
87 745

&7 800
87 858
87915
87 973
83 030

88 087
g8 144
88201
88 258
88315

88372
88 429
88 480
88 H42
88 594

88 655
84711
88 767
88 824
88 830

88 936
88 992
89 048
89104
89159

89 216
83271
89 326
89 382
89 437

89 492
89 548
89 6038
8D 6h8
89 714

89 768
89 823
89 878
89 932
80 98%

90 042
90 097
90 151
90 206
90 260

1

2

87 518
87 H76
87 633
87 691
87 749

87 806
87 864
87 921
87 973
88 036

88 093
88 150
88 207
88 264
88 221

88 377
88 434
88 491
88 H4T
83 604

83 660
88 717
88 773
88 H29
88 8&h

88 941
88 997
89 053
89 109
89 165

89 221
89 270
89 132
89 187
89 443

89 498
89 HE3
89 609
89 6564
8D 719

89 774
89 829
&7 R83
89 938
89 993

00 048
90 102
90 157
90 211
90 266

P

L

3

87 523
87 BR1
87 659
87 6497
87 Th4q

87 812
87 869
87 927
87 084
88041

88 008
88 156
88 213
B8 270
48 326

88 363
#8440
88 497
88 5L3
88§10

88 6646
#8 722
B8 770
R8 835
Rg BI1

88 947
K8 003
89 0H9
89 115
89 170

89 226
"G 282
B9 387
80 383
80 448

89 504
&9 55HY
&9 06144
20 669
RO 724

89779
89 824
40 889
89 944
B9 998

90 053
90 108
90 162
90 217
90 271

3

1

B7 529
87 587
87 645
87703
87 760

87 818
87875
87933
87 990
88 047

88104
88161
88 218
88 275
88 332

88 389
88 446
88 502
88 559
88615

88 672
88 728
88 784
88 840
8% 897

8K 953
89 009
89 064
89120
89176

89 232
89 287
89 343
89 398
89 454

85 509
89 564
89 620
89 675
8972

8O 785
89 840
89 894
89 948
90 004

90 059
90 113
90 168
90 222
90 276

4

3

87 535
87 593
87 651
87708
8% 766

87 823
87 881
87 938
87 986
88 053

88 110
88 167
88 224
88 281
88 338

88 395
88 4561
88 508
B8 5564
B8 621

88 677
88 734
88 790
88 816
88902

88 958
85014
89 070
a9 126
89 182

89 23

89 203
89 148
89 404
89 1569

89515
89 570
89 625
89 680
89 735

89 790
89 845
89 990
89 4hb
90 09

90 064
50 119
90 173
90 227
90 282

6

87 511
87 549
87 B>
87714
87772

87 829
87 887
87 944
88 001
88 058

88116
88 173
88 230
88 287
88 343

88 400
88 457
88 513
88 570
88 627

88 4rA
88 759
88 795
88 8h2
88 908

£8 964
89020
89076
891
89 187

89 243
89 298
29 354
89 409
89 465

89 520
BY 676
89 61
B0 686
89741

B 7H6
B9 8HL
89 4nh
89 960
20015

090 069
90 124
90179
90 233

90 287

&7 547
87 604
87 662
87 720
87 779

87 836
87 892
87 950
88 007
88 064

88 121
88 178
88 235
88 292
88 849

88 404
88 463
88 519
8% 576
R& gR2

RR 689
88 745
8% 801
88 8h7
84015

88 969
89025
84 081
89 127
84193

89 248
89 804
89 160
89 415
89 470

89 526
89 H81
BY 616
89 601
84 716

2O E01
89 Bh6
8 811
89 966
90 020

90 075
90 129
90 184
90 228
90 293

8

87 552
87 610
87 663
87 726
87 783

87 841
&7 898
87 955
28 013
88 070

88 127
88 184
88 241
88 298
88355

88 412
88 468
88 his
88 81
88 (38

£8 604
88 750
B8 807
88 863
88 919

88 07h
89 41
89 08T
80 143
89 198

89 2h4
897110
89 1565
89 121
89 476

89531
89 HE6
84642
89 697
89 17h2

80 ROY
89 H42
89 916
89 971
90 026

90 080
80 135
90 189
90 244
90 298

9

R7 508
87 616
8T 674
K731
H7 789

87 846
&7 904
87961
88 018
B8 076

88 153
88 190
88 247
88 304
88 360

88 417

B8 474 .

85 52
HB HRT
"8 647

88 70
HE Tha
K8 812
88 8GR
K8 925

88 981
89037
89 092
59 118
89 201

89 260
RO 315
89371
89 4206
89 481

&) LAt
89 ho2
89647
H9 TO2
RO 7407

K9 R12
89 BOT
89 922
89 977
90 031

90 086
90 140
H0 195
90 219
90 304

|
|




800
801
802
803
804

805
806
807
308
809

810
811
812
813
814

816
816
817
818
819

820
821
822
823
824

825
826
327
828
829

830
831
832
833
834

835
836
837
838
839

840
841

842
843
844

845
846
847
848
849

0

90 209
90 363
90 417
90 472
90 526

90 580
90 634
90 687
90 741
90 795

90 849
90 902
90 956
91 009
91 062

91116
91 169
91 222
91 275
91 328

91 381
91 434
91 487
91 540
91 593

91 645
91 698
91 751
91 803
91 855

91 908
91 960
92 012
92 065
92117

92 169
92 221
92 273
92 324
92 376

92 428
92 480
92 531
92 583
92 634

92 686
92 737
921788
92 840
92891

0

1

90 314
90 360
90 423
90 477
90 531

80 585
90 639
90 693
90 747
90 800

90 854
90 907
90 961
91014
91 068

91121
91174
91228
91281
91 334

91 387
91 440
91 492
91 545
91 598

91 651
91 703
91 756
91 808
91861

91 913
91 965
92 018
92070
92122

92174
92 226
92 278
92 330
92 381

92 433
92 435
92 536
92 588
92 639

92 691
92 742
92 793
92 846
92 896

1

P

90 320
90 374
90 428
90 482
90 536

90 590
90 644
90 698
90 752
90 806

90 859
90 913
90 966
91 020
91073

91126
91 180
91233
91 286
91 339

91392
91 445
91 498
91 551
91 603

91 656
91 709
91761
91 814
91 866

91918
91971
92 023
92 075
92127

92 179
92 231
92 283
92 335
92 387

92 438
92 490
92 542
92 593
92 645

92 696
92 747
92 799
92 850
92 901

2

3

90 325
90 380
90 434
90 488
90 542

90 596
90 650
90 703
90 757
90 811

90 865
90 918
90 972
91 025
91 078

91132
91 185
91 238
91291
91 344

91 397
91 450
91 503
91 556
91 609

91 661
91714
91 766
91 819
91 871

91 924
91 976
92 028
92 080
92132

92184
92 236
92 288
92 340
92 392

92 443
92 495
92 547
92 598
92 630

92 701
92 752
92 804
92 855
92 906

3

TABLE I — LOGARITHMS

387

4

90 331
90 385
90 439
90 493
90 547

90 601
90 6565
90 709
90 763
90 816

90 870
90 924
90 977
91 030
91 084

91 137
91190
91243
91 297
91 350

91 403
91 455
91 508
91 561
91614

91 666
91719
91 772
91 824
91 876

91 929
91 981
92 033
92 085
92 137

92 189
92 241
92 293
92 345
92 397

92 449
92 500
92 552
92 603
92 655

92 706
92 758
92 BO9
92 860
92911

4

5

90 336
90 390
90 445
90 499
90 553

90 607
90 660
90 714
80 768
60 822

90 875
00 929
90 982
91036
91 089

91 142
91 196
91 249
91 202
91 355

91 408
91 461
91514
91 566
21619

91 672
91724
91777
91 829
91 882

91934
91 986
92 038
92 091
92 143

92 195
92 247
92 298
92 350
92 402

924564
92 505
92 557
92 609
92 660

92711
92 763
92 814
92 865
92 916

33

6

90 342
90 396
90 450
90 504
90 558

90 612
90 666
90 720
90 773
90 827

90 881
90 934
90 988
91 041
91094

91 148
91 201
91 254
91 307
91 360

91 413
91 466
91519
91 572
91 624

91 677
91 730
91 782
91 834
91 887

91 939
91 991
92 044
92 096
92 148

92 200
92 252
92 304
92 365
92 407

92 459
92 511
92 562
92 614
92 665

92716
92 768
92 819
92 870
92 921

6

7

90 347
90 401
90 455
90 509
90 563

90 617
90 671
20 725
90 779
90 852

90 886
90 940
90993
91 046
91 109

91153
91 206
91 259
91 312
91 365

91 418
91 471
91 524
91577
91650

91 682
91 735
91 787
91 840
91 892

91 944
91 997
92 049
92101
92 153

92 205
92 257
92 309
92 361
92412

92 464
92 516
92 567
92 619
92 670

92 722
92773
92 824
92 875
92 927

e

8

90 352
90 407
90 461
90 h1b
90 569

90 623
90 677
90 730
90 784
90 838

90 891
90 945
90 998
91 052
91 103

91158
91 212
91 265
91 318
91 371

91 424
91 477
91 529
01 582
1 635

91 687
91 740
91 793
91 845
91 897

91 950
92 002
92 054
92 106
92 158

92 210
92 262
92314
92 366
92 418

92 469
92 /21
92 572
92 624
92 675

92 727
92 778
92 829
92 881
92 932

8

9

90 358
90 412
90 466
90 520
90 574

90 628
90 683
90 736
90 789
90 843

90 897
90 950
91 004
91 057
81 110

91 164
91217
91 270
91 323
91 376

91 429
91 482
91 536
91 587
91 640

91 693
91745
91 798
91 850
91 903

91 9565
92 007
92 059
92111
92163

92 215
92 267
92 319
92 371
92 423

92 474
92 526
92 578
92 629
92 681

92732
92783
92 834
92 886
92 937

9




088

TABLE 1 — LOGARITHMS

Ne.

0

|50 | 92942

851

852 |

863
854

855
856
867
868
859

860
861
862
863
864

865
8606
867
868
869

870
871
872
873
874

B7b
876
877
878
879

880
881

882
883
884

885
886
887
888
889

890
891
892
893
894

895
896
897
898
899

No.

92 993
93 044
93 095
93 146

93 197
93 247
93 298
93 349
93 399

93 450
93 500
93 551
93 601
93 651

93 702
93 7562
93 802
93 852
93 902

93 952
94 002
94 052
94101
94 151

94 201
94 250
94 300
94 349
94399

94 448
94 498
44 547
94 596
94 645

94 694
94 743
94 792
94 841
94 890

94 939
94 988
95 036
95 085
95 134

95 182
95 231
95 279
95 328
95 376

0

1

92 947
92 998
93 049
93 100
93151

93 202
93 252
93 303
93 354
93 404

93 455
93 505
93 566
93 606
93 656

93 707
93 757
93 807
93 867
93 907

93 9h7
94 007
94 067
94106
94 156

94 206
94 25b
94 3056
94 3h4
94 404

94 453
94 503
94 552
94 601
94 650

94 699
94 748
94 797
94 846
94 895

94 944
94 993
95 041
95 090
95 139

9b 187
95 236
95 284
95332
95 581

1

2

92 952
93 003
93 064
93 105
93 156

93 207
93 258
93 308
93 359
93 409

93 460
93 510
93 561
93 611
93 661

93 712
93 762
gn 812
93 862
93912

93 962
94 012
94 062
94111
944161

94 211
94 260
94 310
94 359
94 409

94 458
94 507
94 557
94 606
94 655

94 704
94 753
94 802
94 851
94 900

94 949
94 098
95 046
95 095
095 143

95 192
95 240
95 289
95 337
95 386

P

3

92 957
93 008
93 059
93110
93 161

93 212
93 263
93 313
93 364
93 414

93 465
93 516
93 H66
93 616
93 666

9717

3767
93 817
93 867
93 917

93 967
94 017
94 067
94 116
94 166

94 216
94 265
04315
94 364
94 414

94 462
94 512
94 ho2
94 611
94 660

94 709
94 758
94 807
94 856
094 905

94 954
95 002
95 0561
95 100
95 148

05 197
95 245
95 294
05 342
95 390

3

4

92 962
93 013
93 064
93 115
93 166

93 217
93 268
93 318
93 369
93 420

93 470
93 520
93571
93 621
93 671

a3 722
493772
93 822
93 872
93 922

93 972
94 022
94 072
94121
94171

94 221
94 270
94 320
94 269
94 419

94 468
94 517
94 H067
94 616
94 665

04714
094 763
94 812
94 861
04 910

94 959
ah 007
95 056
95 106
95 1563

ah 202
95 250
95 299
95 347
95 395

4

5

92 967
93 018
93 069
93 120
93171

93 222
93 273
03 523
93 374
93 425

93 475
93 526
098 576
93 626
98 676

93 727
93 777
93 827
93 877
03 927

93 977
94 027
94 077
94126
94 176

94 226
94 275
94 225
9 574
94 424

94 473
094 522
94 671
94 621
94 670

94719
94 768
94 817
94 866
94 915

094 963
95 012
95 061
95 109
95 158

95 207
95 255
95 303
95 352
95 400

S5

6

92 973
93 024
93 075
93 125
93 176

93 227
93 278
93 328

3 379
93 430

93 480
93 531
93 581
93 631
93 682

03 732
03 782
93 832
93 882
973 932

43 982
94 032
94 082
94 131
94131

94 251
94 280
94 300
04 379
94 129

94 4178
94 527
91 K76
94 626
94 675

94 724
94 75
94 822
94 871
34 919

94 368
95 017
95 066
95114
95 163

9h 211
95 260
95 308
95 357
95 405

6

7

92 978
93 029
93 080
93 131
93 181

93 232
93 283
93 334
93 384
93 435

3 485
93 636
93 586

3 630

a3 687

HENHY
93 787
93 847
93 B8Y
93 937

a3 987
94 057
94 086
94 136
94 186

94 236
04 285
94 33

91 384
41408

94 483
94 532
94 581
94 65

094 GBO

94 729
01778
04 827
941 876
94 924

44 973
95 022
95 071
95 119
ah 168

695 216
a5 265
95 513
95 361
a5 410

7

8

92 983
93 034
93 085
93 136
93 186

93 237
93 288
93 339
93 389
93 440

93 490
92 541
93 591
93 641
93 692

97 742
93 792
93 842
43 802
973 942

93 992
94 042
94001
04 141
94 191

94 240
94 290
94 340
04 4849
91 438

041 488
94 "7
91 5806
04 635
94 G8H

94 734
44 783
0.4 812
94 &R0
94 929

94 078
a5 027
95 07h
9h 124
a5 173

ah 221
095 270
95 318
95 366
95 415

8

9

92 988
93 039
93 090
93 141
93 192

93 242
93 293
03 344

3394
93 445

93 495
93 546
93 596
93 646
93 697

93 747
93 797
93 847
93 897
93 97

02 997
94 047
94 006
94 146
94 196

94 245
94 295
94 345
44 204
94 443

94 493
04 542
94 591
94 610
941 689

04 738
94 787
94 836
94 885
94 934

94 983
95 032
95 080
95129
95 171

95 226
95 274
95 323
95 371
9; 419

9
l




No. 0 1

900 | 95424 95 429
901 | 95472 95 477
902 | 95 521 95 525
903 | 95569 95 574
904 | 95 617 95 622

905 | 95 665 95 670
906 | 95 713 95 718
D07 | 95761 95 766
908 | 95 809 95813
009 | 95 B56 95 B61

910 | 95904 95909
911 | 95 952 95 957
912 | 95999 96 004
913 | 96 047 96 052
914 | 96 095 96 099

915 | 96 142 96 147
916 | 96 190 96 194
917 | 96 237 96 242
918 | 96 284 96 289
919 | 96 332 96 336

920 | 96379 96 384
921 | 96 426 96 431
922 | 96 473 96 478
923 | 96 520 96 525
924 | 96 567 96 572

925 | 96 14 96 619
926 | 96 661 96 666
927 | 96 708 96 713

TABLE I — LOGARITHMS

389

2

95 434
95 482
95 530
95 578
95 626

95 674
95 722
95 770
95 818
95 866

95914
95 961
96 009
96 057
96 104

06 152
96 199
96 246
96 294
96 341

96 388
96 435
96 483
96 530
96 577

96 624
96 670
96 717

3

95 439
95 487
95 535
95 583
95 631

95 679
95 727
95 776
95 823
95 871

95 918
95 966
96 014
96 061
96 109

96 156
96 204
96 251
96 298
96 346

96 393
96 440
96 487
96 534
96 H81

96 628
98 675
96 722

4

95 444
95 492
95 540
95 588
95 636

a5 684
95 732
95 780
95 828
95 875

95 923
95 971
96 019
96 066
96 114

96 161
96 209
96 256
96 303
96 350

96 398
096 446
96 492
96 539
96 586

96 633
96 680
96 727

5 6

95 448 95 453
35 497 95 501
95 545 95 550
95 593 95 598
95 641 95 646

95 689 95 694
95 737 95 742
95785 95789
95 832 95 837
85 880 95 885

95 928 95933
95 976 95 980
96 023 96 028
26 071 96 076
96 118 96 123

96 166 96171
96 213 96 218
96 261 96 265
96 308 96 313
96 355 96 360

96 402 96 407
96 450 96 454
86 497 96 b01
96 544 96 548
96 591 96 595

96 638 96 642
96 685 96 689
96 731 96 736

928
929

930

96 774
96 820

96 867

96 764
96 811

96 858

96 769
96 816

96 862

96 7656
96 802

96 848

96 759
96 806

96 853

96 778 96 783
96 825 96 830

96 872 96 876

931 | 96 895
932 ' 96 942
933 | 96 988
934 | 97 035

935 | 97 081
936 | 97128
937 | 97 174
938 | 97220
939 | 97 267

940
941
942
943
944

945
946
947
948
949

No.

96 900
96 946
96 993
97 039

97 086
97132
97 179
97 225
97 271

97 317
97 364
97 410
97 456
97502

97 543 97 548
97 639 97 594
97635 97640
97 €81 97 685
97 727 97 731

0 1

97 313
97 359
97 405
a7 451
97 497

96 904
96 951
96 997
97044

97 090
97 137
97183
97 230
97 276

97 322
97 368
07414
97 460
97 506

97 552
97 5938
97644
97 690
97 736

2

96 909
96 956
97 002
97 049

97 095
97 142
97 188
97 234
97 280

97 327
97 373
97 419
97 465
97 511

97 657
97 603
97 649
97 695
97 740

3

96 914
96 960
97 007
97 053

97100
97 146
97192
97 239
97 285

a7 331
97377
97 424
97 470
97 b16

97 562
97 607
97 6563
97 699
97 745

4

96 918 96 923
96 965 96 970
97 011 97018
97 058 97063

97 104 97 109
97 151 97155
97 197 97 202
97243 97248
97 290 97294

97 336 97 340
97 382 07 387
97 428 97 433
97474 97479
97 520 97 525

97 566 97 671
97 612 97 617
97 658 97 663
97 704 97 708
97 749 97 764

S5 6

7 8

95 458 95 463
95 506 95 511
95 5564 95 559
95 602 95607
95 660 95 656

95 703
95 751
95759
95 847
95 895

95 698
95 746
95 794
95 842
95890

95 938
95 985
96 033
96 080
96 128

95 942
95 990
96 038
96 085
96 133

96 180
96 227
96 275
96 322
96 369

96 417
96 464
96 511
96 558
96 605

96 652
96 699
96 745
96 792
96 839

96 886
96 932
96 979
a7 025
97 072

97118
97 165
97211
97 257
97 804

97 350
97 396
97 442
97 488
97 534

97 580
97 626
97672
97717
97 763

8

96 175
96 223
96 270
96 317
96 365

96 412
96 459
96 506
96 553
96 600

96 647
96 694
96 741
96 788
96 834

96 881
96 928
96 974
97 021
97 067

97114
97 160
a7 206
97 253
97 299

97 345
97 391
97 437
97 483
97 529

97 575
97 621
97 667
97713
97 759

7

9

95 468
35 516
95 564
95612
95 660

95 708
95 756
95 804
95 8562
95 829

95 947
95 905
96 042
96 090
96 137

96 185
96 232
96 280
96 327
96 374

96 421
96 468
96 515
98 562
96 609

96 656
96 703
96 750
96 797
96 844

96 890
96 937
96 984
97 030
97 077

97 123
97 169
97 216
97 262
97 303

97 354
97 400
97 447
97 493
97 539

97 585
97 630
97 676
97 722
97 768

9




390

No.li 0
|

] 950 ' 97772
951 | 9T 818
952 | 97 864

953
954

955
956
1 957
958
959

960
961
962
963
964

965
| 66

967
l 968

| 97 907
| 97 956

98 000
98 046
98 091
08 137
98182

\ 98 227
98 272
98 318
9% 263
98 408

98 453
93 408
08 543
] 98 588

98 632

969 |

970 98677
971 | 98722
072 | 98 767
973 | 98 811

I 9741 98 856

975
976
977
978
979

\

| 980
T ast
1 982
|

983
984

085
986

1

| 98 900
H8 945
98 989

i 99 034

| 99078

\ 99 123
' 99 167

99 211
| 89 255
*‘ 99 300

49 388

1 99 544
987, 99 432
988 | 99 476
989, 49 bZ20

990 ' 99 564

991
992
993
994

99 607
99 651
99 695
99 739

995 1 99 782
| 996 . 99 826

997 | 99 870
998
999

1000 \ 00 000
Ne, ' O

99 913
99 97

1

97 777
97 823
97 868
97 914
97 909

98 005
98 050
98 096
98 141
98 186

a8 232
98 277
98 342
98 367
98 412

98 437
98 H02
98 547
98 K92
98 637

08 682
98 726
98 771
98 816
098 560

98 905
98 949
a8 994
99 038
99 083

99 127
99 171
99 216
99 260
99 304

99 548
99 392
99 436
99 480
99 524

99 568
99 612
99 656
99 699
99 743

09 787
99 830
99 874
99 917
99 961

00 004
1

2

97 782
97 827
97 873
97 918
97 964

93 009
98 055
98 100
98 146
98 191

9% 236
98 281
98 327
98372
98 417

98 462
98 507
08 552
98 597
U8 641

08 686
Y3 731
98 776
98 B20
98 B6h

98 909
98 954
98 998
99 043
99 087

99 101
59176
099 220
99 264
99 308
99 552
99 396
99 441
99 484
99 528

99 572
99 616
99 660
99 704
99 747

99 791
99 815
99 878
99 022
99 965

00 009

TABLE I — LOGARITHMS

3

97 786
97 832
97 877
97 823
97 968

98014
98 059
98 106
98 150
08 195

98 241
98 286
58 331
98 376
98 421

98 466
98 H11
98 550
98 601
98 646

98 691
98 735
98 780
98 825
98 869

98 914
98 958
99 003
49 047
99 092

99 136
9¢ 180
99 224
99 269
99 313

89 357
99 401
099 445
99 489
99 533

99 BTT
99 621
99 664
99 708
949 752

99 795
89 839
99 883
99 926
99 970

04 013

4

97 791
97 836
07 882
97 928
97 973

98 019
98 064
98 109
98 155
98 200

98 245
98 290
98 346
98 381
98 426

98 471
98 516
98 b6l
98 605
98 650

98 695
98 740
98 T84
98 829
98 874

98 918
98 963
99 007
99 052
99 096

99 140
99 185
99 229
99 273
99 817

g9 361
99 4056
99 449
99 193
99 53

99 581
99 G256
99 669
99 712
99 756

99 800
99 842
99 887
99 930
99 974

00 017

5

97 795
97 B41
97 886
97 932
97 978

98 023
98 D68
98 114
98 159
D8 204

98 250
98 295H
498 340
08 385
a8 430

98 475
98 520
98 56h
48 610
98 665

48 700
98 T44
98 789
98 8.4
08 878

98 923
08 967
99012
99 056
99 160

99 145
99 189
99 213
99 277
09 322

99 266
99 410
0% 454
99 498
99 542

99 58b
99 629
99 673
99717
99 760

99 804
99 B48
99 891
99 935
99 978

00 022

6

97 K00
97 845
97 891
97 937
97 982

98 028
98 073
98 118
98 164
98 209

98 254
98 299
98 345
98 390
a8 135

98 480
98 525
98 570
a8 614
98 GHY

98 704
U8 749
98 793
08 B8
98 883

98 927
a8 972
99 016
99 061
9% 105

G 149
949 193
09 208
94 282
99 326

HHIN
99 414
99 458
99 502
99 h4h

99 590
99 6ot
99677
99 721
99 765

99 808
49 852
99 896
99 939
99 987

00 626

7

97 804
97 840
97 856G
97 041
07 987

98 012
9& 078
98 123
98 168
98 214

9g 279
98 304
98 249
08 394
08 459

08 484
98 529
98 574
a8 619
08 664

98 709
08 753
98 798
08 845
98 887

08 42
a8 976
99 021
99 DGH
949 109

B9 154
99198
00 242
99 286
99 53

a0 374
a0 119
99 163
99 06
99 Hho

99 594
99 638
99 682
99 726
99 7G9

99 813
09 8h6
99 900
99 944
99 987

00 030

8

97 809
97 854
97 900
g7 946
97 991

98 037
93 082
98 127
98 173
08 218

98 263
94 308
98 354
08 899
a8 144

08 480
94 534
OR hT7H
98 G223
98 668

98 715
98 7068
98 802
N8 847
08 892

93 936
98 n81
99 0256
09 069
949 114

G4 168
09 20
09 247
49 29
a9 anh

949 37
99 423
99 467
99 511
09 5bhH

9% H9d
a9y 6512
99 686
99 7130
099 774

99 817
N9 861
99 904
99 948
99 941

00 025
8

9

97 813
97 859
97 905
a7 950
07 996

98 011
98 087
08 132
98 177
08 223

48 208
98 1113
98 168
98 103
08 148

98 493
98 H38
98 h83
98 28
98 673

98 71T
98 762
48 307
98 R4l
98 896

98 941
98 985
99 029
94074
09113

99 162
99 207
94 251
99 295

R

99 183
99 427
09471
G9 515
94 55

99 603
09 547
99 691
99 724
9778

G99 822
99 BG5S
99 909
94 952
99 996

00029
9




|
|
|
|

x 0 1 2 3 4 5 6 7 8 9
0.0 1.00000 01005 02020 03045 04081 05127 06184 07251 08329 09417
0.1 110517 11628 12750 13883 15027 16183 17351 18530 19722 20925
02 1 1.22140 23368 24608 25860 27125 28103 29693 30996 39313 33643
0.3 | 1.34986 36343 37713 39097 40495 41907 43333 44773 46228 47698
0.4 | 149182 50682 52196 053726 55271 56831 58407 59999 61607 63232
0.5 164872 66529 68203 69893 71601 73325 75067 76827 78604 80399
0.6 1.82212 84043 85893 87761 89648 91554 93479 95424 97388 09372
07 2.01375 03399 05443 07508 09594 11700 13828 15977 18147 20340
0.8 222554 24791 27050 29332 31637 33965 36316 38691 41090 43513
0.9 | 245960 48432 50929 53451 55998 58671 61170 63794 66446 69123
1.0 | 271828 74560 77319 80107 82022 85765 88637 91538 94468 97427
11 | 2.00417 03436 06485 09566 12677 15819 18992 22199 25437 28708
1.2 3.32012 35348 38719 42123 45561 49034 52542 56085 50664 63279
1.3 & 3.66930  TO617 74342 78104 81904 85743 89619 93535 97490 *01485
14 | 405520 09596 13712 17870 22070 26311 30596 34924 39295 43710
15 448169 52673 57223 61818 66459 71147 75882 80665 85496 90375
16 495303  *00281 *05309 *10387 *15517 | *20698 *25031 *31217 *36556 *41945
1.7 547395 52896 58453 04065 69734 75460 81244 87085 92986 98945
1.8 6.04965 11045 17186 23389 29654 35982 42374 48830 55350 61937
1.9 6.68589 75309 82096 88951 95875 | 02869 *09933 *17068 *24974 *31553
2.0 7.38906 46532 53832 01409 69061 T6790 84597 92482 *00447 *08402
2.1 816617 24824 33114 43487 49944 58486 67114 75828 84631 93521
2.9 9.02501 11572 20733 29987 39333 48774 58309 67940 77668 87494
2.3 9.97418 10.07442 17567 27794 38124 48557 59095 69739 80490 91349
24 | 11.02318 13396 24586 35888 47304 58835 70481 82245 94126 *06128
25 | 1218249 30493 42860 55351 67967 80710 93582 *06582 *19714 *32977
26 | 1346374 59905 73572 87377 *01320 | *15404 *29629 *43997 *5500 *73168
2.7 | 14.87973 15.02928 18032 33280 48699 64263 79984 95863 *11902 *28102
2.8 | 16.44465 60992 77685 94546 17.11577 28778 46153 63702 81427 99331
2.9 | 1817415 35680 54120 72763 91585 19.10595 29797 49187 68782 883508

x i‘ er [ et

; . _ o

1. | 271828 6. 403.42879

2. 7.38906 7. 1096.63316

3. 20.08554 8. 2980.95799

4. | 5459815 9. 8103.08393

5. | 14841316 10. 22026.4658
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TABLE II — VALUES OF THE FUNCTION ¥ == &7

k3]

|

RieloimD HooLmet RN O

PRONPR NERNN RREaE pOHEE S0090 SO9000

wwoMamtn mtoMD  Doo-1o

1.00000
0.90484
0.81873
0.74082
0.67032

0.60653
0.54881
0.49659
0.44933
0.40657

0.36788
0.33287
0.30119
0.27253
0.24660

0.22313
0.20190
0.18268
0.16530
0.14957

0.13534
0.12246
0.11080
0.10026
0.09072

0.08208
0.07427
0.06721
0.06081
0.05502

|

*99005 *98020 *97045 *96079

89583
81058
73345
66365

60050
54386
49164
44486
40252

36422
32956
29820
26082
24414

22091
19989
18087
16365
14808

13399
12124
10970
09926
08982

08127
07353
06654
06020
05448

88602
80252
72615
65705

59452
53794
48676
44043
39852

36059
32628
29523
26714
24171

21871
19790
17907
16203
14661

13266
12003
10861
09827
08892

08046
07280
06587
05961
05393

*05123

87810 86936 | 86071
79453 78663 | 77880
71892 71177 | 70469
65051 64404 | 63763

58860 58275 57695
53259 52729 | 52205
48191 47711 47237
426056 43171 | 42741
39455 39063 | 38674

35701 35345 | 34994
32303 31982 | 31664
29229 28938 | 28650
26448 261851 25924
23931 23693 | 23457

21654 21438 | 21225
19593 19398 | 19206
17728 17562 17377
16041 15882 | 15724
14515 14370 | 14227

13134 13003 | 12873
11884 117651 11648
10753 10646 @ 10540
09730 09633 | 09537
08804 08716 | 08629

07966 07887 | 07808
07208 07136 | 07065
06522 06457 | 06393
05001 05843 | 05784
05340 05287 | 05234

ez ‘ x

i o D e

0.36788 6
0.13534 7
0.04979 | 8
0.01832 - 9
0.00674 | 10

[ .

*94176

85214
77105
69768
63128

57121
51685
46767
42316
38289

34646
31349
28365
25666
23224

21014
19014
17204
156567
14086

12745
11533
10435
09442
08543

07730
06995
06329
05727
05182

*G3239
84366
76338
69073
62500

56563
51171
46301
41895
37908

34301
31037
28083
25411
22993

20805
18826
17033
15412
13946

12619
11418
10331
09343
08458

07654
06925
06266
05670
05130

e

0.00248
0.00091
0.00034
0.00012
0.00005

*02312
83527
75578
68386
61878

55990
50662
45841
41478
37531

33960
30728
27804
25158
22764

20598
18637
16864
15259
13807

12493
11304
10228
09255
08374

07h77
06856
06204
05613
05079

*91393
82696
74826
67706
61263

55438
50158
415384
41066
37158

33622
30422
27527
24908
22537

20393
18452
16696
15107
13670

12369
11192
10127
00163
08291

07502
06788
06142
05558

05029




1II — SQUARES
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TABLE

n 0 1 2 3 4
0 0 1 4 9 16
1 100 121 144 169 196
2 400 441 484 529 576
3 900 961 1024 1089 1156
4 1600 1681 1764 1849 1936
5 2500 2601 2704 2809 2916
6 3600 3721 3B44 3969 4096
7 4900 5041 5184 5329 5476
g 6400 6561 6724 6889 7056
9 Bi00 8281 8464 8649 8836
10 10000 10201 10404 10609 10816
11 12100 12321 12544 12769 12996
12 14400 14641 14884 15129 15376
13 16900 17161 17424 17689 17956
14 19600 19881 20164 20449 20736
15 22500 22801 23104 23409 23716
16 25600 25921 26244 26569 26896
17 28900 29241 29584 29929 20276
18 32400 32761 33124 33489 33856
19 36100 36481 36864 37249 37636
20 40000 40401 40804 41209 41616
21 44100 44521 44944 45369 45796
22 48400 48841 49284 49729 50176
23 52900 53361 53824 54289 54756
24 57600 58081 58564 59049 59536
25 62500 63001 63504 64009 64516
26 67600 68121 68644 69169 69696
27 72900 73441 73984 74529 75076
28 78400 78961 79524 80089 80653
29 84100 84681 85264 85849 86436
30 90000 90601 91204 91809 92416
31 96100 96721 97344 97969 98596
32 102400 103041 103684 104329 104976
33 108900 109561 110224 110889 111556
34 | 115600 116281 116964 117649 118336
35 122500 123201 123904 124609 125316
36 129600 130321 131044 131769 132496
37 136900 137641 138384 139129 139876
38 144400 145161 145924 146689 147456
39 152100 152881 153664 154449 155236
40 160000 160801 161604 162409 163216
41 168100 168921 169744 170569 171396
42 176400 177241 178084 178929 179776
43 184900 186761 186624 187489 188356
44 193600 194481 195364 196249 197136
45 202500 203401 204304 205209 206116
46 211600 212521 213444 214369 215296
47 220900 221841 222784 223729 224676
48 230400 231361 232324 233289 234256
49 240100 241081 242064 243049 244036

5

25
226
625

1226
2025

302b
4225
b62b
7225
9025

11025
13225
15625
1822h
21025

24025
27285
3062b
34225
38025

42025
462256
50625
55225
60025

65025
70225
75625
81225
87025

93025
99225
106625
112225
119025

126025
133225
140625
148225
156025

164025
172225
180625
189225
198025

207025
216225
225625
235225
245025

36
256
676

1296
2116

3136
4356
5776
7396
9216

11236
13456
156876
18496
21316

24336
27556
36976
34596
38416

42436
46656
51076
55696
60516

65536
70756
76176
81796
87616

93636
99856
106276
112896
119716

126736
133956
141376
148996
156816

164836
173056
181476
150096
198916

207936
217156
226576
236196
246016

49
289
729

1369
2209

3249
4489
5929
7569
9409

11449
13689
16129
18769
21609

24649
27889
31329
34969
38809

42849
47089
51529
56169
61009

66049
T1289
T6729
82369
88209

94249
100489
106929
113569
120409

127449
134689
142129
149769
157609

165649
173888
182329
190969
199809

208849
218089
227529
237169
247009

64
324
784

1444
2304

3364
4624
6084
7744
9604

11664
13924
16384
19044
21904

24964
28224
31684
35344
39204

43264
47524
51984
56644
61504

66564
71824
77284
82944
88804

94864
101124
107584
114244
121104

128164
135424
142884
150544
158404

166464
174724
183184
191844
200704

209764
219024
228484
238144
248004

81
361
841

1521
2401

3481
4761
6241
7921
9801

11881
14161
18641
19321
22201

25281
28561
32041
36721
39601

43681
47961
p2441
57121
62001

67081
72361
77841
83521
89401

95481
101761
108241
114921
121801

128881
136161
143641
151321
159201

167281
1755661
184041
192721
201601

210681
219961
229441
239121
249001




TABLE III — SQUARES

2

250000
260160
270400
280900
291600

302500
313600
324900
336400
348100

360000
372100
384400
396900
409600

422500
435600
448900
462400
476100

490000
504100
518400
532900
547600

562500
577600
592900
608400
624100

640000
656100
672400
688900
705600

722500
739600
756900
774400
792100

810000
828100
846400
864900
883600

902500
921600
940900
960400
980100

251001
261121
271441
281961
292681

303601
314721
326041
337561
349281

361201
373321
385641
398161
410881

423801
436921
450241
463761
477481

491401
506521
519841
534361
549081

564001
579121
594441
609961
625681

641601
667721
674041
690561
T07281

724201
741321
758641
T76161
TH881

811801
329921
848241
866761
885481

904401
9235621
942841
962361
982081

252004
262144
272484
283024
203764

304704
315844
327184
338724
350464

362404
374544
380884
399424
412164

425104
438244
451584
465124
478864

492804
506944
521284
535824
650564

565504
580614
590984
611524
627264

643204
6h9344
675684
692224
708964

725904
743044
760384
777924
795664

313604

31744
850084
868624
887364

906304
925444
044784
964324
984064

253009
263169
273529
284089
294849

305809
316969
328329
359889
351649

363609
375769
388129
400689
413449

426409
439569
452929
466489
480249

494209
508369
522729
h37289
552049

567009
582169
597H2Y
613089
628849

644809
660969
677329
693889
710649

727609
7447769
762129
TTAG8Y
797449

815409

33569
851929
870489
889249

908209
927369
946729
966289
986049

254016

264196
274576
285156
205936

306916
318096
529476
341056
352836

364816
276996
389376
401956

414736

427716
440896
454276
467856
481636

495616
509796
524176
H38TH6

553536

5685161

583696
599076
614656
630436

646416
662596
678976
6955656
712336

729316
746496
763876

781456
799236|801025
817216
R35396]

853776
872306
891136

910116

929296

948676

968256

988036|

255025
265225
275625
286225
297025

308025
319225
330625
342225
354025

366025
378225
390625
4032256
416025

429025
442225
455625
469225
483025

497025
511225
525625
44225
5565025

570025
585225
6000625
616225
632025

648025
664225
680625
697225
714025

731025
748225
765625
83225

819025
837225
8565625
874225
893025

912025
931225
950625
970225
990025

256036
266256
276676
287296
298116

309136
3203856
331776
343396
355216

367236
379456
391876
404496
417316

430336
443556
456976
470596
484416

498436
512656
527076
5416946
556516

H71536
586756
602176
617790
6336106

649636
665856
682276
698896
T15716

732736
749906
T6T376
784996
802816

820856
8390566
857476
876096
894918

912936
933156
952576
972196
992016

257049
267289
277729
288369
299209

310249
521489
332929
344569
356409

368449
380689
393129
405769
418609

431649
444889
458329
471969
485809

499849
514089
528529
54 16Y

HH80QY

573049
HE882RY
603729
619369
6:35209

651249
667489
633925
TH0H69
717409

734449
751689
T6O129
T867GY
804609

822649
840889
859329
877969
896809

915849
035089
954529
974169
994009

8

258064
268324
278784
289444
300304

311364
322624
334084
345744
357604

269664
381924
394384
407044
419904

432964
446224
459684
473344
487204

501264
515524
529984
44644
559504

5T4h64
580824
G0h284
620944
G30804

(6h2864
669124
(85584
702244
719104

736164
753424
TT0884
7885H44
806404

824464
842724
861184
879844
898704

017764
037024
356484
976144
996004

9

259081
269361
279841
290521
301401

312481
323761

35241
346921
358801

370881
383161
395641
408321
421201

454281
447561
461041
474721
488601

502681
516961
531441
546121
561001

KT6081
#1361
606841
(22521
638401

654481
670761
687241
7053921
720801

737881
7H5161
772641
790321
808201

826281
B44561
863041
881721
900601

919631
938061
958441
978121
998001




TABLE IV — SQUARE ROOTS

Va

1.00000
1.00499
1.00995
1.01489
1.01580

1.02470
1.02956
1.03441
1.03923
1.04403

1.04881
1.06357
1.05830
1.06301
1.06771

1.07238
1.07703
1.08167
1.08628
1.09087

1.09545
1.1¢000
1.10454
1.10205
1.11355

1.11803
1.12250
1.12694
1.13137
1.13578

1.14018
1.14455
1.14891
1.15326
1.157h8

1.16190
1.16619
117047
1.17473
1.17898

1.18322
1.18743
1.19164
1.19683
1.20000

1.20416
1.20830
1.21244

1.216565
1.22066

3.16228 |
3.17805 |
3.19374
3.20936
3.22490

3.24037 |
3.25576
3.27109
3.28634 |
3.30151 |

3.31662
3.33167
3.34664
3.36155
3.37639

3.39116
3.40588
3.42053
3.43511
3.44964

3.46410
3.47851
3.49285
3.50714 |
8.52136 |

{

3.53553 ¢
3.54965 :
3.56371
3.57771
3.59166

3.60555
3.61939
3.63318
3.64692
3.66060

3.67423
3.68782
3.70135
3.71484

3.72827
3.74166

3.75500
3.76829
3.781563
3.79473

3.80789
3.82099
3.83406

3.84708
3.86005

va

1.22474
1.22882
1.23288
1.23693
1.24097

1.24499
1.24900
1.25360
1.25698
1.26096

1.26491
1.26886
1.27279
1.27671
1.28062

1.28452
1.28841
1.29228
1.29615
1.30000

1.50384
1.30767
1.31149
1.31529
1.31909

1.32288
1.32665
1.33041
1.33417
1.2371

1.34164
1.34536
1.34907
1.35277
1.35647

1.56015
1.36382
1.56748
137113
1.37477

1.57840
1.38203
1.58564
1.38924
1.39284

1.39642
1.40000
1.403567
1.40712
1.41067

Vi1on n Vn V10n
3.87298 | 2.00  1.41421 4.47214
3.88587 1 2.01| 1.41774 4.48330
3.89872 | 2.02 | 1.42127 4.49444
3.91152 | 2,083 | 1.42478 4.5055h5
3.92428 | 2.04 | 1.42829 4.51664
3.93700 | 2.05| 1.43178 4.52769
3.94968 | 2.06 | 1.43527 4.53872
3.96232 | 2.07 | 1.4387b 4.54973
3.97492 | 2.08 | 1.44222 4.56070
3.98748 | 2,09 1.44568 4.57165
4.00000 ; 210 | 1.44914 4.58258
401248 | 2.11 1 1.45258 4.59347
402492 | 2121 1.45602 4.60435
403733 | 2.13 | 1.459456 4.61519
4.04969 | 2.14 | 1.46287 4.62601
4.06202 | 2.15 4 1.46629 4.63681
4.07431 2.16% 1.46969 4.64758
408656 | 2.17! 1.47309 4.65833
409878 | 2.181 1.47648 4.66905
411096 | 2.19 1.47986 4.67974
412311 | 2.20 ; 1.48524 4.69042
4.13521 | 2.21 | 1.48661 4.70106
414729 | 2,22 | 1.4R8997 4.71169
4,15933 | 2.23 | 1.49332 4.72229
417138 ' 2.24 | 1.49666 4.73286
4.18330 | 2.25 | 1.50000 4.74342
419524 | 2.26 | 1.50333 4.75395
420714 | 2.27| 1.50665 4.76445
4,21900 | 2.28| 1.50997 4.77493
4.23084 | 2.29| 1.51327 4.78539
424264 | 2.30 1.51658 4.79583
4.25441 | 2.31 | 1.51987 4.80625
426615 | 2.32 | 1.52315 4.81664
427785 | 2.33 | 1.52643 4.82701
428952 1 2.34| 1.5297T1 4.83735
4.30116 | 2.35| 1.53297 4.84768
4.31277 | 2.36 | 1.53623 4.85798
4.32435 | 2.37 | 1.53948 4.86826
4.33590 | 2.38 | 1.54272 4.87852
4.34741 [ 2.39 | 1.54596 4.88876
4.35890 | 2.40| 1.54919 4.89898
4,370356 | 2.41| 165242 4.90918
438178 | 2.42 | 1.555663 4.91935
4,39318 | 2.43 | 1.55885 4.92950
440454 | 2.44 | 1.56205 4.93964
441588 12.45 | 1.56525 4,94975
4.42719 | 2.46 | 1.56844 4.95984
4.43847 | 2.47| 1.57162 4.96991
4.44972 | 2.48 | 1.57T480 4.97996
4.46094 | 2.49 | 1.57797 4.98999




396 TABLE 1Iv — SQUARE ROOTS

i i
n Vi Viem | n Ve  Viom| = | Va Vi
950 | 158114 5.00000| 3.00| 173205 5.47723| 3.50 | 1.87083 5.91608
951 | 158430 500999 | 3.01| 173494 5.48635| 8.51 | 1.87350 5.92453
555 | 158745 501996  3.02| 1.73781 5.49545 3.52 | 1.87617 5.93296
553 | 159080 502991 2.03| 174069 550454 3.53 | 1.87883 594138
or4 | 159374 503984 3.04] 1.74356 5.51362| 3.54 | 1.88149 5.94979
955 | 1.59687 5.04975| 3.05 1.74642 5.52268| 8.55 | 1.88414 5.95819
266 | 160000 5.05964 | 3.06| 174929 553173 3.56 | 1.88680 5.96657
5B7 | 160312 5.06952 | 3.07| 175214 5.54076 8.57 | 1.88944 5.97495
558 | 160624 5.07937| 5.08| 1.75499 5.54977, 3.58 | 1.89209 5.98331
550 | 160935 5.08920 | 3.09| 175784 b5.55878 8.59 | 1.89473 5.99166
960 | 161245 5.09902 | 2.10| 176068 5.56776| 3.60 | 189737  6.00000
961 | 161555 510882 | 3.11, 1.76352 5.57674| 3.61 | 1.90000 6.00833
262 | 161864 511850 | 2.12| 1.76635 5.58570| 3.62 | 1.90263 6.01664
565 | 162173 512835 | 3.13| 176918 5.59464| 3.63 | 1.90526 6.02495
264 | 162481 5.13809 | 3.14| 177200 5.60357| 3.64 §1.90788 6.03324
065 | 162788 5.14782 | 8.15| 177482 5.61249| 3.65 | 1.91050 6.04152
266 | 163095 515752 | 3.16| 1.77764 5.62139| 3.66 | 191311 6.04979
267 | 163401 516720 | 3.17| 178045 5.63028| 3.67 |1.91572 6.05805
568 | 163707 517637 3.18| 178326 5.63915 3.68 |1.91833 6.06630
960 | 164012 518652 | 5.19| 1.78606 5.64801, 3.69 | 1.92094 6.07454
970 | 1.64317 5.19615 | 3.20 1.78885 5.65685 3.70 | 192354 6.08276
571 | 164621 520577 | 3.21| 1.79165 5.66569, 3.71 |1.92614 6.00098
Swg | 164924 501536 | 2.22 179444 5.67450| 3.72 [1.92873 6.00918
575 | 165227 522404 | 3.29 179722 5.68331' 3.73 [1.93132 6.10737
o1 | 163520 523450 | 3.24 180000 5.69210| 3.74 |1.93391 G.11555
ons | 1.65831 524404 | 325 1.80278 5.70088| 3.75 |1.03649 6.12372
576 | 166182 595357 | 3.26 1.80555 5709641 3.76 |1.93907 613188
577 | 166433 5926308 3.27 1.80831 5.71839| 277 |1.94165 6.14003
578 | 166733 5272571 3.28 1.81108 572713 3.78 [1.94422 614817
576 | 167033 528205 | 3.20 181384 5.73585| 3.79 |1.94679 6.15630
930 | 1.67332 520150 | 3.20 181659 5.74456| 2.80 11.94936 6.16441
581 | 167631 5.30094! 331 181931 575326 3.81 |1.95192 6.17252
282 | 167920 521037 382 182209 576194 3.82 |1.95448 6.18061
993 | 168226 531977 | 3.33 182483 577062 3.83 [1.95704 6.18870
581 | 168523 532017 | 3.34 1.82757 5.17927 3.84 |1.95959 6.19677
585 | 1.68819 533854 835 1.82030 5.78792| 3.85 {1.96214 6.20481
986 | 1.69115 534790 L .36 183303 579655  3.86 |1.96469 6.21289
Sa7 | 1560411 545724 | 337 1.83576 5.80517, 3.87 | 196723 622093
288 | 169706 5.86656| 338 1.83848 581378 | 3.88 | 196977 6.22896
289 | 170000 587587 3.30 184120 5.82237| 3.89 197231 6.23699
‘ |
990 | 1.70204 5.3851G | 3.40° 1.84301 5.83095 | 3.90 |1.97484 6.24500
501 | 170587 539444 | 3.41  1.84662 5.83952 | 3.91 |1.97737 6.25300
595 | 170880 5.40570 | 3.42° 1.84932 5.84808 | 3.92 |1.97990 6.26099
503 | 171172 5.41205 | 3.43 | 185203 5.85662 | 3.93 11.98242 6.26807
501 | 171464 542218 | 3.44 | 185472 5.86515 | 3.94 198494 6.27694
1
905 | 1.71756 5.43130 | 3.45 | 1.85742 5.87367 | 3.95 [1.98746 6.28490
506 | 172047 5.44059 | 3.46 | 186011 5.88218 | 3.96 |1.98997 6.29285
507 | 179337 544977 | 3.47 | 1.86279 5.89067 | 3.97 |1.99249 6.30079
508 | 172627 545894 | 5.48 | 1.86548 5.89915 | 3.98 |1.99499 6.30872
999 | 172016 5.46309 | 3.49 | 1.86816 590762 | 3.99 {1.99750 6.31664
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n If Vi
!
|
4.00 | 2.00000
4.01 2,00250
2.02 2.00499
4.03 | 2.00749
404 | 2.00998
4.05 ! 201246
4.06 | 201494
4.07 | 201742
4.08 | 2.01990
4.09 % 2.02237
410 | 2.02485
4.11 ] 2,02731
412 | 202978
4.1% | 208224
414 | 2.03470
4.15 \ 203715
416 | 203961
417 | 2.04206
418 | 2.04450
4.19 | 2.04695
|
420 | 2.04930
421 . 2.0518%
422 | 205426
4.23 1 2,05670
4.24 | 2.05913
425 | 206155
496 | 2.06398
4.27 | 2,06640
£923 | 206882
4.29 2.07123
|
4.30 { 2.07364
4.31 2.07605
4.32 l 2.07246
433 | 208087
4.34 ‘} 2.08327
4.35 ‘ 208567
436 | 2.08806
4.37 | 2.00045
438 | 2.09284
439 i‘ 2.09523
4.40 .‘ 2.09762
4.41 | 210000
442 | 2.10238
443 | 210476
4.44 2.10713
4.45 2.10950
446 | 211187
447 | 211424
4.48 | 2.11660
4.49 | 2.11896

i

VvI0n

6.33246 |

6.34035
6.34823
6.35610

6.36396
6.37181
6.37966
6.38749
6.39531

6.40312
6.41093
6.41872
6.42651
6.43428

6.44205
6.44981
6.45755

6.46529
6.47302 |

i
6.48074:
6.48845 .
6.49615 |
6.50384 |
6.51153 |

6.51920 |
6.52687 |
6.53452 |
6.54217 |
6.54981

6.55744 |

6.56506
6.57267
6.58027
6.58787

6.59545
6.60303
£.61060
6.61816
6.62571

6.63325
6.64078

6.64831
6.65582
6.66333

6.67083

6.67832

6.68581 |
6.69328 .
6.70075 .

n

N

6.32456 4.50

451
4,562
4.53
4.54

4.55
4.56
4.57
4.58
4.59

4.60
4.61
4.62
4.63
4.64

4.65
4.66
4.67
4.68
4.69

4.70
4.71
4.72
4.73
4.74i

4.75
4576
4.77
4.78
4.79

4.80
4.81
4.82
4.83
4.84

va

Vi0n

vn

Vion

2.12132
2.12368
212603
2.12838
2.13073

213367
2.13542
2.13776
2.14009
2.14243

2.14476
2.14709
2.14942
215174
2.15407

2.15639
2.15870
216102
2.16338
2.16564

2.16795
2.17025
2.17256
2.17486
217716

2.17945
218174
2.18403
2.18632
2.18861

2.19089
2.19317
2.19545
2.19773
2.26000

2.20227
2.20454
2.206581
2.20907
221133

2.21359
2.21585
2.21811
2.22036
2.22261

2.22486
222711
2.22036
2.23159

i 2,23383

6.70820
6.71565
6.72309
6.73053
6.73795

6.74537
6.75278
6.76018
6.76757
6.77495

6.78233
8.73970
6.79706
6.80441
6.81175

6.81909
6.82642
6.83374
6.84105
6.84836

6.85565
6.86294
6.87023
6.87750
6.88477 |

6.89202
6.89928
6.90652
6.91375
6.92098

G.92820
6.93542
6.94262
6.94982
6.95701

6.96419
6.97137
6.97854
6.98570
6.99285

7.00000
7.00714

7.01427
7.02140 |
7.02851 |

7.03562 |
7.04273 |
7.04982 |
7.05691 |
7.06399

eIy onmot igm;endt crongnin g
i HmHARae oo ocoDoR
RELR EokhE SE3E8E 2SRES

5.34

5.85
5.36
537
5.38
5.39

5.40
5.41
5.42
5.43
5.44

5.45

5,46

5.47

5.48 2.
5.49

2.23607
2.23830
2.24054
224277
2.24499

2.24722
2.24944
2.25167
2.2b6389
2.25610

225832
2.26053
2.26274
2.26495
2.26716

| 2.26936

2.27156
2.27376
2.27596
2.27816

2,28035
2.28254
2.28473
2.28692
2.28910

2.20129
2.29347
2.29566
2.209783
2.30000

2.80217
2.50434
2.30651
2.30868
2.31084

2.31301
2.31517
2.21733
2.31948
2.32164

2.32379
2.32594

2.32809
233024
| 2.23238

7.07107
7.07814
7.08520
7.0922b
7.09930

7.10634
7.11337
7.12039
7.12741
7.13442

7.14143
7.14843
7.15542
7.16240
7.16938

7.17635
7.18331
7.190217
7.19722
7.20417

7.21110
7.21803
7.22496
7.23187
7.23878

7.24569
7.25259
7.25948
7.26636
7.27324

7.28011
7.28697
7.29383
7.30068
7.30753

7.31437
7.32120
7.32803
7.33485
7.34166

7.34847
7.35527
7.36206
7.26886
7.37564

T7.38241
7.38918
7.39594
7.40270
7.40945
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n Va Vion N AET Vv 10n i " Vi V10w
_| — e R
5.50 2.34521 7.41620; 6.00 244949 7. 74:)97| 6.50 | 2.54951 8.06226
5.51 2.34784 742294 6.01; 245183 T. 75242 6.51 | 2.55147 8.06846
B.52 2.34947 742967, 6.02, 2.45357 T.T5887| 6.52 | 2.565343 B8.07465
5.63 285160 7.43640! 6.03| 2.45561 7.76531| ‘ 6.53 | 2.55639 R8.08034
5.54 2.35872 17.44312 6.04; 2.45764 . 77174 6.54 | 2.55734 8.08703
5,56 2.85584 T7.44983 | 6.056¢ 2.45967 7.77817 6.55 | 2.55930 8.09321
5.56 2.357T97 7T7.45654 ! 6,06 246171 7.78460 . 6.56 | 2.66125 8.09938
5.57 2.36008 7.46324 ' 6.07| 2.46374 7.79102 ' 6.57 | 2.56320 8.105565
5.58 2.36220 7.46994 | 6.08| 2.46577 T.79744 . 6.58 | 2.56515 311172
5.59 236432 7.47663 | 6.091 2.46779 7.80385  6.59 | 2.56710 8.11788
| | .
5.60 2836643 7.48331 6.10] 2.46982 7.81025 6.60 | 2.56906 8.12404
5.61 2.36854 7.48999: 6.11| 2.47184 7.81665f 6.61 | 2.67099 8.13019
5.62 2.370656 7.49667 6.121 2.47386 7.82304: 6.62 | 2.67244 813634
5.63 2.37276 17.50833 7 6.131 2.47588 7.82943 - 6.63 2.507488 8.14248
h.64 2.37487 7.50999 - 6.141 2.47790 7.83582 6.64 ! 2.57682 8.1486G2
| ; ! i
5.65 2.37697 17.51665 ; 6.15° 247992 T7.84219 6.65 ; 2.57876 8.15475
5.66 2.87908 7.52330  6.16] 2.48193 7.84857: 6.66 | 2.58070 B.16083
5.67 298118 7.52904 | 6.17; 2.43295 7.85493 ! 6.67 | 2.58263 8.16701
5.68 2.38328 7.53658 | 6.18! 2.48596 T7.86130 : 6.68 2.58157 817313
5.69 2.38537 T.54321 ' 6.19' 2.48797 7.86766 6.69 . 2.58650 8.17924
5.70 2.38747 7.54983 ! 6.20: 2.48998 7.87401 6.70 | 2.58844  8.185:5
5.71 2.38056 7.55645 6.211 2.49199 ‘T7.88036 : 6.71 | 2.58037 8.19140
5.72 2.39165 7.56307 | 6.22 | 249399 17.88670 ! 6.72 | 2.59230 8.19756
5.73 2.80874 7.56968 ' 6.23| 2.49600 7.89303 | 6,793 | 2.59422 8.20366
5.74 2,39583 7.57628 l g.24| 2.49800 7.89937 S 6.74 | 259615  B.20975
5.75 259792 7.58288 ' 6.25] 2.50000 7.90569 6.75 | 2.59308 8.21584
5.76 2.40000 7.58947 ! 6.26! 2.50200 7.91202 : 6.76 | 2.60000 822192
597 2.40208 7.59605 6.27 2.50400 791833 l 6.77 | 2.60192 8.22800
5.78 2.40416 7.60263  6.28' 250599 7.92465 : 6.78 | 2.60384 B.23408
5.79 2.40624 7.60920 | 6.29 2.50799 T7.98095 6.79 ) 2.605676 8.24015
5.80 2.40832 7‘6157‘7, 6.30 2.50008 T.93725 . 6.80 | 2.60768 8.24621
5.81 241039 17.62234. 6.31! 251197 7.94355 | 6.81 | 2.60960 8.25H 2’7
5.82 2.41247 7.62889 ' 6.32° 2.51396 7.04984 6.82 1261151 8.2568%
5.83 2.41454 7.63544 ; 6.33: 2.51595 7.95613 ' 6.83 | 2 261543 8.26438
5.84 2.41661 7.64199: 6.24 . 251794 7.96241 6.84 ;2.61534 8.27043
5.85 2,41858 T.64853 | 6.35 2.51992 7.96869 6.85 2.61725 827617
5.86 2.42074 7.65506 4 6.36 2.52190 7.07496 | 6.86 1 2.61916  8.28251
5.87 2.42281 7.66159 6.37 2.52889 798123 6.87 2.462107 B.2885H5
5.88 2 AZAR7 T.66812 6.38 2.52587 T7.98749 . 6.88  2.62208 8.20458
5.89 242693 7.67463  6.39° 2.52784 7.99375 6.89  2.62488 8.300(;0
5.90 249899 7.68115 6.40 2.52082  8.00000 : 6.90 1 2.62679  8.300662
5.91 243105 T7.68765 6.41 253180 8.00625 , 6.91 - 2.62869 8.31261
5,92 243311 7.69415 , 6.42 " 2.53377 8.01249 . 6,92 @ 2.63059  8.31865
5.93 2.43516 T.70065 ' 6.43 2.53574 801873 | 6.03 : 2.65240 8324606
594 243721 7.70714  6.44 253772 R.02496 | 6.94 - 2.63439 B.33067
\
5.95 243926 7.71262 . 6.45 2.53969 8.03119 | 6.95 . 2.63629 B.336A7
5.96 2.44131 7.72010 | 6.46 2.54165 8.03741 | 6.96 2.62818  8.342066
5.97 2.44336 7.72658 . 6.47 2.54362 8.04363 | 6.97 . 2.64008 8.34865
598 | 244540 7.72305 ' 6.48 2.54558 8.04984 | .98 . 2.64197 8.35464
5.29 2.44745 7.73951 @ 6.49 2.54755 8.05605 | 6.99

C2.645386  B.36062
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Va V10n ‘ % Vi V1i0n n Vn Vion
2.64575 8.36660  7.50 i213861 8.66025| 8.00! 2.82843 8,94497
2.64764 8.37257 ' 7.51 1 2.74044  8.66603 | 8.01| 2.83019 8.94486
2,64953 8.87854 17.52 12.74226 R.67179! 8.02° 2.83196 8.95545
2.65141 B.38451  7.53 2.74408 8.67756| 8.03; 2.82273 8.96103
2.65330 839047 17,54 274591 8.68332 ! 8.04| 2.82549 8.96660
265518 8.39643 : 7.55 274772 8.68907 | 8.05, 2.83725 8.97218
2.65707 8.,40238 |156 2.74955 B.69483 ' 8.06 | 2.83901 8&.97775
2.65895 R.40833 :7.57 (275136 B.70057 8.07I 2.84077 8.98332
2.66083 B8.41427 | 7.568 {2.75318 840632 &OSI 2.84253 8.98888
2.66271 842021 | 7.59 :2ﬂ5500 8.71206 ] &09} 2.84429 8.99444

; ‘ |
2.66458 8.42615 17.60 |2,76681 RK.7T1780: 8.10| 2.84605 9.00000
2.66646 8.43208 | 7.61 :2.75862 8.72353  8.11| 2,84781 90.00555
2.66833 R.43801 | 7.62 |2.76043 8.72926. 8.12 | 2.84956 9.01110
2,67021 8.44393 ' 7.63 | 2.76225 B8.73499| 8.13| 2.85122 46.01665
2.67208 8.44985 | 7.64 [2.76405 8.74071! 814 | 2.85307 9.02219
2.67395 8.4B6577 17.65 276586 B8.74643 8.15; 2.85482 9.02774
2.67b82 B8.46168 | 7.66 | 2.76767 8.75214 ) 8.16 . 2.85657 9.03327
2.67769 8.46759 | 7.67 |2.76948 8.75785 8.17 | 2.85882 9.03881
2.67955 8.47349 | 7.68 | 2.77128 8.76356| 8.18 | 2.86007 9.04434
2.68142 8.47939 ! 7.69 | 277308 8.76926 . 8.19; 2.86182 9.04986
2.68328 8.48528 | 7.70 ! 2.77489 B8.7496 | 8.20| 2.86356 9.05539
2.68514 R8.49117 | 7.71 | 2.77669 878066 | 8.21| 2.86531 9.06091
2.68701 8.49706 | 7.72 | 2.77849 R.78635 8.22 2.86705 9.06642
2.68887 8.50294 | 7.73 | 2.78029 8.79204 | 8.23  2.86880 9.07193
2.69072 8.508R82 PT.74 | 278209 8.79773 8.24 + 2.87054 9.07744
| :
2.69258 8.51469 |7.75 [ 2.78388 8.80341 | 8.25| 2.87228 9.08295
2.69444 8.52056 :7.76 ;2.78568 B8.80909 | 8.26 | 2.87402 9.08845
2.69629 8.52643 | 7.77 1278747 B.B1476 | 8.27 | 2.87576 9.09395
2.69815 8.53229 | 7.78 :2.78927 8.82043 | 8.28| 2.87750 9.09945
2.70000 8.53815 i179 12.79106 8.82610 ' 8.20 | 2.87924 9.10494
2.70185 8.54400 7.80 $2.79285 8.83176 8.30 ! 2.88097 9.11043
270370 8.54985  7.81 !2ﬂ9464 8.83742 8.31 | 2.88271 9.11592
2.705565 8.55570 | 7.82 12.70643 884308 | 8.32 | 2.88444 9.12140
2.70740 8.56154 '7.83 279821 8.84873 ! 8.33 1 2.88617 9.126%8
2.70924 8.56738  7.84 280000 8.85438 | 8.34 | 2.88791 9.13236
2.71109 857321 :7.85 | 2.80179 8.86002 . 8.35 | 2.88964 ©.13783
271293 857904 7.86 |2.80357 8.86566 | 8.36  2.80137 9.14330
2.71477 8.58487 7.87 [2.80535 8.87130 | 8.37 | 2.89310 9.14877
2.71662 8.59069 7.88 [2.80713 8.87694 | 8.38 | 2.80482 0.15423
2.71846 8.59651 7.89 | 2.80891 8.88257 @ 8.39 i 2.80655 9.15969
2.72029 8.60233 7.90 '2.81069 8.88819 , 8.40 | 2.89828 9.16515
2.72213 8.60814 ;7.91 1 2.81247 B8.89382 | 8.41 | 2.90000 9.17061
272397 8.61394 | 7.92 | 2.81425 8.89944 | 8.42 | 2.90172 9.17608
272580 8.61974 7.93 .2.81603 8.90505 | 8.43 | 2.90345 9.18150
2.72764 8.62554 7.94 ;2.81780 8.91067 | 8.44 | 2.90517 9.18695
2.72947 8.63134  7.95 |2.81957 8.91628 | 8.45 [ 2.90689 9.19239
273130 8.63713 . 7.96 |2.82135 8.92188 | 8.46 | 2.90861 9.197823
2,73313 8.64292 17.97 |2.82312 892749 : 847 | 2.91033 9.20326
273496 8.64870 :7.98 | 2.82489 8.93308 | 8.48 | 2.91204 9.20869
2.73679 8.65448 7.99 | 2.82666 8.93868 . 8.49 | 2.91376 9.21419
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Vn

2090000000 XN MONDME N0 DONM OO 00NN 000000000
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00 00
[Teie]
=o

8.92
8.93
8.94

8.95
8.96
8.97
8.98
8.99

2.91548
2.91719
2.91890
2.92062
2.92233

2.92404
2.9257b
2.92746
2.92916
2.93087

2.93258
2.95428
2.93598
2.93769
2.93939

2.94109
2.94279
2.94449
2.94618
2.94788

2.94958
2.95127
2.95296
2.95466
2.95635

2.95804
2.95973
2.96142
2.96311
2.96479

2,96648
2.96816
2.96985
2.97153
2.97321

2.97489
2.97658
297825
2.97993
2.98161

2.98329
2.984906
2.98664
2.98831
2.98998

2.99166
2.99333
2.99500
2.99666
2.99833

9.21954
9.22497
9.23038
9.23580
9.24121

9.24662 |

9.25203
9.25743
9.26283
9.26823

9.27362
9.27901
9.28440
9.28978
9.29516

9.30054
9.30591
9.31128
9.31665
9.32202

9.32738
9.33274
9.33809
9.34345
9.34880

9.35414
9.35949
9.36483
9.37017
9.27550

9.38083
9.38616
9.39149
9.39681
9.40213

9.40744
9.41276
9.41807
9.42538
9.42868

9.43398
9.43928
9.44458
9.44987
9.45516

9.46044
9.46573
9.47101
9.47629
9.48156

n o Vn V10n n Vh Vi10n
9.00 5.00000 9.48683 | 9.50| 3.08221 9.74679
9,011 3.00167 949210 9.51| 3.08383 9.75192
9.02| 3.00333 9.49737 | 9.52| 3.08545 9.75705
9.03 | 3.00500 9.50263 | 9.53| 3.08707 9.76217
9.04 | 3.00666 9.50789 | 9.54| 3.08869 9.76729
9.05| 3.00832 9.51315| 9,65, 3.09031 9.77241
9.06! 3.00998 9.51840 | 9.56| 3.09192 9.77753
9.07| 3.01164 9.52365 | 9.57| 3.09354 9.78264
9.08 | 2.01320 9.52890 | 9.68( 3.09516 9.78775
9.09| 3.01496 9.53415 | 9.59] 3.09677 9.792856
9.10| 3.01662 9.53939 | 9.60; 3.09839 9.79796
9.11 | 3.01828 9.54463 | 9.61] 3.10000 9.80306
9.12 | 3.01993 9.54987 7 9.62! 3.10161 9.80816
9.13 | 3.02159 9.55510 | 9.63] 3.10322 9.81326
9.14| 3.02324 9.56033 | 9.64| 3.10483 9.81835
9.15] 3.024%0 9.56556 | 9.656| 3.10644 9.82344
916 | 3.02655 9.57079 | 9.66| 3.10805 9.82853
9.17 | 3.02820 9.57601 | 9.67| 3.10966 9.83362
918 | 3.02985 9.58123 | 9.68! 3.11127 9.83870
9.1% | 3.03150 9.58645 | 9.69! 3.11288 9.84378
9.20| 3.03315 9.59166 | 9.70: 3.11448 9.84886
9.21 | 3.03480 9.59687 | 9.71| 3.11609 9.85393
9.22 | 3.03645 9.60208 | 9.72] 3.11769 9.85901
9,231 3.03809 9.6072% 1 9.73] 3.11929 9.80408
9.24 | 3.03074 9.61249 1 9.74| 3.12090 9.86914
925 3.04138 9.61769 | 9.75! 3.12250 9.87421%
9.26 | 2.04302 9.62289 | 9.7G | 3.12410 9.87927
9.27 | 3.04467 9.62808 | 9.77| 3.12570 9.884573
9.28 | 3.04651 9.63328 | 9.78| 3.12730 9.88939
9.29 [ 3.04795 9.63846 | 9.79| 3.12890 0§.89444
9.30 | 3.04959 9.64365 | 9.80| 3.13050 9.85949
931 3.05123 9.64883 | 9.81} 3.13209 9.90454
9.32 | 3.05287 9.65401 | 9.82| 3.13369 9.90959
9.33 | 3.05450 9.65919 | 9.83 | 3.13528 9.91464
9.34 | 3.06614 9.66437 | 9.84} 3.12688 9.91968
9.35 | 3.06778 9.66954 | 9.80 ; 3.13847 9.62472
9.36 | 3.06941 9.67471 | 9.8G | 3.14006 9.92975
9.37 | 8.06105 9.67988 | 9.87| 3.14166 9.93479
9.38 | 3.06268 9.68504 | 9.88: 3.14325 9.05982
9.39 | 3.06431 9.69020 | 9.89; 3.14484 9.94485
9.40 | 3.06594 9.69536 | 9.90{ 3.14643 9.94987
9.41 | 3.06757 9.70052 | 9.91 ' 3.14802 9.95490
9.42 | 3.06920 9.70567 | 9.92 | 2.14960 9.95992
9.43 | 3.07083 9.1082 | 9.93 | 3.15119 9.96494
9,44 | 3.07246 9.71597 | 9.94 | 3.15278 9.96995
9.45 | 3.07409 9.72111 | 9.95 | 3.15436 9.97497
9.46 | 3.07571 9.72625 | 9.96 | 3.15595 9.97998
9.47 | 3.07734 9.73139 | 9.97 | 3.15753 9.98499
9.48 | 3.07896 9.73653 | 9.98 | 3.15911 9.98999
9,49 | 3.08058 9.74166 | 9.99 | 3.16070 2.99500




TABLE V — RECIPROCALS, 1/7 401

........ 100.0 50.00 33.33 25.00 [ 20.00 16.67 14.29 1250 11.11

10.0000 9.091 8333 7.692 7.143 | 6.667 6.250 5.882 5.558 5.263

5.0000 4.762 4.5645 4.348 4167 | 4.000 3.846 3.704 3.571 3.448
3.8333 3.226 3,125 3.030 2941 | 2857 2.978 2.703 2.632 2.564

2.5000 2.439 2381 2.326 2273 ) 2,222 2174 2128 2.083 2.041

oo eWkRD® bamtn kiivhs

U o ODI00000  (0C0COCOCE NN NINNNN MEPe R

SLoT hhbHD LHUOBM ABNMND LHADD RS e

2.0000 *9608 *9231 *8868 *8519 | *8182 *7857 *7544 *7241 *6949
1.6667 6393 6129 5873 5625 6385 5152 4925 4706 4493
1.4286 4085 3889 3699 2514 8333 3158 2087 2821 2658
12500 2346 2195 2048 1905 1765 1628 1494 1364 1236
11111 0989 0870 0753 0638 0526 0417 0309 0204 0101

1.0000 *9901 *9804 *9709 *9615 | *0524 *0434 *9346 *9259 *9174
0.9091 5009 8829 8850 8772 8696 8621 8547 8475 8403
0.8333 8264 8197 8130 8065 8000 7937 7874 7813 7752
0.7692 7634 7576 7519 7463 T407 7353 7299 7246 7194
0.7143 7092 7042 6993 6944 6897 6849 6803 6757 6711

0.6667 6623 6579 6536 6494 6452 6410 6369 6329 6289
0.6260 6211 6173 6185 6093 6061 6024 5988 5952 5917
0.5882 5848 5814 5780 5747 5714 5682 5650 5618 5587
0.5666 3525 5495 5464 5435 5406 5376 5348 5319 5291
0.5263 5236 5208 5181 5165 5128 5102 5076 5051 5025

0.5000 4975 4950 4926 4902 4878 4854 4831 4808 4785
0.4762 4739 4717 4695 4673 4661 4630 4608 4587 4566
0.4546 4525 4505 4484 4464 4444 4425 4405 4386 4367
0.4348 4329 4310 4292 4274 4255 4237 4219 4202 4184
0.4167 4149 4132 4115 4098 4082 40656 4049 4032 4016

0.4000 3984 3968 3953 3937 3922 3906 3891 3876 3861
0.3846 23831 3817 3802 3788 3774 3759 8745 3731 3717
03704 3690 3676 3663 3650 3636 3623 3610 3597 3584
0.3571 3559 13546 3534 3521 3509 3497 3484 3472 3460
0.3448 3436 3425 3413 3401 3390 3378 3367 3356 3344

0.3333 8322 23311 3300 3289 3279 3268 3257 3247 3236
0.3226 3215 3205 3195 3185 31756 3165 3155 3145 3135
0.3125 3115 3108 3096 3086 3077 3067 3058 3049 3040
0.3030 3021 23012 3003 2994 2985 2976 2967 2959 2950
0.2941 2933 2924 2915 2907 2899 2890 2882 2874 2865

0.2857 2849 2841 2833 2825 2817 2809 2801 2793 2786
0.2778 2770 2762 2758 2747 2740 2732 2725 2717 2710
0.2703 2695 2688 2681 2674 2667 2660 2653 2646 2639
0.2632 2625 2618 2611 2604 2597 2591 2584 2577 2571
0.2564 2558 2551 2545 2638 2532 25626 2519 2513 2506

0.2500 2494 2488 2481 2475 2469 2463 2457 2451 2445
0.2439 2433 2427 2421 2415 2410 2404 2398 2392 2387
0.2381 2375 2370 2364 2358 | 2353 2347 2342 2336 2331
0.2326 2320 2315 2309 2304 2299 2294 2288 2283 2278
0.2273 2268 2262 2257 2252 2247 2242 2237 2232 2227

0.2222 2217 2212 2208 2203 2198 2193 2188 2183 2179
0.2174 2169 2165 2160 2155 21561 2146 2141 2137 2132
0.2128 2123 2119 2114 2110 2105 2101 2096 2092 2088
0.2083 2079 2075 2070 2066 2062 2058 2053 2049 2045
0.2041 2037 2083 2028 2024 2020 2016 2012 2008 2004
0.2000 1996 1992 1988 1984 1980 1976 1972 1969 1965




402 TABLE V — RECIPROCALS, 1/n

0.2000 1996 1992 1988 1984 1980 1976 1972 1969 1965
0.1961 1957 1953 1949 1946 1942 1938 1934 1931 1927
0.1923 1919 1916 1912 1908 1905 1901 1898 1894 1390
0.1887 1883 1880 1876 1873 1869 1866 1862 1859 1855
0.1852 1848 1845 1842 1833 1835 1832 1828 1825 1821

0.1818 1815 1812 1808 1805 1802 1799 1795 1792 1789
0.1786 1783 1779 1776 1773 1770 1767 1764 1961 1757
0.1754 1751 1748 1745 1742 1739 1736 1733 1730 1727
0.1724 1721 1718 1716 1712 1709 1706 1704 1701 1698
0.1695 1692 1689 1686 1684 1681 1678 1675 1672 1669

0.1667 1664 1661 1668 1656 1653 1650 1647 1645 1642
0.1639 1637 1634 1631 1629 1626 1623 1621 1618 1616
0.1613 1610 1608 1605 1603 1600 1597 1595 1592 1590
0.1587 1585 1582 1580 1577 1575 1572 1570 1567 1565
0.1563 1560 1558 155656 1553 1550 1548 1546 1543 1541

SOMOS Moimingt sroioin
Bhme woaot vk O

0.1538 1536 1534 1531 1529 1527 1524 1522 1520 1517
0.1515 1513 1511 1508 1506 1504 1502 1499 1497 1495
0.1493 1490 1488 1486 1484 1481 1479 1477 1475 1473
0.1471 1463 1466 1464 1462 1460 1458 1456 1453 14b1
0.1449 1447 1445 1443 1441 1439 1437 1435 1433 1431

0.1429 1427 1425 1422 1420 1418 1416 1414 1412 1410
0.1408 1406 1404 1403 1401 1399 1397 13965 1393 1391
0.1389 1387 1385 1383 1381 1379 1377 1376 1374 1372
0.1370 1368 1366 1364 1862 | 1361 1359 1357 135L 1353
0.1351 1350 1348 1346 1244 . 1342 1340 1339 1337 1335

| 01333 1332 133 298 1326 . 1325 1323 1321 1319 1318
| 01316 1314 1312 1311 1309 | 1307 1305 1204 1302 1300
§ 01299 1297 1295 1294 1292 1290 1289 1287 1285 1284
| 0.1282 1280 1279 1277 1276 | 1274 1272 1271 1269 1267
ﬂ 0.1266 1264 1263 1261 1259 | 1258 1256 1255 1253 1252

0.1250 1248 1247 1245 1244 1242 1241 1239 1238 1236
i0.1235 1233 1232 1230 1229 1227 1225 1224 1222 1221
0.1220 1218 1217 1215 1214 @ 1212 1211 1209 1208 1206
{01205 1203 1202 1200 1199 1188 1196 1195 1193 1192
I 01190 1189 1188 1186 1185 = 1183 1182 1181 1179 1178

I‘ !

+ 0.1176 7h 1174 1172 1171 1170 1168 1167 1166 1164
0.1163 1161 1160 11569 11567 1156 1155 1153 1152 1151
0.1140 1148 1147 1145 1144 1143 1142 1140 1139 1138
0.1126 1135 1124 1133 1131 . 1130 1129 1127 1126 1125
£01124 1122 1121 1120 1119 1117 1116 1115 1114 11312

ﬁ 01111 1110 1109 1107 1106 . 11056 1104 1103 1101 1100

0.1099 1098 1096 10585 1094 1093 1092 1091 1080 1088
0.1087 1086 1085 1083 1082 @ 1081 1080 1079 1078 1076
0.1075 1074 1073 1072 1071 ' 1070 1068 1067 1066 1065
0.1064 1063 1062 1060 1059 1058 1057 1066 1055 1054

0.1053 1052 1050 1049 1048 1047 1046 1045 1044 1043
0.1042 1041 1040 1038 1037 1036 1035 1034 1033 1032
0.1031 1020 1029 1028 1027 @ 1026 1025 1024 1022 1021
0.1020 1019 1018 1017 1016 | 1015 1014 1013 1012 1011
0.1010 1009 1008 1007 1006 1005 1004 1002 1002 1001
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TABLE VII 403

VALUES OF THE FUNCTION ¢y = et

2n

LOLOCILO COWELOt NI MNNNN REHHE HReERE 90000 009000
=R+ 10 - R oL - N -] Lo-1&mt =N O OO =3 N OO = O Cw=2man 00 B e

0.39894 39892 39886 39876 39802 39844 39822 39797 39767 39733
0.39695 39654 39608 39559 39505 29448 39387 30322 39253 39181
0.39104 39024 38940 328853 38762 58667 38568 38466 38361 33251
0.38139 38023 37903 37780 37654 37624 37391 37255 37115 36973
0.36827 36678 36526 36371 36213 36053 35889 35723 35553 35381

(.35207 35029 34849 34667 34482 34294 34105 33912 33718 33521
0.33322 33121 32918 32713 32506 52297 32086 31874 31659 31443
0.31225 31006 30785 30563 30339 30114 29887 29659 29431 29200
0.28969 28737 28504 28269 28034 | 27798 27562 27324 27086 26848
0.26609 26369 26129 25888 25647 25406 25164 24923 24681 24439

0.24197 23955 23713 23471 23230 | 22988 22747 22506 22265 22025
0.21785 21546 21307 21069 20831 | 20594 20357 20121 19386 19652
0.19419 19186 18954 18724 18494 18265 18037 17810 17585 17360
0.17137 16915 16694 16474 16256 ; 16038 15822 15608 15395 15183
0.14973 14764 145566 14350 14146 | 13943 18742 13542 13344 13147

0.12952 12758 12566 12376 12188 12001 11816 11632 11450 11270
0.11092 10915 10741 10567 10396 | 10226 10059 09893 09728 09566
0.09406 09246 (9089 08933 (08780 | 08628 08478 (8329 08183 08038
0.07895 07754 07614 07477 07341 ! 07206 07074 06948 06814 06687
0.06562 06438 06316 06195 06077 , 05959 05844 05720 05618 05508

0.06599 05292 065186 05082 04980 | 04879 04730 04682 04586 04491
0.04308 04307 04217 04123 04041 | 03955 03871 03788 03706 03626
0.03547 03470 03394 03319 03246 ' 03174 03103 03034 02965 02898
0.02833 (2768 02705 02643 02582 { 02522 02463 02406 02349 02294
0.02239 02186 02134 02083 02033 | 01984 01936 01889 01842 01797

0.01763 01709 01667 01625 01585 ‘ 01545 01506 01468 01431 01394
0.01368 01323 01289 01256 01223 | 01191 01160 01130 01100 01071
0.01042 01014 00987 00961 00935 : 00909 00885 00861 00837 00814
0.00792 00770 00748 00727 00707 | 00687 00668 00649 00631 00613
0.00595 00578 00562 00545 00530 ;| 00514 00499 00485 00471 00457

0.00443 00430 00417 00405 00393 | 00381 00270 00358 (0348 00337
0.00327 00317 00307 00298 00288 | 00279 00271 00262 00254 00246
0.06238 00231 00224 (00216 00210 | 00203 00196 00190 00184 00178
0.00172 00167 00161 00156 00151 00146 00141 00136 00132 00127
0.00123 00119 00115 00111 00107 | 00104 00100 00097 00094 00090

0.00087 00084 000381 00079 00076 | 00073 00071 00068 00066 00063
0.00061 00059 00057 00055 00053 | 00051 00049 00047 00046 00044
0.00042 00041 00039 0038 00037 | (0035 00034 00933 00031 00030
0.00029 00028 00027 00026 00025 | 00024 00023 G0G22 00021 00021
0.00020 00019 00018 G0018 00017 | 00016 00016 00015 00014 (0014




404 TABLE VIII

VALUES OF I(f), AREA UNDER NORMAL PROBABILITY CURVE

0.00000 00399 00798 01197 01595 01994 02392 02790 03188 03586
0.03983 04380 04776 05172 0bbDET 05962 06356 06749 07142 07535
0.07926 08317 08706 00095 09483 09871 10257 10642 11026 11409
0.11791 12172 12552 12930 13307 13683 14058 14431 14803 15173
0.15542 15910 16276 16640 17003 17364 17724 18082 18439 18793

| 0.19146 19497 19847 20194 20540 20884 21226 21566 21904 22240
0.22575 22907 23237 23565 23891 24215 24537 24857 25175 25490
0.25804 26115 26424 26730 27035 27337 27637 27935 28230 28524
0.28814 29103 29289 29673 29955 30234 505611 30785 31067 31327
0.31594 31859 32121 32381 32639 32894 33147 33398 33646 33871

0.34134 34376 34614 34850 35083 35314 35543 35769 35993 306214
0.36433 36650 36864 37076 57286 37493 37698 37900 38100 38298
0.38493 38686 38877 590065 39251 39435 39617 39796 39978 40147
0.40320 40490 40658 40824 40988 41149 41309 41466 41621 41774
0.41924 42073 42220 42364 42507 42647 42786 42922 43056 43189

0.43319 43448 43574 43699 43822 43943 44062 44179 44295 44408
0.44520 44630 44738 44845 44950 45053 456154 45254 45352 45449
0.45543 45637 45728 45818 45907 45994 46080 46164 46246 46327
0.46407 46485 46562 46638 46712 46784 4068b6 46926 46995 47062
0.47128 47192 47257 47320 47381 47441 47500 47558 47615 47670

47982 48070 48077 48124 48169
48422 48461 48500 48537 48074
48778 48809 48840 48870 48599
49061 49086 49111 49134 49158
49286 49305 49324 49348 49361

[ 0.47725 47778 47831 47882 47932
i 0.48214 48257 48300 48341 48382
| 0.48610 48645 480679 48712 48745
| 0.48928 48956 48983 49010 49036
. 0.49180 49202 49224 49245 49266
|

0.4937% 49396 49413 49430 49446 49461 49477 40492 49506 49520
0.49534 495647 49560 49573 49585 49598 49609 49621 49632 49043
| 0.49G53 49664 49674 49683 49693 - 49702 49711 49720 49728 49736
P 0.49744 49752 49760 49767 49774 © 49781 49788 49795 49801 49807
1 0.49813 49819 49825 49831 49836 . 49841 40846 49851 49856 49861

WOdmm RWNHD SNUHU RWONHO sl e

0.49865 49869 40874 49878 49832 ;. 40886 49889 49893 49897 49900
0.49903 49906 495910 49913 49916 49918 49921 49921 19926 49929
0.49931 49934 49936 49938 49940 | 49942 49944 49946 49948 49950
0.49952 49953 49955 49957 49958 © 49960 49961 498G2 49964 49965
0.49966 49968 49960 49970 49971 49972 49973 19974 49975 49976

i 0.49977 49978 40978 49979 49980 1 49981 49981 49982 19983 49983
0.49984 49985 49985 49986 49086 | 49987 49987 49983 49988 49989
0.49989 49990 49990 49990 49991 | 49991 49992 49992 45992 49992
0.49992 49993 49993 40994 49994 = 49994 40094 40095 49995 49995
0.49995 49995 49996 49906 49996 | 49996 49956 49996 49997 49997

CEOLOCIE  LOLILOLILT MMM NN MREEME RHRR-S 00000 29000

LRAZUT RWHRD




TABLE VIII

TEST FOR GOODNESS OF FIT
VALUES OF THE PEARSON PROBABILITY, P

405

X2z n=3 n—4 n—=5 n=—=0

1 L0653 06597 .80125 195(69) | 90979 598(96) 96256 577(32)
2 36787 94412 57240 670(44) |.73575 888(23) .84914 503 (60)
3 22318 01601 .39162 517(63) | .B5T82 540(04) .69998 583 (59)
4 13533 52832 .26146 412(99) | .40600 584(97) 54941 595 (12)
5 08208 49986 17179 T14(43) |.28729 T49(52) A1BR8 (18(72)
6 04978 70684 .11161 022(51) |.19914 827(35) 30621 891(86)
7 03019 73834 07189 TTT(2b) | .13588 822(54) 122064 030(80)
2 .01831 56389 .04601 170(57) | .09157 819(44) .15623 bB2(76)
9 L01110 89965 .02929 088(6H) | .06109 948(10) 10906 415(79)
10 00673 79470 01856 612(57) | .04042 768(20) 07523 523 (64)
11 00408 67714 01172 587(55) |.02656 401(44) 05137 998(34)
12 00247 87522 .00738 316 (0b) | .01735 126(52) .03478 778(05)
13 .00150 34392 .00463 660(5H8) | .01127 579(39) 02337 876 (81)
14 .00091 18820 .00290 515(28) |.00729 505(57) 01560 941(61)
15 00055 30844 00181 664(90) |.00470 121(71) 01036 233(79)
16 00033 54626 .00113 398(42) |.00301 916(37) 00684 407(35)
17 00020 34684 00070 674(24) | .00193 294(95) 00449 979(70)
18 00012 34098 .00043 984(97) | .00123 409(80) 00294 640(46)
19 00007 48518 .00027 339(89) | .00078 594(42) 00192 213(68)
20 00004 53999 .00016 974 (16) |.00049 939(92) 00124 972(97)
21 ¢ .00002 Th364 .00010 527(62) |.00031 666(92) .00081 005 (96)
22 00001 67017 00006 523 (11) | .00020 042(04) 00052 359(83)
23 00001 01201 .00004 038(30) | .00012 662(62) 00033 756(61)
24 00000 61442 00002 498(00) | .00007 987(48)  .00021 711(29)
25 00000 37267 .00001 544 (00} |.00005 030(98) 00012 933(573)
26 00000 22602 .00000 953(74) | .00003 164(46) 00008 923 (60)
27 00000 13710 00000 600(96) | .00001 987(39) 00005 716 (47)
28 .00000 08315 .00000 361(89) |.00001 247(29) 00003 638(57)
29 00000 05043 .G0000 223 (94) :.00000 781(74) 00002 318(76)
30 00000 03059 .00000 137(09) !.00000 489(44) 00001 473 (956)
40 | 00000 00021 .00000 001(07) '.00000 004(12) 00000 014 (93)
50 00000 00000 00000 000(00) ' .00060 000(03) .00000 000{13)
60 00000 00000 00000 000(00) ' ,00000 000(00) 00000 000 (00)
70 .00000 00000 00000 000(00) : .00000 000(G0)  .00000 000(00)




406 TABLE VIII
VALUES OF THE PEARSON PROBABILITY, P

! —_
x? n="17 n—2=8 n—*%9 n=—10
1 i 98561 232(20) .99482 853(65); .99824 B37(74) 99943 750(26)
2 | 91069 860(29) 95984 036(87)| .98101 184(31) 59146 760(65)
3| .R0884 683(05) .88500 223(17)| .93435 TH4(56) 96429 497(27)
4 67667 641(62) 77977 T40(84)| 85712 346(05) 91141 252 (67)
5 | .54381 311(5%) .65996 323(00)| .75757 613(31) .83430 826(07)
6 | .42319 008(11) .H3974 935(08) | .64723 188(88) 73991 829(27)
7 .32084 T19(89) .42887 985(77)| .53663 266(80) 63711 940(74)
8 | .23810 330(56) .33259 390(26) | .43347 012(03) .63414 621(68)
9 | 17357 807(09) .25265 604(65) | .34229 595(568) A3727 418(8T)
10 | 12465 201(95) 18857 345(78) | .26502 591(53) 35048 520(26)
11 , L8837 643(24) .18861 902(08) | .20169 919 (8T) 27570 893 (67)
12 | 06196 880(44) .10055 886(85)| .156120 388(28) .21330 930(51)
13 | .04303 594(69) .07210 839(10)| .11184 961(16) 16260 626 (22)
14 | .02963 616(39) .05118 135(34)| .08176 541(63}) 12232 522 (80}
15 . 02025 671(51) .03599 940(48) | .05914 545 (98) 09093 597 (66)

I
16 | .01375 396(77) .02511 635(89%) | 04238 011(41) 06688 158(206)
17 | .00928 324(43) .01739 618(25)| .03010 907(97) 04871 597(63)
18 | 00623 219(51) .01197 000(23) | .02122 648(63) L3517 353(94)
19 | .00416 363(30} .00818 734(10) | .01485 964(77) 02519 289 (50)
20 & 00276 939(57) .00556 968(23) | .01033 605 (07) 01791 240(37)
21 | .00183 461(59) .00377 015(01): .00714 742(96) 012656 042(13)
22 | 00121 087(33) .00264 041(40); .00491 586(73) .00887 897 (75}
23 | 00079 647(86) .00170 458(70)1 .00336 424(63) 00619 629(64)
24 1 00052 225(81) .00113 935(12)| .00229 179(12) 00430 131(09)
25 i 00034 145 (46) .00075 880(38}| .00155 455(79) 00297 118(41)

\
26 | .00022 264(24) .00050 366(86)| .00105 029(97y  .00204 298(97)
27 | .00014 480(76) .00033 340(23)| .00070 698(65) 00139 889(00)
28 | .00009 396(27) .00021 987(94) | .00047 424(85) 00095 385(41)
29 | .00006 083(69) .00014 468(69)| .00031 T09(81) .00064 804 (12)
30 1 00003 930(84) .00009 495(08) | .00021 137(85) 00043 871(26)
40 | .00000 045(34) .00000 125(87) | .00000 320(16) ..00000 759(84)
50 | 00000 000(47) .00000 001(44) | .00000 004(09) .00000 010(77)
60 ¢ 00000 000(00) .00000 000(02) | .00000 000(05) 00000 000(13)
70 | .00000 000(00) .00000 000(00) | .00000 000(00) 000090 000(00)




TABLE VIII

VALUES OF THE PEARSON FROBABILITY, P
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7n=11 n=12 n=13 n=—14
99982 T88(44) .99994 961(00)  .99998 583(51)  .99999 616(52)
.99634 015(31) .99849 588(16)  .99940 581(51)  .99977 374(98)
98142 406(38) .99072 588(63) | .99554 401(93)  .99793 431(73)
04734 698(27) 96891 T02(37) | 983438 63%(15)  .99119 138(63)
89117 801(89) .93116 661(10) .95797 896(18)  .97519 313(39)
81526 324(46) 87336 425(39) 1 91608 205(80)  .94615 296(01)
72544 495(35) .79908 350(16) i .85761 355(34)  .90215 156(16)
62883 693(51) .71330 382(93): .78513 038(69)  .84360 027(48)
53210 357(63) .62189 233(10) | 70293 043(47)  .77294 353(83)
44049 328(51) .53038 T14(13) | .61596 065(48)  .69393 435(82)
36751 800(24) 44326 327(82) | 52891 868(64)  .61081 761(97)
28505 650(03) .36364 322(05) | .44567 964(13)  .52764 385(54)
22367 181(68) .29332 540(93) | .26904 068(36)  .44781 167 (41}
7299 160(79) .23299 347(74)'| .30070 827(62)  .37384 397(66)
13206 185(63) .18249 692(96) | .24143 645(10)  .306735 277(37)
09963 240(69) .14113 086(91) | .19123 607(53)  .24912 983(01)
07436 397(98) .10787 558(68) | .14959 T31(00)  .19930 407(58)
05496 364(15) .08158 061(36) | .11569 052(09) -.15751 946(23)
04026 268(23) 06109 350(92) | .08852 B844(83)  .12310 366(09)
02925 268(81) .04534 067(37) | .06708 596(29)  .00521 025(54)
02109 356(56) .03337 105(44) | 05038 045(10)  .07292 862(65)
01510 460(07) 02437 324(38) | .03751 981(41)  .05536 177(64)
01074 657(84) .01767 510(94) | 02772 594(22)  .04167 626(37)
00760 039(07) .01273 320(34) | .02034 102(96) .03113 005(98)
00534 550(55) 00911 668(47) | 01482 287(47) .02308 373(18)
00374 018(59) .00648 991(72) | .01073 388(99)  .01700 083(68)
00260 434(03) .00459 532(06) | 00772 719(57)  .01244 118(45)
00180 524(88) .00323 733(11) | .00553 204(96)  .00904 981(79)
00124 604(48) .00226 996(07) | .00393 999(04)  .00654 593(03)
00085 664(12) .00158 458(60) | 00279 242(92)  .00470 969(53)
.00001 694(26) .00003 577(50) | .00007 190(68) .00013 823(54)
00000 026(69) .00000 062(59) | .00000 139(71)  .00000 298(14)
.00000 000(36) .00000 000(93) | .00000 002(26) .00000 005(25)
00000 000(00) .00000 000(01) | .00000 000{03) .00000 000(08)
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TABLE VIII

VALUES OF THE PEARSON PROBABILITY, P

>
]

|

fary
QWL g OB

o
b =i

2t
e T

n=15

n =16

n=17

n=18

99999 899(76)
99991 675(88)
99907 400(81)
99546 619 (45)
98581 268 (80)

96649 146(48)
.93471 190(33)
.88932 602(14)
.83105 057(86)
76218 346 (30)

68603 593(02)
.60630 278(23)
52652 362(26)
44971 105(59)
37815 469(44)

.31337 429(98)
25617 786(12)
.20678 083(99)
16494 924(43)
.13014 142(10)

10163 250(05)
07861 437(21)
08026 972(28)
04582 230(72)
08456 T39(39)

.02h88 631 (53)
.01925 362(03)
01422 795 (80)
.01045 035 (87)
00763 189 (92)

.00025 512(04)
00000 610(63)
.00000 018(95)
-00000 000(19)

99999 974(64)
299997 034(49)
29959 780(14)
99773 734(40)
99212 641(19)

97974 TT4(76)
95764 974(76)
92378 270(28)
B7751 745 (11)
81973 990(96)

15259 437(02)
67902 905(67)
60229 793 (88)
52552 912 (95)
45141 720(81)

38205 162(82)
31886 440(74)
26266 556(05)
21373 388(26)
17193 268 (88)

13682 931(99)
10780 390 (86)
08412 984 (45)
06509 348(69)
04994 843 (T5)

03802 267 (61)
02873 644(02)
02156 902 (04)
01608 463 (15)
01192 148(60)

00045 339(40)
00001 204 (12)
.00000 025(22)
,00000 000 (37)

99999
99998
99983
09890
99575

98809
G7326
.94886
91341
86662

80943
74397
B7275
59871
52463

46296
.38559
32389
26866
.22022

17851
14319
.11373
08950
06982

.05402
.04148
03161
02393
01800

00077
00002
00000
00000

993 (78)
975 (08)
043 (43)
328 (10)
330 (45)

549(63)
107 (83)
638 (40)
352 (82)
832(59)

528 (25)
976(03)
778 (02)
383 (57)
852 (65)

084(21)
710 (17)
696 (44)
318(18)
064 (68)

057 (49)
153 (47)
450 (53)
449 (75)
546 (38)

824 (82)
315 (34)
977 (49)
612(18)
219 (20)

858 (80)
292 (48)
059(55)
001 (00)

99999 998(51)
99999 655(76)
.99993 049(82)
99948 293 (27)
99777 083(79)

-99318 566(26)
.98354 890(12)
96654 676(94)
94026 179(87)
90361 027(73)

.85656 398(72)
.80013 721(78)
78618 603 (49)
66710 193(89)
59548 164(24)

52383 487(84)
.45436 611(65)
.38884 087(72)
328563 216(3H)
27422 926 (67)

22629 029 (06)
18471 903(57)
14925 (66(84)
.11943 497 (03)
.09470 961(38)

.07446 053 (08)
05806 790(06)
.04493 819(83)
03452 612(06)
02634 506 (73)

00129 409 (44)
00004 224(03)
.00000 105(09)
00000 002(16)




TABLE VIII

VALUES OF THE PEARSON PROBABILITY, P

409

™
)

DO bk b bk hk ek ek ek ik ek
SWOO-1H AWK OPOEO-10 TN - [

n=19 r =20 n=21 n =22
99999 999(66) .99999 999(92) |.99999 999 (9IR) .99999 999 (99)
99999 887(48) .99999 964 (15} |.99999 988(85) 99999 996 (61)
99997 226(42) 99998 920(94) |.95999 590(25) 99999 847(96)
99976 255(27) .99989 565(95) |.99995 360(19) 9998 012(83)
99885 974(71) .99943 096(52) |.99972 264(79) 99986 783(83)
.99619 700(81) .99792 845(61) |[.99889 751(20) 99942 618(03)
99012 634(23) 99421 325(85) |.99668 505(61) 99814 223 (22)
07863 656(58) 98667 098 (89) |.99186 TT6(69)  .99514 434(45)
95974 268(74) 97347 939(45) [.98290 726 (70) 08921 404(51)
.93190 636(b3) .95294 BT8(T7) |.96817 194(28) 97891 184(58)
.89435 667(78) .92383 844(53) |.94622 253(05)  .96278 681(57)
B4723 749(88) .88562 538 (15) |.91607 598(28)  .93961 T8Z(44)
JT9157 303(88) .B3857 104 (69) | .87738 404(94)  .90862 395(00)
J72909 126(79) .78369 131(12) |.83049 593(74) 86959 927(03)
66196 T11(92) .72259 731 (97) |.77640 T61(31) 82295 180(17)
59254 T38(44) .65727 T93(65) | 71662 431(09)  .76965 103(81)
52310 504(49) .58986 T8Z(4b) | .65297 365(78)  .71110 620(38)
.4b565 260(45) .52243 827(24) | 58740 824(45) .64900 422 (58)
39182 348(26) .45683 612(43) | .52182 602(24)  .58514 008(51)
33281 967(91) .89457 818(17) | .45792 971(48) 52126 125(02)
27941 304(74) 33680 090(00) | .39713 259(87)  .45894 420(52)
23198 513(32) .28425 625(90) | .34051 068(25)  .39950 988(60)
19059 013(01) .23734 178(30) | 28879 4563(95) .34397 839(55)
15502 T78(29) (19615 235(87) | .24239 216(34) .29305 853(34)
12491 619(79) .16054 222(60) |.20143 110(65) 24716 408(41)
09975 791(41) .13018 901(46) !.16581 187(60)  .20644 904 (49)
07899 549(06) .10485 316(12) |.13526 399(63)  .17085 326(84)
06205 545(45) .08342 860(90) | .10939 984(50)  .14015 131(95)
04837 906(72) .06598 513(15) | .08775 938(83) .11400 151(65)
03744 649(10) .05179 B44(62) | .06985 365(61)  .09198 T99(17)
00208 725(70) .00327 221(30) |.00499 541(03) .00743 667(32)
00007 548(26)  .00013 106(12) | 00022 147(66)  .00036 480(05)
00000 211(82) .00000 386(98) | .00000 719(39) 00001 277(17)
00000 004(52) .00000 009(19) | .00000 018(21)  .00000 035(14)
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TABLE VIII

VALUES OF THE PEARSON PROBABILITY, P

X2 n =23 n =24 n=25 n = 26

1 | 99999 999(99) .99999 099(99) | .99999 999(99)  .99999 999(99)
2 | 99999 998(99) .99999 999(70) | 99999 999(91)  .99999 999(97)
3 | 99999 944(83) .09999 980(39)| .99999 993(18)  .99999 997(66)
4 | 90999 169(18) .99999 659(85)| .00999 863(54)  .99999 946 (29}
5 | 99993 837(31) .99997 185(62)| 99998 740(15)  .99999 446(87)
6 | .00970 766(32) .99985 410(16)| .99992 861(35)  .99996 573(32)
7 | 99898 060(60) .99945 189(02)| .99971 100(82)  .99985 048(17)
8 | 99716 023(86) .99837 228(95)1 .99908 477(06)  .99949 505(30)
9 | .99333 182(78) .99595 T46(68) | .99759 571(63)  .99859 619(71)
10 | .08630 473(15) .99127 663(54)| .99454 690(82)  .99665 263 (08)
11 | 97474 874(95) .98318 834(31)! .98901 185(90)  .99294 559(53)
12 | 95737 907(62) .97047 067(75) | .97990 B03(63)  .98656 781(82)
13 | ‘93316 120(99) .95199 003(28)| .96612 044(11)  .97650 129(70)
14 || 190147 920(61) .92687 124(27)) 94665 037(70)  .96173 244(31)
15 | .86223 798(36) .89463 357(45)| .92075 868(07)  .94138 255(68)
16 | .81588 585(21) .85526 863(92)| .88807 606(39)  .91482 870(95)
17 | ;76336 197(88) .80925 155(83)| .84866 204(50)  .88179 377(69)
18 | 70598 832(06) .75748 932(86)| .80300 838(29)  .84239 0T71(34)
10 | 64532 843(52) .70122 462(06)| .75198 960(99)  .79712 054(12)
20 | 58303 975(06) .64191 179(15) 69677 G14(68)  .74682 530(56)
21 | 52078 812(75) .58108 751(03)i .63872 522(33)  .69260 965(84)
22 | .45988 878(67) .52025 178(10), .57926 689(09)  .63574 402(83)
23 | 40172 961(04) .46077 087(5T)| 51979 809(34)  .57756 335(59)
24 | 34722 942(00) .40380 844(65)| .46159 T33(63)  .51937 357(32)
o5 | 29707 473(13) .35028 534(37) | .40576 068(10)  .46237 366(94)
96 | 25168 202(65) .30086 622(54)' .35316 493(16)  .40759 869 (02)
97 | 21122 647(90) .25596 769(19) | .30445 316(24)  .35688 462(38)
28 | 17568 199(16) .21578 160(01) | .26004 108(74)  .30785 324(61)
29 | 14486 085(38) .18030 985(77)| .22013 096(75)  .26391 602(70)
20 | 711846 440(38) .14940 162(81) | .18475 178(70)  .22428 897(99)
40 | 01081 171(68) .01536 897(83); .02138 681(95)  .02916 429(15)
50 | 00058 646(16) .00092 132(26) | .00141 597(28)  .00213 115(34)
60 1| .00002 242(10) .00003 820(56) | 00006 394(92)  .00010 455(49)
70 | .00000 066{14) .00000 121(61) 00000 218(65) .00000 384(79)




VALUES

TABLE VIII

OF THE PEARSON PROBABILITY, P

E3

—
=R e s Rt L Ll

b pk ek ek ek
b CO O =

DO bkl
[=R=Rr RN o

COMDDI NN BRI DO MDD
QW1 Tk @)

o1 o o b
=338

|

99999
-59999
99999
99999
99999

99998
99992
99972

| 99919

99798

| 99554

99117
98397
97300
85733

.53620
90908
87577
83642
.79155

68869
63294
57596
61897

46310
40933
35846
.81108
26761

03901

00016
00000

n=27

999 (99)
999 (99)
999(22)
979(27)
771(58)

385(11)
404(22)
628 (29)
486 (20)
114(85)

911(75)
251(63)
335(80)
022 (67)
413(26)

287 (18)
299 (53)
342(96)
970 (66)
647 (69)

74196 393(21)

681 (98)
705(64)
525(26)
521(19)

474 (55)
318(11)
003 (26)
235 (48)
101(60)

199(08)

00314 412 (10)

T776(98)
663 (45)

.99999 999 (99)
.99999 999 (99)
99999 999 (74)
.99999 992 (12)
99999 899 (13)

99999 252(42)
.99996 208 (73)
99985 433 (73)
99954 613 (99)
.99880 302 (90)

99723 878(63)
99429 444 (57)
98924 715 (43)
98125 471 (54)
96943 194 (61)

95294 T15(46)
03112 248(54)
90351 971 (04)
87000 144(09)
83075 611(€9)

78628 B826(28)

73737 720 (58)
68501 2453 (77)
63031 609 (48)
B7446 199 (b3)

51860 045(386)
46379 491(03)
A1097 348 (97)
136089 918(32)
31415 380(21)

05123 679 (26)
00455 081 (48)
00026 379(32)
00401 121(69)

411

n =29 n=230
.99999 999(99) 299999 999 (99)
99999 999(99) .99999 999(99)
99999 999(92) 99999 9959(97)
99999 997(07) .99999 998(91)
99999 968(01) .99999 9832(88)
99999 659(32) 99999 847(85)
99998 139(75) .99999 102(21)
299992 367(13) .89996 079(19)
09974 841(25) .99986 278(76)
.99930 201(01) 99959 947(28)
99831 488(07)  .99898 T86(41)
99637 150(71) 99772 850(24)
.99289 981(64) 99538 404 (86)
S8T18 860(74) 99137 737(52)
97843 534(91)  .98501 494 (02)
96581 936(89) 97553 b86(27)
94858 895(5h4) 96218 130(1M)
92614 928(12) 94427 237(51)
89813 593(12) 92128 799(99)
B6446 442(32) .89292 T08(80)
82534 904 (31) 85914 939(956)
78129 137(50)  .B2018 942(45)
73304 036{98) 7654 313(69)
68153 563(69)  .72893 166(96)
62783 533(79) 67824 T48(16)
57304 455(93)  .62549 104(05)
51824 704 (67) ST170 519(67)
46444 966(66) 51791 300(14)
41252 813 (30) 46506 627(69)
.36321 781(87) 41400 360(46)
06612 T63(88)  .08393 679(44)
00646 T4B(31) 00903 166(94)
.00040 735(59)  .00061 765(60)
00001 86100  .00003 032(18)




412 TABLE IX

COEFFICIENTS IFOR FITTING STRAIGHT LINES TO DATA

(The numbers in parentheses denote the number of ciphers between the
decimal point and the first significant figure.)

|
P A | B { C
e o e . .
2 5.000 0000 000 } —  3.000 0000 009 2.000 0000 000
3 2,333 3333 233 | —  1.000 0000 000 500 0000 000
4 1.500 0000 000 —  .5000 0000 000 200 0000 000
b 1.100 00060 Q00 - ~300 0000 000 .100 0000 000
6 866 6666 667 - 200 0000 000 (1) 571 4285 714
7 Si14 2857 143 - 142 B5T71 429 .(1) 357 1428 571
8 .607 1428 571 - 107 1428 571 .(1) 238 0952 881
9 527 TTTT T8 —. (1) 833 3333 333 (1) 166 6666 667
10 466 6666 667 — (1) 666 6666 667 (1) 121 2121 212
11 .418 1818 182 — (1} 545 4545 455 (2) 909 0909 091
12 .378 7878 788 —. (1) 454 5454 545 .(2) 699 3006 993
13 346 1538 462 — (1) 384 6153 846 {(2) 549 4505 495
14 318 6813 187 - (1) 329 6703 297 .(2) 439 5604 396
15 295 2380 952 —(1) 285 7142 857 .(2) 357 1428 571
16 275 0000 000 —(1) 250 0000 000 L(2) 294 1176 471
7 257 3529 412 —.{1) 220 bg’2 353 .(2) 245 0980 392
18 241 8300 654 —{1) 196 0784 314 .(2; 2006 3983 488
19 228 0701 754 — (1) 175 4385 965 (2) 175 4385 965
20 215 7894 737 —{1) 157 8947 368 .{2) 150 3759 398
21 204 7619 048 — (1) 142 8571 429 (2) 129 8701 299
22 194 2051 948 — (1) 129 8701 299 {2) 112 9305 477
23 185 7707 510 ~{1) 118 5770 751 .(3) 988 1422 925
24 77 5362 319 | —(1) 108 6956 522 .{3) 869 5652 174
26 | 170 6000 000 —.(1) 100 0000 000 | .(3) 769 2307 692
26 ! 163 0769 231 | —.(2) 923 0769 231 | .(3) 683 7606 838
27 | 156 6951 567 . —.(2) 854 7008 b47 i .(3) 610 5006 105
28 | 150 7936 H0B ‘ —.(2) 793 6507 937 | .(83) 547 2453 749
29 145 3201 970 | —.(2) 738 9162 562 ‘ {3) 492 6108 374
30 .140 2298 851 ; —(2) 689 6501 724 | L(3) 444 9388 209
31 ! .135 4838 710 | —.(2) 645 1612 903 | .(3) 403 2258 065
32 .131 0483 871 —.(2) 604 8387 097 I .(3) 3066 5689 150
33 126 8939 394 \ —.{2) 568 1818 182 .(3) 334 2245 989
34 122 9946 524 - —.(2) bh34 7593 583 A3) 305 5767 762
35 119 3277 311 7 —(2) 504 2016 807 .(3) 280 1120 448
36 115 8730 159 I —.(2) 476 1904 762 .(3) 257 4002 574
37 112 6126 126 ¢ —.(2) 450 4504 506 (3) 237 0791 844
38 100 5305 832 1 —.(2) 426 7425 320 .{8) 218 8428 241
39 106 6126 856 | —.(2) 404 8582 996 (3) 202 4291 498
40 .103 8461 538 | —.(2).384 6153 846 (3) 187 6172 608
41 101 2195 122 | —.(2) 365 8536 586 .(3) 174 2160 279
42 (1) 987 2241 580 —.(2) 348 4320 557 .(3) 162 0614 213
43 (1) 963 4551 495 | —.(2) 382 2259 136 .(3) 151 0117 789
44 (1) 940 8033 827  —(2) 317 1247 357 .(3) 140 9443 270
45 (1) 919 1919 192 | —(2) 303 0303 030 .(3) 131 7523 0567
46 .(1) 898 5507 246 —(2) 289 8550 72b .(3) 123 3425 840
47 .(1) 378 8159 112 —.(2) 277 5208 141 .{3) 115 6336 725
48 (1) 859 9290 780 | —(2) 265 9574 468 .(3) 108 5540 599
49 (1) 841 8367 347 —.(2) 255 1020 408 .(3) 102 0408 163
50 .{1) 824 4897 959 [ —(2) 244 8979 592 .{4) 960 3841 537




TABLE X 413
COEFFICIENTS FOR FITTING STRAIGHT LINES TO DATA
(The numbers in parentheses denote the number of ciphers between the
decimal point and the first significant figure.)
| |

P } 4 B i ¢

51 .(1) 807 8431 373 ~(2) 235 2941 176 .(4) 904 9773 756
52 (1) 791 8552 036 ' —.(2) 226 2443 430 .(4) 853 7522 411
53 (1) 776 4876 633 | -.(2) 217 7068 215 .(4) 806 3215 610
54 | (1) 761 7051 013 . —(2) 209 6436 059 .(4) 762 3403 843
55 (1) 747 4747 475 . ~.(2) 202 0202 020 .(4) 721 5007 215
56 .(1) 733 7662 338 I —.(2) 194 8051 948 .(4) 683 5269 993
57 (1) 720 5518 784 | —.(2) 187 9699 248 .(4) 648 1721 545
58 (1) 707 8039 927 —(2) 181 4882 038 .(4) 615 2142 484
59 .{1) 695 4997 078 ‘ —(2) 175 3360 608 .(4) 584 4535 359
60 -(1) 683 6158 192 i —(2) 169 4915 254 .(4) 555 7099 194
61 (1) 672 1311 475 —{2) 163 9344 262 .{(4) 528 8207 298
62 .{1) 661 0259 122 — (2} 158 6462 189 .(4) 503 6387 903
63 {1} 650 2816 180 - (2) 153 6098 310 .(4) 480 0307 220
64 .(1) 639 8809 524 ~.(2) 148 8095 238 .(4) 457 8754 BK79
65 (1) 629 8076 923 —(2) 144 2307 692 .(4) 437 6629 371
66 .(1) 620 0466 200 - (2) 139 8601 299 .{(4) 417 4929 548
67 .(1) 610 5834 464 ‘ —{2) 135 6852 103 .(4) 399 0741 480
68 -(1) 601 4047 410 | —.(2) 131 6944 688 .{4) 381 7230 981
69 -(1) 592 4978 687 | —.(2) 127 8772 379 .(4) 365 3635 367
70 -(1) 583 8509 317 : —.(2) 124 2236 025 -(4) 349 9256 408

J i

71 (1) 575 4527 162 f—(2) 120 7243 461 ; .(4) 335 3454 058
72 -(1) 567 2926 448 | _ (2) 117 3708 920 | .{4) 321 5640 877
73 -(1) 559 3607 306  — (2) 114 1552 511 | .(4) 308 5277 058
T4 .(1) 551 6475 379 —(2) 111 0699 741 ' .(4) 296 1865 976
75 A1) 544 1441 441 —(2) 108 1081 081 @ .(4) 284 4950 213
76 .(1) 536 8421 053 —{(2) 105 2631 579 .(4) 2793 4107 997
77 A1) 529 7334 245 —(2) 102 5290 499 {4} 262 8949 997
78 .{(1) 522 8105 228 —(3) 999 0009 990 .(4) 252 9116 458
79 (1} 516 0662 123 —(3) 973 7098 345 .(4) 243 4274 586
20 .(1) 509 4936 709 —{3) 949 3670 886 {4} 234 4116 268
81 -(1) 503 0864 198 | —.(3) 925 9259 259 .(4) 225 8355 917
82 .(1) 496 8383 017 | —(3) 903 3423 668 .(4) 217 6728 596
83 {1} 490 7434 617 | —.(3) 881 5750 808 .(4) 209 8988 288
84 (1) 484 7963 282 | —(3) 860 5851 979 .(4) 202 4906 348
86 (1) 478 9915 966 —.(3) 840 3361 345 .(4) 195 4270 080
86 (1) 473 3242 134 ~.(3) 820 7934 337 .(4) 188 6881 457
87 .{1) 467 7893 611 —(3) 801 9246 151 .(4) 182 2555 952
88 .{1) 462 3824 451 —{3) 783 6990 598 .(4) 176 1121 482
89 (1) 457 0990 807 —(3) 766 0878 447 .(4) 170 2417 433
90 .(1) 451 9350 811 -~ (3) 749 0636 704 .(4) 164 6293 781
91 (1) 446 8864 469 —(3) 732 6007 326 .(4) 159 2610 288
92 (1) 441 9493 550 —{3) 716 6746 297 .(4) 154 1235 768
93 (1) 437 1201 498 —(3) 701 2622 721 .{4) 149 2047 387
94 .(1) 432 3853 329 ~.(3) 686 3417 982 {4) 144 4930 102
95 (1) 427 7715 566 . —(3) 671 8924 972 .(4) 189 9776 036
96 (1) 423 2456 140 © —.(3) 657 8947 268 .(4) 185 6483 993
97§ .(1) 418 8144 330 . —.(3) 644 3208 949 : .(4) 131 4958 973
98 (1) 414 4750 681 - (3) 631 1803 072 : .(4) 127 5111 732
99 (1) 410 2246 959 —(3) 618 4291 899 : .(4) 123 6858 380
100 {1} 406 0606 061 —(3) 606 0606 061 + .(4) 120 0120 012
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TABLE X

COEFFICIENTS FOR FITTING PARABOLAS TO DATA

(The numbers in parentheses denote the number of ciphers between
decimal point and the first significant figure.)

the

! |
P A | B | C
. |
3 19.000 0000 00 | - 21.000 0000 000 |  5.000 0000 000
4 7.750 0000 00 ] — 6950 0000 000 :  1.250 0000 000
5 4.600 0000 00 — 3.300 0000 000 | 500 0000 000
6 3.200 0000 00 1 — 1.950 0000 000 | 950 0000 000
7 2.428 5714 29 | — 1285 7142 860 l 142 8571 429
8 1946 4285 71 | - 910 7142 857 | (1)892 8571 429
9 1.619 0476 19 | - 678 5714 286 ' .(1)595 2380 952
10 1.383 3333 33 . -  .525 0000 000 l [(1)416 6666 667
|
11 1.206 0606 061 | — .418 1818 182 ! .(1)303 0303 030
12 1.068 1818 182 | — .340 9090 909 | .(1)227 2727 273
13 958 0419 580 © - .283 2167 832 | .(1)174 8251 748
14 868 1318 681 | —  .239 0109 890 | .(1)137 3626 374
15 1793 4065 934 | — 204 3956 044 | .(1)109 8901 099
16 730 8571 429 | — 176 7857 143 | .(2)892 8571 429
17 676 4705 882 | — 154 4117 647 | .(2)735 2941 176
18 629 0019 608 | - .136 0294 118 | .(2)612 7450 980
19 ‘589 2672 859 -~  .120 7430 341 | .(2)515 9958 720
20 553 5087 719 . —  .107 8947 268 | .(2)438 5964 912
21 521 8045 113 | —.(1)969 9248 120 | .(2)375 9398 496
29 493 5064 935  —.(1)876 6233 566 | .(2)324 6753 247
23 468 0971 203, —(1)796 1603 614 : .(2)282 3263 693
24 445 1581 028 | —(1)726 2845 850 | .(2)247 0355 731
25 424 3478 261 | —.(1)665 2173 913 | .(2)217 3913 043
26 405 3846 154 | —.(1)611 5384 615 | .(2)192 3076 923
27 ‘988 0341 880 - - (1)564 1025 641  .(2)170 9401 709
28 872 1001 221 | —(1)521 9780 220 © .(2)152 6251 526
29 357 4165 208 | —.(1)484 4006 568 | .(2)136 8363 437
30 343 8423 645  ~.(1)450 7389 163 | .(2)123 1527 094
31 391 9560 522 | —.(1)420 4671 857 | .(2)111 2347 052
32 ‘310 5564 516  —.(1)393 1451 613 | .(2)100 8064 516
33 308 6510 264  ~.(1)368 4017 595 | .(3)916 4222 874
34 208 4625 668 | —(1)345 9224 589 | .(3)835 5614 973
35 288 9228 419 —.(1)325 4392 666 | .(3)763 9419 404
36 979 9719 888 ' —(1)306 7226 891 | .(3)700 2801 120
37 271 5572 716 | —.(1)289 5752 896 ‘ -(3)643 5006 435
28 263 6320 531  ~.(1)273 8264 580 | .(3)592 6979 611
39 056 1549 404 | —.(1)259 3281 541 | .(3)547 1058 103
40 249 0890 688 . —.(1)245 9514 170 | .(3)506 0728 745
. |
41 242 4015 009 | —.(1)233 5834 897 | .(3)469 0431 520
42 936 0627 178 & —(1)222 1254 365 | .(3)435 5400 697
43 230 0461 874 | —.(1)211 4901 548 & .(3)405 1535 532
44 324 3279 976 —(1)201 6007 248 | .(3)377 5294 473
45 218 8865 398 | —.(1)192 3890 063 | .(3)352 3608 175
46 913 7022 308 |, _.(1)183 7944 664 | .(3)329 3807 642
a7 208 7573 235 | ~.(1)175 7631 822 | .(3)308 3564 601
48 204 0356 152 | — (1)168 2469 935 ’ (3)289 0841 813
49 ‘199 5223 621 | —.(1)161 2027 790 | .(3)271 3851 498
50 195 2040 816 | -.(1)154 5918 367 | .(3)255 1020 408
| 1




COEFFICIENTS FOR FITTING PARABOLAS TO DATA

TABLE XI

415

{The numbers in parentheses denote the number of ciphers between the

decimal point and the first significant figure.)

D

24.500 0000
6.450 0000
2.671 4285
1.569 6428

197 6190
505 9523
541 3419
241 2878

176 9230

133 6163

103 3966
.(1)816 6208
.{1)656 2702
.(1)535 3641
.(1)442 4664
.{1)369 9045
.(1)312 3986
.(1)266 2337

.(1)228 7437
.(1)197 9813
.(1)172 5014
.(1)1b1 2161
.{1)133 2061
.(1)118 1013
.(1)105 1324
-(2)939 9604
.(2)843 7946
.(2)760 3190

{2)687 B063
.(2)623 7062
{2)567 5657
.{2)517 9685
.(2)473 9881
.{2)434 8510
.(2)3992 9082
.(2)368 6125
.(2)340 4999
.(2)315 1758

(2)292 3027
A(2)271 5910
.(2)252 7912
.(2)235 6878
.(2)220 0934
(2)205 8454
.(2)192 8014
.(2)180 8369
.(2)169 8424
.(2)168 7215

000
000
710
670
476
810
913
788

769
836
034
791
004
457
603
408
437
662

962
665
116
751
724
431
155
227
925
052

202
274
360
511
210
386
946
397
746
383

058
012
624
040
979
573
499
046
050
809

bl
e i
o0
pG

Y974

yryprprrl

© e .
N | A A, s, o, N~ o~ o, o, g, fn, o . o

y483

COCOTOTO QOO COCOEY RO DODO O DO DO DO BO DS = i ot ek et
g
[u—y
o0
&2

~(4)722

—.(4)654
—.(4)593
—-.(4)540
—{4)492
— (4)449
—.(4)411
—-(4)877
—-.{4)346
—(4)319
~.{4)294

0000
0000
5714
5000
3809
7142
6753
3383

8601
0259
3006
1098
8474
6190
1981
8235
4273
6172

7126
6883
5832
0820
0917
0879
6693
2503
8445
9113

2449
8937
1609
2602
8824
5705
0009
0469
6426
9612

47838
9182
2047
4297
8223
7259
5793
9010
2766
3485

000
000
286
000
524
357
247
333

399
740
993
901
467
476
424
294
920
249

512
117
863
918
874
121
192
053
363
301

136
381
636
496
768
440
900
417
492
493

167
768
876
139
202
5562
389
176
468
086

|
!

|

F

1.500
250
(1)714
.(1)267
(1)119
.(2)595
.{2)324
.(2)189

.(2)116
.(3)749
-(3)499
.(3)343
.(3)242
(3)175
-(3)128
-(4) 967
(4)737
. (4) 569

.(4) 445
.(4)352
.(4)282
.(4)228
.(4)185
.(4)152
(4)126
-(4)105
.(5)882
L(5)744

.(5)632
.(5)539
.(5)462
.(5)397
.(5)344
.(5)298
.(5)260
.(5)227
.(5)200
.(5)1786

.{5)155
.(5)138
.(5)122
{5109
.(6)977
.(6)876
.(6)786
.(6)707
.(6)638
.(8)577

00060
0000
2857
8571
0476
2380
6753
3939

5501
2507
5004
4065
4046
0700
9989
4922
1369
6058

7784
9079
3263
0328
8045
6251
5104
2687
8151
8762

0153
0719
0616
8864
1179
8393
5265
9607
1606
3320

8282
1205
7738
4288
8746
0126
6236
9612
5532
1539

000
000
143
429
190
952
247
394

166
493
995
934
542
280
680
601
600
328

778
616
693
367
336
526
711
260
209
582

706
338
675
273
912
081
763
543
623
120

397
295
040
253
091
706
226
604
0237
285




416 TABLE XI

Values of Area I () Under “Student’s” Frequency Curve

T

[S13

n=1 n—=2=2 n=3a n=—=4 n—

03172 552 03526 728 A03667 383 03742 208 03788 487
.06283 296 07001 400 07286 484 07438 149 07531 974
09277 358 10375 717 .10811 835 11043 929 11187 548
12111 894 13608 276 14208 242 14520 137 14716 344
147568 362 16666 667 A7427 602 17833 502 .18085 056

17202 087 19528 337 20459 940 20957 942 ] 21266 986
19440 011 22180 349 .23283 650 23874 992 24242 553
21477 671 .24618 298 25890 052 26573 643 26959 297
23326 229 26844 749 28277 448 29049 724 29531 440
425000 000 28867 514 50449 889 31304 952 31839 127

26514 617 30698 006 32415 840 AR345 818 33927 459
278856 794 .32349 832 34186 894 35182 430 356806 447
29128 560 53837 648 S5T76 624 36827 420 37484 368
.30256 846 36176 324 37199 633 38294 969 .38979 806
31283 296 36380 344 38470 807 39600 000 40304 B16

52219 232 37463 432 S9604 762 A0757 h43 41475 238
33074 697 38438 329 | 40615 468 41782 253 42506 161
.33868 653 39316 683 { 41516 004 42688 081 43412 121

34578 589 40109 031 A23518 423 -43488 057 .44206 835

|
.35241 638 40824 829 ‘ .43033 702 44194 174 { 44903 026
35853 697 41472 507 ‘: A3671 740 44817 336 f 45512 338
36420 025 42059 551 ‘ 44241 402 45367 366 | .46045 305
.36945 241 42592 593 i AATHR0 582 45853 048 ) 46511 377
37433 408 A3077 489 ¢ 45206 276 46282 184 1 AG6918 960

[ !

|

37888 106 43519 414 45614 668 ] 46661 673 47275 495

38312 494 43922 930 A5981 209 l 46997 592 ATH8T LT
38709 368 .44292 063 46310 698 47295 284 47860 797
39081 209 44630 370 46607 3565 AT5h9 422 48100 319
.39430 219 .44540 990 46874 888 47794 103 48310 465
39758 362 A5226 702 | 47116 556 48002 902 48495 038

40067 391 45489 963 ; 47335 223 48188 944 48657 341
403568 875 456732 956 A7533 408 48354 960 48800 241
40634 223 45957 616 ATT18 327 .48503 329 .48926 225
40834 709 46165 663 AT876 934 48636 134 49037 448
41141 447 .46358 632 .48025 948 48755 192 49135 778

41375 494 46537 892 .48161 890 48862 093 49222 837
41597 774 .46704 665 48286 101 48958 229 .49300 030
41809 132 46860 044 48399 771 49044 817 .49368 576
42010 536 47005 013 48503 951 49122 927 .49429 535
42202 087 47140 452 ABbDY 57T 49193 495 49483 829

.42385 022 AT267 155 48687 479 49257 348 49532 259
42559 723 .47385 837 48768 396 49315 209 49575 522
42726 726 47497 142 48842 987 49367 719 49614 228
.42886 519 47601 655 48911 839 49415 441 49648 506
.43039 551 47699 905 48975 479 49458 872 .49680 023

43186 237 47792 369 .49034 378 49498 455 49707 984
43326 956 AT879 484 49088 956 49534 580 49733 144
43462 062 AT961 646 49139 594 49567 592 49755 B17
435691 877 48039 216 A9186 633 49597 800 49776 277
43716 704 [ .48112 522 49230 378 49625 478 49794 764

LRI RN OVOA: NEWNNH DO AN DIDAID MR SO m Uk bo
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TABLE XI 417
Values of Area I, (t) Under “Student’s” Frequency Curve

Ll

n=—1 n=—2 n—3 n—=4 n—25

|

NN APSSD SHNDHR DUUTT GTmoo

Bl ho]m Timioboi- OO0 SALNM S am MARNE OO ek Dbkiao, telobH

SProow LEPOO VPRPEX PWXPENE 03122

-t

43836 820 48181 867 49271 107 49650 870 A9811 492
43952 485 48247 525 49309 071 49674 193 49826 648
44063 937 48300 749 49344 494 49695 641 49840 397
44171 402 48368 770 49377 5HB2 .49715 390 .49862 887
44275 08b 48424 B0 49408 520 49733 594 49864 246

44375 182 48478 035 49437 478 49750 393 49874 590
44471 874 .48528 656 49464 607 49765 913 49884 020
445656 329 48576 828 49490 049 49784 267 49892 626
44655 707 48622 704 .49513 929 49793 556 49900 496
44743 164 48666 426 49536 364 49805 873 49907 693

44827 811 48708 126 49557 460 49817 300 .49914 285
.44909 807 48747 923 49577 314 49827 911 .49920 330
44989 265 48785 932 49596 014 49837 7756 49925 879
45066 300 48822 266 49613 643 .49846 953 49930 977
45141 021 48856 992 49630 274 498565 500 49935 667

.45213 529 48890 230 49645 976 49863 467 .49939 936
.45283 920 .48922 055 49660 813 49870 900 49943 966
.45352 285 48952 544 49674 842 49877 840 .49947 638
45418 711 48981 771 49688 117 49884 327 49951 028
45483 276 49009 803 49700 687 49890 393 49954 163

.45546 069 49036 704 49712 599 49896 073 49857 062
.45607 132 49062 534 49723 893 49901 393 49959 747
.45666 562 A90BT 348 49734 €10 49906 381 49962 236
45724 416 49111 198 49744 785 49911 062 49964 544
.4b780 754 49134 134 49754 451 49915 456 49966 687

.4b835 634 49156 200 49763 640 .49919 586 .49968 679
45889 114 49177 440 49772 381 49923 469 49970 530
.45941 245 49197 896 49780 700 49927 123 A9972 254
45992 077 49217 602 49788 623 49930 563 49973 859
46041 658 49236 556 49796 171 .49933 805 49975 365

46090 033 49254 913 49803 368 .49936 862 49876 760
46137 246 49272 583 49810 232 49939 746 49978 053
.46183 337 49289 636 49816 782 49942 468 49979 270
.46228 347 49306 100 .49823 039 49945 040 49980 407
.46272 313 49322 003 49829 015 49947 471 49981 471

46315 270 49337 268 49834 728 49949 770 49982 468
46357 252 49352 220 .49840 190 49951 946 49983 401
46398 292 .49366 582 49845 416 .49954 006 49984 275
46438 422 49380 474 49850 419 49955 958 49985 096
46477 671 49393 917 .49855 209 49957 808 49985 867

.46516 068 .49406 930 49859 799 .49959 563 49986 589
46553 640 49419 530 49864 198 49961 228 49987 269
46590 413 49431 735 49868 416 .49962 809 49987 908
.46626 413 .49443 562 49872 462 .49964 311 .49988 509
46661 663 49456 026 49876 345 49965 738 49989 075

46696 187 49466 139 49880 073 49967 095 49989 608
46730 007 49476 918 49883 653 49968 386 49990 110
46763 143 49487 376 49887 094 .49969 615 49990 584
46795 617 49497 b2b 49890 4060 49970 785 .49991 031
46827 4483 49507 377 49893 b80 49971 900 49991 453




418 TABLE XI

Values of Area I,(t) Under “Student’s” Frequency Curve

t n==6 n=—=="17 n=§ n—=y9 n=10

05819 902 03842 603 03859 ThH5 03873 178 03883 964
07595 650 07641 674 07676 450 07703 668 07726 540
.11285 039 11355 516 11408 776 11450 465 11483 970
14849 588 14245 940 .15018 775 15075 795 15121 630
.18256 000 18379 671 18473 196 .18546 435 18605 320

21477 186 21629 368 21744 497 .21834 696 21907 241
24492 837 24674 160 24811 447 24919 048 25006 621
27289 482 27499 906 27669 333 27784 3560 27884 979
29860 238 30098 869 530279 790 30421 734 30536 037
32204 116 32469 214 32670 325 32828 180 32956 343

34326 192 34614 237 .34833 612 .3h005 862 .35144 659
36231 642 .36b41 455 36776 645 .36961 340 B7110 185
37934 741 .38261 662 .38509 819 38704 681 .38861 709
.39447 930 39788 003 40046 031 40248 570 40411 732
40785 963 41135 132 .41399 835 41607 467 ALTT74 634

41964 199 42318 471 42586 695 42796 860 42965 912
42998 017 .43363 612 43622 357 .43832 617 44001 533
43902 37% 44255 836 44522 350 44730 466 44897 388
44691 509 45039 756 ¢ 45301 605 45505 596 45668 877
45378 684 45719 091 .45974 188 46172 359 46330 598

45976 116 46306 497 A665h3 123 46744 086 46896 138
.46494 891 46813 506 A7050 305 47232 971 AT3TT 947
46944 977 47250 501 47476 458 47650 031 LAT787 284
47335 2b6 A7626 T47 47841 164 48005 106 48134 218
47673 588 .47950 443 48152 898 48306 909 48427 658

AT966 886 48228 795 48419 109 48563 089 ABGTH 425
.48221 200 .48468 101 48646 298 48780 315 48884 332
48441 803 48673 839 48840 108 48964 368 49060 273
.48633 276 488500 754 490056 415 .49120 231 49208 320
48799 530 49002 944 49146 416 492562 182 .49332 817

48944 176 49133 9356 49266 712 49363 877 AQ43T 467
49069 997 49246 Th8 49369 383 49458 436 498525 415
49179 606 49344 012 49457 057 49538 505 49599 325
A9275 204 .49427 922 49531 977 49606 334 49661 446
49358 683 49500 394 A9596 046 49663 824 49713 675

Mo oie Dic Lo ttoioie Soowaas cuaioio- Olokiamn tistobek

20000000 OMONOIOLO MOORONID N el

3.6% | 4943 A956 4965 4971 4976
3.7 .4950 .4962 A970 4975 4979
3.8 4855 .4966 4974 4979 4983
3.9 4960 4971 A97T 4982 4985
4.0 .4964 4974 .4980 4984 4987

*These values are taken from Metron, Vol. 5, No. 3 (1925), pp. 116-117,



ANSWERS TO PROBLEMS

{In using these answers the student is advised to remember that a dif-
ferent order of approximation used in computation will lead in general to
slightly different results from those given here.)

CHAPTER I
Page 18; Section 9.
1L m=9;2 m=28;3. m=29.

Page 34; Section 12,

3. 1.0099; 4, 1.04566; 5. .99015; 6. See table, page 32; 7. 5.4772; 8. For
n == 16; 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820,
660, 120, 16, 1; For » = 17; 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310,
24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1; 9, ,,C, = 43758; ,,C, =
15504; 10. Expand (1+1)#, which is equivalent to 2»; 11, (1 + 1/z)* = 1
+ 4/ t+ 6/x2 + 4/%3 + Lat; —(1 — /gyt = — 1 + 4/x — &/x2 +
4/63 — 1/xt; 12, = + 622 + 122 + 11 + 32 Vz + 12Vax + 12/Vx +
6/x + 1/(xVz); 13. a® +b2 + ¢z + d2 + 2ab + 2ac + 2ad + 2bc + 2bd
+ 2ed.

CHAPTER II
Page 37; Section 1.
1. 1, —1, 3(1 — V2), 5, 11; 2. Yes, for 4 <z < 5 and —2 < =z
< —1; 3.—1, 0,0, 3/5, 1/2; 4, 611, 706.6, 726.2, 555; 5. 12.866, 50,156, 35.000,
119.450 million; 6. 2.89 million; 7. 197.27 million; 8. 1, 1.10517, 1.22140,
-36788, 0; 11. —1, 21219, .80821; 12. .00545, .00536; 13.0, 10, 1/16, 7/128.

Page 41; Section 2,

1. 44.6¢, 27.6¢, 36.6¢c; 3. 177, 42, 143 (These are only suggestive estimates
since various methods used to determine these values will lead to different an-
swers) ; 4. .90, .98, .42, .23,

Page 51; Section 6.

4, 2/3, —5, —5, —1/8; 9, y = 19.40 — .0Tx; 10. ¥y = 19.40 — .07x;
11. P = .2851 + .0072 M; 12, v — 25.48 + 4.61x.
Page 56; Section 8.

4. —25 and 1, 1/3; 5. (1/3, 0), (1, 3), (1/8, 13/8); 6. 49/15; 7. y ==
6 — 8z + 322; 8, y = 50 — 23.14x + 2.T14x%; 9. y = 7.23 — 2.432 -+ .680x2.

Page 60; Section 9.
6. y — 3.65 e3282; 7 oy = 2993 e2017; §, y = 455 ¢3%; Q y =
2.945 ¢29%37; 31,100, 41.893, 56.267, 75.673, 101.505.

—419—



420 ELEMENTS O STATISTICS

Page 62; Section 10.

1.8z + 4y = —2; 2, a2+ y2=4; 3,y = 37 + 4z" + 8; 4, ' (¢
+1)=9;5.¢y =e*;6.h=2,k=—5; . h = 0, k = 2/3 is one set of
values. Any set which satisfies the equation 10h — 3k + 2 = 0 will reduce
the equation to the desired form.

Page 65; Section 11.
7. 262, 210, 120, 45, 10, 1; these values are to be eompared with 259, 212.

115, 43, 11, 2.

CHAPTER III
Page 68; Section 3.
1. 99.48%; 2. 5 heads per toss; 3, —.16 of one per cent; 4, 49.07; 5,
100.25%; 6. $3,209.00; 7. Av. receipts = $29.71; Av. expenditures = $40.88;
8. 39.158 months,

Page 72; Section 4,
l.a=1/2b=1/2; 3. ¢ = &/t, b = (St — Ts)/t; 4.8.25; 5. 5.

Page 77; Section b.

1. o = 15.38, A. D. = 12.28; 2. 1.6; 3. o(receipts) = 15.44, o (expendi-
tures) = 39.57; 4. v(receipts) = .52, v(expenditures) = .97; 5. 131; 6. ¢
= 12.92 months, A. D. = 10.27; 7, ¢, = 147, 0., = 1.62,v,, = 297, v(p,
= .321,

Page 81; Section T,
1. 3.08; 2, .08; 3. 1.6; 4. 1.6; 5. m, = 5109, m, = 28149, m, = 166785,
M, = 0, M, = 26569, M, = —-189; 6. N, = —5181, N, = 28369, N, =

(r—1)
NI, « JUS + (—1)rm Xr.

r-2

—168985; 7. N, =m, —rm,; X + r

Page 83: Section 8.
1. £, =47799.88, 0 = 15.375;
- mom, —m,?  am, 3mm, , 2m,®
2- F‘z - - ] ”3 = mg - + H
mo 12 m(] m02
3. n, = 183,024.91.

Page 8b: Section 9.

1.100.13; 2. M = 5; Q, = 4, Q, = 6; 3, M = 2310.36; 4. M (receipts) =
33.76, M (expenditures) = 31.48; 5, @, = 29.94, Q, = 47.80; 6, D, = 23.20,
D, = 3811, D, = 45.55, D, = 56.37; 7. The best location is E.

Page 89; Section 10.
1. Mo = 100.08, S = .13, §’ = .13; 2. Mo = 104.21;4, Mo = 35.23; 55
= .30, §' = .60.
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Page 92; Section 11.

1. (a) decrease of .14 of one per cent.; (b) increase of 1.47%; 2. 23.4
years; 3. .33 of one per cent; 4, —17.36%; 5, —14.7%; 6. (a) 2.31% increase;
{b) 4.59% decrease.

Page 96; Section 12,
1. 29.65 cents; 2, 4.31; 3. 21.35; 4, 44.3; 5. 3.414.

CHAPTER 1V

Page 107; Section 3.
1. .8451; 2, .8445; 3, .8440; 4, .8445.

Page 114; Section 7.
1. .9533; 2. .6920; 3, [,, = 9810, I,, = 1.0379, I,, = .9905; I,, = 1.0163

I=1, X I; X I,, = 1.0083.

Page 117; Section 9.
2. (By ideal formula) 1.7165; 4, 2.229,

CHAPTER V

Page 123; Section 2.
1. ¥ = 11.62 + .05222 (Class marks 1, 2, 3, ete.}; 2. ¥y = 259.56 —
334« (Class marks, 1, 2, 3, ete.); 3. ¥y = 336.5% + 1.50x.

Page 128; Section 3.

1. 100, 100, 98, 99, 96, 98, 97, 99, 101, 103, 102, 102; 2, 90, 116, 118, 114,
104, 91, 97, 95, 100, 90, 97, 84; 3. 116, 108, 106, 102, 97, 93, 83, 83, 92, 99,
106, 116.

Page 130; Seection 4.
1. The trend is: y = 54.42 — .41x.

CHAPTER VL

Page 147; Section 1.
4. p = .b28 that child will be a boy.

Page 150; Section 2,

1. 360; 2. 125; 3, (a) 720, (b) 120; 4, 50,400; 5, 166,320; G. 4,368;
7. 384; 8. 16; 9, 360; 10. 32; 11, 369,600; 15,400; 12, 2,620; 13. 210; 14, b;
15. 2,622,620,

Page 1651; Section 3.

1. 8/8; 2. 6/36; 3. 1/28; 4, 1/36; 5, 8/15; 1/16; 6. A has best chance;
7. A has best chance in both cases; 8, 85/286; 9. 1/6 is to be compared with
5/36; 10. 1/5; 12. 2/(n—1); 13. 4/635,018,6569,600, 1:507:57798; 14,
(131)4/52! = 1/53644737765488792839237440000; 15. 1/8.
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Page 156; Section 6.

2, 11/36; 3, 4/25; 4. 45/182; 6, A:6/11, B:5/11; 7. 72/625; 8, 1/2 ,5/16;
9, 671/1296; 10. 7; 11. 2/27; 12. 4; 13. 4; 14. 16/37, 12/87, 9/37; 15. 2/8,
3/4, 4/5, 5/6, 1/8 and 10/11.

Page 158; Section 7.
1. 1106; 2. F = .000%; 3. The errors are .0003 and .00009 respectively;
4. p = 4934, E == ,0016; 5, 844, 471, _

Page 162; Section 9.
1. $2.16; 2. 63 cents; 3. $4.28; 4. $3.97; 5. $.0625; §$.25, $.375; §.2h,
$.0625; 6. 25% cents; 7. Half dollars; 8, $6.60,

Page 166; Section 10,
1. 10:5; 2, .000000012; 3. 24/59; 4, 1/8; 5, 49/58; 6. 49/50; 7. 21/22.

CHAPTER VII
Page 174; Section 2,
1. A = 560, ¢ = 155 ¢ = VA(l—A/n) = 157, 20/V2N =
0.11, Since ¢’ —o = ,02, the frequency is a binemial distribution.
2. A = 497, ¢ = 158, o = VA(l—A/n) = 1.58, 2¢/V2N = 0.1
The frequency is a binomial distribution.

4. No. of ones Frequencies 5 =z Y x Y
0 243 0 0.92 6 101.81
i 405 1 5.46 7 55.19
2 270 2 21.97 8 20.07
3 90 3 h8.27 9 4,90
4 15 4 104.62 10 0.80
5 1 5 | 12600 | 49981

| 1024
8. A=1.5, o= 1.317. 7. ;J o Y [ T Y -

_ _ ,_ 0 | =23 | 5 | 6186
8 A=468 o=18, o= 8.32 6 | 4837
VA(1—A/n) = 1.6, 20/V2N = 0.15, 2 21.52 7 28.04
¢ —o == 0.27. The distribution shows 3 41.26 8 12.05
too great a dispersion for ncrmal fre- 4 58.67 9 3.84

quency data.

Page 185; Section T.

1. By formula of chapter 3, Mo = 32; by methods of this chapter,
Mo = 38,

2, 10! = 3,628,800; by Stirling’s formula, 10! © 3,598,696; log 10001

o 2667.6046, From Duarte’s, Nouvelles Tables de log n! Paris (1927},
log 10001 = 2567.60464422.
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3. A=4, o= .8%44; 4. A=46127, o0=1.6663;
- Graduated | Exact x Frequency | x|Frequency
0 0.0 1 0 1.25 5| 46.87
1 1.6 20 1 5.31 6 32.82
2 54.1 160 2 15.72 i 16.03
3 512.8 640 3 32.44 8 5.46
4 1393.9 1280 4 46.68 9 1.30
b 1085.6 1024

§. A = 58270, o = 2.6925;

« | Frequency | # | Frequency| a | Frequency] « | Frequency| x | Frequency
0 16.9 3 97.9 6 163.8 9 792 12 111
1 33.0 4 133.4 7 147.6 10 47.2 13 44
2 62.6 B 158.4 8 1168 n 24.6 14 1.6

6. Class Intervals x Data Graduated Values
481-560 0 8 2.20
561-640 1 5 6.72
641-720 2 138 15.06
721-800 3 22 25.76
801-830 4 26 38.656
£81-960 B 39 33.56
961-1040 6 32 25.63

1041-1120 7 18 14.98
1121-1200 8 4 6.65
1201-1280 9 1 2.26

{1___ = 44940, ¢ = 1.9272, §' = 0.0008, ¢’ = VA(1—A/n) = LB0,
20/ V2N = 2103,

7. A = b5.9608, ¢ == 1.9042, §' = —0.0505,

% Graduated values x Graduated values
0 0.27 ] 42,17
1 1.26 7 37.86
2 4,42 8 25.43
8 11.80 9 12.96
4 23.87 10 5.02
3 86.68 202.34
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CHAPTER VIII
Page 191; Section 2.
1. 0.40658, 0.49266, 0.38877, 0.09367, 0.89760; 2, 0.7359, 0.6883, 0.1773;
3. p. e. = 0.5396; graduating by deviations from the average one has,

x Frequencies 4. The actual probability is 0.66319,
Below -1.45 3.78 To get the theoretical probability,
-1.45 8.2 note that 97 corresponds to x = 3.667
—0.95 18.28 and 105 to & = 6.333. Hence comput-
—0.45 25,71 r—A
ing I for both val
0.05 24.75 ingI( . ) for both values of  and
0.55 16.33 subtracting, one obtains 0.52580 for
1.05 7.39 k -
1.55 2.84 the theoretical probability.
Above 1.55 0.00 For second part of problem, p =
108.00 0.0799 as compared with 0.04305.

Page 198; Section 4.

1. No; 2. p = 0.00808 * 0.00191. Hence the expected number of deaths
is 8 = 2. The upper and lower values of the amount that the company will
have to pay out are $4000 and $28,000; 3, Between $1476.44 and $1526.07.
4. No; 5. p, = 0.50988662 *+ 0.00003280, p, = 0.50610511 * 0.00003043. The
probable error of the difference is 0.00004474, which is much less than the ac-
tual difference; §, The probable error of the difference between the probabil-
jties of the data of problem 4 and of the two sets of data of problem 5 is
.0059. The differences are 0.0176 and 0.0214 respectively. Hence the samples
are not consistent, the probability of inconsistency being greater in the sec-
ond case. 7. A = 39.158 £ 0.262; 8, 0 == 4.934 * 0.165; 9. v = 0.180% 0.084;
10. 1.626.

Page 206; Section 6.
1. P, = 0.0470; 2, P, = 0.0644; if the first item is omitted, P, = 0.308;
3. P, == 0.0027; 4, P, == 0.0187.

Page 209; Section 7.

1. Taking the range from 178 to 242 by intervals of 4, one obtains the
frequencies 2, 4, 8, 6, 16, 15, 19, 8, 8, 10, 4, 3, 2. From this one finds, A =
209.4 & .91, ¢ = 13.16. The distribution of errors is not quite normal.

2. B's set; 3. 39.373; 4. First set; 116.4, 119.9; the sets differ significant-
ly; 5. B was wrong.

CHAPTER IX
Page 228; Section 3.
1. ¥ = 102.27 — 0.94x (Years replaced by class marks 1, 2, 3, -,
10) ; y = 0.43 + 0.175x — 0.0148x2 (Age Group replaced by class marks, 1, 2,
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8, :::,12); 3. ¥ = (1.192) 27 + (0.910) 2-2; 4, y = 2.045¢r — 1.107¢7;
5. ¥ = 1.07 + 0.26x; 6, log ¥ = 11.91 — 1.48 log =.

Page 232; Section 4.

1. 338,350; 2, 25,502,600; 3, 10,000; 4. 1,333,300; 5. s, = [%p(p+1)]?
= g,%.
Page 237; Section 6.

1.y = 15169 + 41.45x; 3. ¥y — 14 — Tz + 22

Page 242; Section 7.

L v — 22.63 (1.073)7; 2. ¥y = 809.29 (1.160)*® (Years replaced by class
marks 0, 1, 2, : : + , 11) ; using the formula, one gets a slightly different re-
sult: ¥ = 837.52 (1.167)*; 3. ¥ = b5.18 (1.268)¢ (Years replaced by class
marks 0,1, 2, : -+, 14); 4, ¥ = 13.16 (1.083)¢ (Years replaced by the class
marks, 0, 1, 2, - -+, 13).

Page 252; Section 9.
2. About the 13th month. 3, 13021,

CHAPTER X.

Page 256; Section 2.

1. The lag correlation coefficients from »;’ to r, are respectively: —0.6444,
—0.8538, —0.9060, -—0.6666, —0.1966, 0.2492, 0.6257, 0.7873, 0.8344, 0.6549,
0.2714, —0.1553, —0.6444. One concludes that shipments lag two months be-
hind production. 2, Referring to the four series by the numbers 1, 2, 3, and
4 in the order Dow Jones, Index of Living, Paper Rates, Percentage Net In-
come, the correlations are r, = —0.0108, r,, = —0.2977, r,, = 0.6882. The
largest influence on bond price is thus the percentage-net income to capitali-
zation. 3, » = —0.2183; 4, » = 0.7688; 5, »r = 0.9356; §. r = —0.7324,
¥ = —0.9226. Conclusion: prices lag behind production; 7. r = 0.95662;
8. r = —0.4839.

Page 270; Section 4.

1. r = 0.,7884; 2. r = 0.8760. Based on a division of the ranges into 15
and 138 intervals; » = 0.8807 by direct computation. 3, 7, = 0.782, r,, =
0.587; 4. » = 0.8551.

Page 280; Section 5.
1, y = —6.697Tx -+ 100.82, y = —188.42 + 528.8; 2, ¥ = 2.66Tx —8.8560.

Page 285; Section 6.

1. 0.0060; 2, r = 0.6765 *+ 0.0168, a priori value == 0.6667; 3. ¢ =
1% 46’ 807, ¢ == 2° 55’ 30"; 4, ¢ = 33° 41’ 30"; 5. 0.9452; @, 0.8538.
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Page 291; Section 8..

1, r = —4116; 2. 7, = —.8805, 7,, = —.6111; 204 (n2—vr2) = 11522
and 41.64; 3, r = 0.8140, 7, = 0.8516, v, = 0.8852; 120 (v2—r2) = 7.52
and 4.19,

CHAPTER XI.
Page 301; Section 4,
2. —.2896.

Page 306; Section T,

1. o,, = 0.2312, o, = 13.4419, o, = 17,9026, 0,., = 11.2587, o,,, =
5.5739, 0,., = 6.0867; 2, X, — .6173 X, + .8471 X, + 26.3891; 3, P.E. of est.
of X, = * 5.1642; 5 R, ,,, = 8541, B, ,, = .8232, R,,,, = .5620;6. R, s
= 9701, P. E. of est, of X, = * 20.4108; R,,,, = .9548, P. E. of est. of
X, = * 14754,

Page 310; Section 9.

1. X, = .2470 X, + 2026.7233 X, — .0200 X, -— 26.6880; 2. R, ,,,, =
9444, P. E. of est. of X, = * .0006; 3, .0167, .0315, .0174, .0021; 4, X, —
—.00008211 X, + .0002409 X, - .0001714 X, + .01325; §, .0216.

CHAPTER XII
Page 322; Section 2.

2. E=—958;3 E = .930; 4, E = —.213; §, E = —.268; 7. E = -—.83.

Page 327; Section 3.
1. L = 3.71, C == 60.76; 2. L. = 6.74, C = 34.6.

Page 333; Section 4.

1. 24, 50, 35, 10, 1; 2. 23, 86, 118, 61; 3, A = 1.283, o2 = 8197; 4. A
=175+ ,02=770; 5. E, = 1, E, = 18/12, E, = 3/8, E, = 1/24; =,
= 1/2, v, = 1/8, x, == 1/4.

Page 336; Section b.
1. L = 8.61, C == 25.50; 2, L = 3.65. C = 59.67.

APPENDIX I1
Page 352; Section 3.
1. —5/31log 3 —5/2log 5 4+ 5/6 log 7; 2. —2/8 (log 2 + log 3 + log 5
— log T); 3. 6/2log 2 + log 3 + 2/3log 5 + log 7; 4, —2/5 log 3 +
6/5log 5— 1/2log 7 + 3/2 log 11; 5, —5/6 log 2 — 1/2 log 3 — 2/3 log 13;
6. —.7304; 7. 1.3358; 8. 2.6504; 9. .8546; 10. —0970; 12. 2; 13, 1.4651; 14,
2.3223: 15. 2.25, 3.25; 16. 6.645; 17. 4.755; 18, 4.82831; 19. 1,000; 20. 1.8129.
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FPage 356; Section 4.

1. 0.49715; 2, 1.21143; 3, 0.43429; 4, 2.74960; 5, 9.50285 — 10; 6. 7.90974
— 10; 7. 0.36222; 8. 9.09149 — 10; 9, 9.63778 — 10; 10, 8.88389 — 10; 11.
9.76134 — 10; 12. 8.53699; 13. 31.006; 14. .03657; 15. .80599; 16. .0000013659;
17. 974.09; 18. 26553.4; 19. 3.1623; 20, .0014874; 21, .010266; 22, 1.3235.

Page 357: Seclion 4.
1. 637.89; .2, 1.0205; 3, 9.0923; 4, .00028375; 5, 116.10— . 3.9456;
7. 1.0873; 8. .85227; 9, 9.95; 10, .(36 zeros)3005; 11. .019837; 12. 1005.9.

Page 361; Section 5.
1. 2.7183, 1.1052, .9048; 2, 1959, .1177; 3. 5.1039, 8.4994.

Page 363; Section 6.
1. .0963, 0108; 2, .02, .01984, 01982, .019802; 3, 1.0958; @, .5938.
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ment experience, 145,

Crop prices, index numbers of, 102.

Criré)3 preduction, index numbers of,

Crossed cross-weight aggregative in-
dex number, 106.

Cubic curve, 217-218,

Cumulative frequency curves,
ogives).

Curve fitting, Chap. IX; problem of,
215; Gram-Charlier theory of, 184;
Pearson methed of, 184.

Curve of error, (See normal prob-
ability funetion), 187.

Curve of growth, 57.

variation,

{See
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Deciles, 84.

Dependence, linear, 314-315.

Deviation, definition of, 74; mean or
average, T6.

Differences, definition of, 216,

Disturbancy, Charlier coefficient of,
324-326,

Divergence of series, 83.

Dow-Jones stock priece averages, 19,
68-69, 132, 133-135, 266, 273, 297,
307; periodogram of, 144-145.

Duration of play, problem of, 164,

Karning capacity, 228, 236-237.

Edgeworth-Marshall aggregative in-
dex number, 106,

Eggs, data on priece of, 39, 41, 130-
131; receipt of, 41,

Flectric power production, 123.

Employment, 42, 263, 269: of women,
197-198,

Errors, theory of, 206-210; curve of,
(Sce normal probability function).

Estimate, accuracy of, 305; probable
error of, 284, 305, 306, 309.

Fuler's number, 99, 363.

Excess, 317-324,

Exchange rate, franc-dollar, 273;
dollar-yen, 275,
Exponential curve, 56-60, 217-218,

fitting to date of, 58-60, 237-242,
Exponential function, 56-60, Table
11; of Poissen, 337.
Exponents, laws of, 548-349.
Exports, national, 24-25,

Factor reversal test, 109.

Farm products, price index of, 260.

Farms, size of, 29.

Fisher’s ideal index number,
ideal index number).

Forecasting, problem of, 136: ran-
dom, 69,

Freight car loadings, data of, 121:
trend of, 122; seasonal index num-
berz of, 127; corrected for seasonal
variation and secular trend, 129-
130; periodogram of, 141-144.

Freight, revenue, 41.

Frequeney distributions, Chaps. VII
and VIII, 14, 15-1%; graphical rep-
resentation of, 19-29; homograde,
14-15; heterograde, 14-15; ogives
of, 23-27; binomial (or Bernoulli),
29-30, 318-319, 325, 327-334; bi-
modal, 87; Poisson, 318-319, 325,
327-334; Lexis, 318319, 325, 327-
334; subnormal, 318-319, 325, 327-

{See

334; hypernormal, 318-319, 325,
327-334; of non-uniform items,
3131-336.

Function, definition of, 35; periodic,
36; gamma, 31; graphical repre-

ELEMENTS OF STATISTICS

sentation of, 42-47; linear, 47-51;
parabolic, 52-56; exponential, 56-
60, 359-361; Table II; normal
probability, 63-65, Chaps. VI1I and
VIII, 168, Tables ¥I and VII; chi
squared, 203-206, Table VIII; log-
arithmic, 361-363, Table I; squares,
Table III; square roots, Table 1V;
reciprocals, Table V; *“Student’s”
distribution, 211, Table XI.

Galton quincunx, 169-170.

Gamma function, 31; Sterling’s ap-
proximation for, 177-178.

Gaussian curve of error, (See nor-
mal probability function).

Geometric mean, 66, 89-93, 97.

Gold, index of world's stock, 253§;
ratio to production, 258.

Goodness of fit, 202-205.

Government expenditures, 70.

Government receipts, 70.

Gram-Charlier method of curve fit-
ting, 184, 314.

Harmonic aggregative index num-
ber, 106.

Harmonic analysis, 137-145; signif-
icance of, 143.

Harmonic mean, 66, 93-96, 97.

Heterograde distributions, definition
of, 14-15; Sheppard’s adjustments
of moments of, 82

Histogram, 22.

Homograde distributions,
of, 14-15.

Hypernormal frequency distributions,
318-319, 325, 327-334,

definition

Ideal index number, 106, 109, 110,
111, 113.

Imaginary number, definition of, 43.

Imports, national, 24-25, 275.

Income, national, 20, 27, 70, 92, 124,
225-227, 229, 259,

Independent events, probability of,
152; examples illustrating, 154-157.

Index law, 348.

Index numbers, Chap. IV, (See price
index numbers), history of, 100-
101, time reversal test for, 108;
factor reversal test for, 109; chain
of, 112; circular test for, 112-113;
bages for, 112-114; weighting sys-
tems for, i15-116.

Industrial production, 1:33-135,
262, 268.

Inhibition effect in building, 37,

Interpolation, Appendix III, 36,
355; Inverse, J66.

Inverse interpolation, 386.

Inverse probability, 163-165.

259,

188,
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Investment experience, Cowles Com-
mission index of, 145; other than
U. 8. Securities, 257.

Kurtosis, 317-324.

Lag correlation, 134-135.

Large numbers, law of, 157-159.

Law of large numbers, 157-159.

Law of small numbers, 336-338.

Least squares, method of, 48, 206-
210; in curve fitting, 215, 219-229,

Lexis distributions, 318-319, 325,
327-334.

Lexis ratio, 324-326.

Life insurance, growth of, 118.

Linear correlation, (See correlation).

Linear dependence, 314-315.

Logarithmic eurve, 217-218.

Logarithmic paper, 228, 241.

Logarithms, Appendix I1I; definition
of, 350; common (Briggsian), 3560;
natural, 350; laws of, 350-351;
change of base of, 351; caleulation
by, 353-358; characteristic of, 353-
354; mantissa of, 3563-3564; Table I.

Logistic curve, 217-218; fitting to
data of, 244252,

Loans and discounts, 266.

Lorenz curves, 26-28.

Mantissa, 353; definition of, 354.
Mathematieal expectation, 160-162.
Median, 66, 83-86.

Mg%aél and metal products, prices of,

Minutes of daylight, 36.

Mode, 66, 86-89; of binomial distribu-
tion, 175-177.

Moments, 79-83: continuous, 79;
Sheppard’s adjustments of, 81-83;
probable errors of second and
third, 196; in curve fitting, 215,
243-244.

Moral expectation, 161-162,

Multiple correlation, Chap. XI: for
three variables, 306-307; for four
variables, 308-309; in general, 309-
313.

Multiplication of probabilities, 152.

Mutually exclusive events, probability
og, 153; examples illustrating, 154~
157,

Napier's number, 350.

Naétional exports and imports, 24-25,
5.

National income, 20, 27, 70, 92, 124,
225-227, 229, 259,

Natural logarithms, 350.

Non-linear correlation, 254, 264, 28%-
292,

Non-linear regression, 287-292,

Normal equations, 49, 222,

433

Normal probability function, Chaps.
VII and V111, 63-65, 168; area un-
der, 188-191.

Ogives, 23-27.
Ordinate, definition of, 21.
Orthogonal functions, 184,

Parabola, 52-56, 213-214; maximum
and minimum of, 52-53; x-inter-
cepts of, 53; fitting to data of, 54-
55, 233-236.

Parabolic curve, 217-218; fitting to

- data of, 224-228; law of Pareto as,
224,

Pareto, law of, 27, 224-229.

Partial correlation, Chap. XI, 295-
208.

Partial correlation coefficients of first

order, 296-300; of second order,
298-301.
Partial regression equations, 301-
305.

Pascal’s triangle, 382.

Pearson chi test, 202-206.

Pearson method of curve fitting, 184,
316.

Pearson probability, 203,

Percentiles, 84.

Periodogram, 138-139.

Permutations, 148-150.

Pig Iron, price of, 45-46; production
of, 262, 268, 297, 307,

Pneumatic ecasings, production and
shipping of, 256.

Point of inflection, 245,

Poisson-Bortkewitseh law of small
numbers, 336-338,

Poisson distributions, 318-319, 825,
328-324.

Poisson’s exponential funetion, 337.

Polynomials, general, 217-218; curve
fitting of, 230-232.

Population, growth of, 37-38, 60, 91,
242, 245-246; sex ratio in, 198,
Price index numbers, problem of,
101-105; formulas for, 105-106;
time reversal test for, 108; factor
reversal fest for, 109; chain of,
112; circular test for, 112-113;

wholesale commodity, 116.

Prices, retail food, 93; commodity, 28,
92, 116, 185, 189, 228, 263, 266;
ege, 39, 41, 130-131; wholesale,
136, 258, 260, 269; of crops, 102;
of pig iron, 45-46; Bradstreets in-
dex of general, 185, of bonds, 257;
of farm products, 260; of cotton,
261; of metal and metal products,
266: general, 264,

Probability, Chap. VI: definition of,
146; joint, 152; of independent
events, 162; of mutually execlusive
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events, 153; in repeated {rials,
159; inverse, 163-165; probable er-
ror of, 195; Pearson, 203,
Probable error, Chap. VIII; deflini-
tion of, 190; applied to sampling,
191-199; of various constants, 195-
196; examples of use of, 196-198;
derivation for the mean, 199-202;
of correlation coefficient, 280; in
testing correlation ratio, 296-291;
of estimate, 284, 305, 306, 309; of
partial correlation coefficients, 310.
Production, index of world’s, 254.
Public utilities, net earnings of, 128.
Purchasing power of the dollar, 137.

Quadratic (See root-mean-
square).

Quartic curve, 217-218,

Quartiles, 84.

Quintic curve, 217,

mean,

Railroad bonds, 817.

Rail stock prices, 322-323,

Rank correlation, 283-284.

TRatio of mvestment% 18-19.

Reciprocals, Table V

Revres<ion curves, 264-265;
linear, 287; partial, 301-30%,

Regression lines, 275-280.

Relative magnitude of averages, 96-
99,

‘Root-mcan-square, 66, 73-78, 97.

non-

St. Petersburg paradex, 160-161.

Sampling, the problem of, Chap
VIII, 11.

Seatter diggram, 264,

Seasonal variation, 37, 124-128; in-
dex mnumbers of, 128; correction
for, 129-132.

Secular trend, 121-124; correction for,
126-132.

Semi-invaritants of Thiele,

Septimic curve, 217.

Series, binomial, 33; convergence of,
33; divergenece of, 33; exponential,
5360 logarithmie, 261-363; types of
statistical, Chap., XII.

Sextic curve, 217.

Shenpard’s adjustments of moments,
81-83,

Simp5]e agprregative
0

316.

index number,

Sk(:WI:ICSS, 88-89, 181; probable error
of, 196, 317
Skew-normal probability  curve, de-
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rivation of, 178-180; application of,
181-185,

Small Samples, the()n of, 211-211,

Sources of statistical data, 11-14,

Square roots, Table IV.

Squares, Table Y11,

Standard deviation, 74; transforma-
tion of, 78; of binomial distribu-
tion, 173 i174; Bernoulli, 79, 193;
probable error of, 195.

Statistical data, sources of, 11-14;
clasgification of, 14.

Statistical series, types of, Chap.
XII.

Statisties, origins of, 2-4: definition
of, 2; in economics, 4-9; scope of,
9-10; mathematical theory of, 10-
11; tvpes of series in, Chap. XII.

Stu-lmgs formulia, 177-178.

Steel, new orders of fabricated, 128;
(tm'nings per shave, 253,

Stock dividends, 271-272.

Stock earmings, 275,

Stock price averages, 19, 68-69, 130,
122, 159-185, 266, 271.272, 2773, 522
123,

Stock sales, 240-241, 266, 287, 307,

Straight line, 47-51, 216-218; fitting
to data of, 222-224, 233, 47-51;
slope of, 47.

“Student’s” t-test, 211-214,

Subnormal frequeney distributions,
B18-419, 425, 327-324,

Taylor’s expansion, 304n.

Testimony, problem of, 184,

Time money rates, 266.

Time reversal test, 108.

Time series, Chap. V: secular trend
of, 121-124; seasonal variation of,
124-128; eorrelation of, 132-137;
harmonie analysis of, 137-145.

Transformation of arithmetic mean,
71; of standard deviation, 78.

Translation of axes, 1-62,

Variability, corfficient of, 76.

Wagpe earners, 117.

Wage level, manufacturing
tries, 136.

Wages, 9% of women, R.

Walsh’s cross-weight argregative in-
dex number, 1086.

Wei;%hted aggregative index nmumber,
106.

indus-

Wheat, vield of, 123, 274, 294; arca
planted, 274, 204.
Wholesale prices, 136, 258, 289; of

crops, 102; of commodities, 92, 116.



